
An Approach to the Category of Net Computations

Vladimiro Sassone ◦

BRICS∗ – Computer Science Dept., University of Aarhus

Abstract. We introduce the notion of strongly concatenable process as a re-
finement of concatenable processes [3] which can be expressed axiomatically via
a functor Q[] from the category of Petri nets to an appropriate category of
symmetric strict monoidal categories, in the precise sense that, for each net N ,
the strongly concatenable processes of N are isomorphic to the arrows of Q[N].
In addition, we identify a coreflection right adjoint to Q[] and characterize its
replete image, thus yielding an axiomatization of the category of net computa-
tions.

Introduction

Petri nets, introduced by C.A. Petri in [8] (see also [10]), are unanimously con-
sidered among the most representative models for concurrency, since they are
a fairly simple and natural model of concurrent and distributed computations.
However, Petri nets are, in our opinion, not yet completely understood.

Among the semantics proposed for Petri nets, a relevant role is played by the
various notions of process [9, 4, 1], whose merit is to provide a faithful account
of computations involving many different transitions and of the causal connec-
tions between the events occurring in a computation. However, process models,
at least in their standard forms, fail to bring to the foreground the algebraic
structure of nets and their computations. Since such a structure is relevant
to the understanding of nets, they fail, in our view, to give a comprehensive
account of net behaviours.

The idea of looking at nets as algebraic structures [10, 7, 13, 14, 2] has been
given an original interpretation by considering monoidal categories as a suit-
able framework [6]. In fact, in [6, 3] the authors have shown that the semantics
of Petri nets can be understood in terms of symmetric monoidal categories—
where objects are states, arrows processes, and the tensor product and the arrow
composition model, respectively, the operations of parallel and sequential com-
position of processes. In particular, [3] introduced concatenable processes—the
slightest variation of Goltz-Reisig processes [4] on which sequential composition
can be defined—and structured the concatenable processes of a Petri net N as
the arrows of the symmetric strict monoidal category P[N]. This yields an ax-
iomatization of the causal behaviour of a net as an essentially algebraic theory
and thus provides a unification of the process and the algebraic view of net
computations.

However, also this construction is somehow unsatisfactory, since it is not
functorial. More strongly, given a morphism between two nets, i.e., a simulation
between them, it may not be possible to identify a corresponding monoidal

* Basic Research in Computer Science, Centre of the Danish National Research Foundation.
◦ Supported by EU Human Capital and Mobility grant ERBCHBGCT920005.

1

functor between the respective categories of computations. This fact, besides
showing that our understanding of the algebraic structure of Petri nets is still
incomplete, prevents us from identifying the category (of the categories) of net
computations, i.e., from axiomatizing the behaviour of Petri nets ‘in the large’.

This paper presents an analysis of this issue and a solution based on the
new notion of strongly concatenable processes, introduced in Section 4. These
are a slight refinement of concatenable processes which are still rather close
to the standard notion of process: they are Goltz-Reisig processes whose min-
imal and maximal places are linearly ordered. In the paper we show that,
similarly to concatenable processes, also this new notion can be axiomatized
as an algebraic construction on N by providing an abstract symmetric strict
monoidal category Q[N] whose arrows are in one-to-one correspondence with
the strongly concatenable processes of N . The category Q[N] constitutes our
proposed axiomatization of the behaviour of N in categorical terms.

Corresponding directly to the linear ordering of pre- and post-sets which
characterizes strongly concatenable processes, the key feature of Q[] is that,
differently from P[], it associates to the net N a monoidal category whose
objects form a free non-commutative monoid. The reason for renouncing to
commutativity when passing from P[] to Q[], a choice that at first may seem
odd, is explained in Section 2, where the following negative result is proved:
under very reasonable assumptions, no mapping from nets to symmetric strict
monoidal categories whose monoids of objects are commutative can be lifted
to a functor, since there exists a morphism of nets which cannot be extended
to a monoidal functor between the appropriate categories. Thus, abandoning
the commutativity of the monoids of objects and considering strings as repre-
sentatives of multisets, i.e., considering strongly concatenable processes, seem
to be a choice forced upon us by the aim of a functorial algebraic semantics
of nets. As a consequence of this choice, any transition of N has many corre-
sponding arrows in Q[N], actually one for each linearization of its pre-set and
of its post-set. However, such arrows are ‘related’ to each other by a naturality
condition, in the precise sense that, when collected together, they form a natu-
ral transformation between appropriate functors. This naturality axiom is the
second relevant feature of Q[] and it is actually the key to keep the computa-
tional interpretation of the new category Q[N], i.e., the strongly concatenable
processes, surprisingly close to that of P[N], i.e., the concatenable processes.

Concerning our main issue, viz. functoriality, in Section 3 we introduce
a category TSSMC

⊗ of symmetric strict monoidal categories with free non-
commutative monoids of objects, called symmetric Petri categories, whose ar-
rows are equivalence classes—accounting for our view of strings as representa-
tives of multisets—of those symmetric strict monoidal functors which preserve
some further structure related to nets, and we show that Q[] is a functor from
Petri, a rich category of nets introduced in [6], to TSSMC

⊗. In addition, we
prove that Q[] has a coreflection right adjoint N []: TSSMC

⊗ → Petri. This
implies, by general reasons, that Petri is equivalent to an easily identified core-
flective subcategory of TSSMC

⊗, namely the replete image of Q[]. The category
TSSMC

⊗, together with the functors Q[] and N [], constitutes our proposed ax-

2

iomatization (‘in the large’) of Petri net computations in categorical terms.

Although this contribution is a first attempt towards the aims of a functorial
algebraic semantics for nets and of an axiomatization of net behaviours ‘in the
large’, we think that the results given here help to deepen the understanding
of the subject. We remark that the refinement of concatenable processes into
strongly concatenable processes is similar and comparable to the one which
brought from Goltz-Reisig processes to them, and that the result of Section 2
makes strongly concatenable processes ‘unavoidable’ if a functorial construction
is desired. In addition, from the categorical viewpoint, our approach is quite
natural, since it is the one which simply observes that multisets are equivalence
classes of strings and then takes into account the categorical paradigm, following
which one always prefers to add suitable isomorphisms between objects rather
than considering explicitly equivalence classes of them. Finally, concerning the
use of category theory in semantics, and in particular in this paper, it may be
appropriate to observe here that the categorical framework made it possible to
discover and amend an ‘anomaly’ of P[] significant and of general relevance
which could have not been noticed in other frameworks.

Due to the extended abstract nature of this paper, most of the proofs are
omitted. Some preliminary related results appear also in [11].

Notation. When dealing with a category C in which arrows are meant to represent compu-
tations, in order to stress its computational interpretation, we write arrow composition from
left to right, i.e., in the diagrammatic order, and we denote it by ; . The reader is referred
to [5] for the categorical concepts used.

Acknowledgements. I wish to thank José Meseguer and Ugo Montanari to whom I am
indebted for several discussions on the subject. Thanks to Mogens Nielsen, Claudio Hermida
and Jaap Van Oosten for their valuable comments on an early version of this paper.

1 Concatenable Processes

In this section we recall the notion of concatenable processes [3].

Notation. Given a set S, we denote by S
⊕ the set of finite multisets of S, i.e., the set of all

functions from S to the set ω of natural numbers which yield nonzero values only on finitely
many s ∈ S. We recall that S

⊕ is a commutative monoid, actually the free commutative
monoid on S, under the operation of multiset union, in the following denoted by ⊕, with unit
element the empty multiset 0.

Definition 1.1 (Petri Nets)
A Petri net is a structure N = (∂0

N , ∂1
N :TN → S⊕

N), where TN is a set of
transitions, SN is a set of places, and ∂0

N and ∂1
N are functions.

A morphism of Petri nets from N0 to N1 is a pair 〈f, g〉, where f :TN0
→ TN1

is a function and g:S⊕
N0

→ S⊕
N1

is a monoid homomorphism such that 〈f, g〉

respects source and target, i.e., ∂i
N1

◦ f = g ◦ ∂i
N0

, for i = 0, 1.

This defines the category Petri of Petri nets.

This describes a Petri net precisely as a graph whose set of nodes is a
free commutative monoid, i.e., the set of finite multisets on a given set of

3

places. The source and target of an arc, here called a transition, are meant to
represent, respectively, the markings consumed and produced by the firing of
the transition.

Definition 1.2 (Process Nets and Processes)
A process net is a finite, acyclic net Θ such that for all t ∈ TΘ, ∂0

Θ(t) and ∂1
Θ(t)

are sets (as opposed to multisets), and for all t0 6= t1 ∈ TΘ, ∂i
Θ(t0)∩∂i

Θ(t1) = ∅,
for i = 0, 1.

Given N ∈ Petri, a process of N is a morphism π: Θ → N , where Θ is a
process net and π is a net morphism which maps places to places (as opposed
to morphisms which map places to markings).

We consider as identical process nets which are isomorphic. Consequently,
we shall make no distinction between two processes π: Θ → N and π′: Θ′ → N

for which there exists an isomorphism ϕ: Θ → Θ′ such that π′ ◦ ϕ = π.

The equivalence of the following definition of P[N] with the original one
in [3] has been proved in [12]. The reader is referred to the cited works for a
more explicit description of P[N], a wider discussion, and for related examples.

Definition 1.3

The category P[N] is the monoidal quotient of F(N), the symmetric strict
monoidal category whose monoid of objects is S⊕

N and whose arrows are freely
generated from the transitions of N , modulo the axioms

γa,b = ida⊕b if a, b ∈ SN and a 6= b,

t; (id ⊗ γa,a ⊗ id) = t if t ∈ TN and a ∈ SN ,

(id ⊗ γa,a ⊗ id); t = t if t ∈ TN and a ∈ SN ,

where γ is the symmetry isomorphism of F(N).

The arrows of P[N] have a nice computational interpretation as concatenable
processes, a slight refinement of the classical notion of process consisting of a
suitable labelling of the minimal and the maximal places of process nets which
distinguishes among the different instances of a place in a process of N . The
role of the symmetries is to regulate the flow of causality between subprocesses
by permuting instances of places appropriately, i.e., by exchanging causes. In
this view, the first axiom says that permuting different places does not change
the causal relationships, and the remaining two say that the same happens when
permuting places in the pre- and in the post-set of a transition. Using the labels,
it is easy to define an operation of concatenation of concatenable processes and,
thus, a category CP[N] whose objects are the multisets S⊕

N and whose arrows
are the concatenable processes of N . It has been proved in [3] that CP [N] is a
symmetric strict monoidal category and that the following result holds.

Theorem 1.4

CP [N] and P[N] are isomorphic.

4

2 A Negative Result about Functoriality

Among the primary requirements usually imposed on constructions like P[]
there is that of functoriality. One of the main reasons supporting the choice
of a categorical treatment of semantics is the need of specifying further the
structure of the systems under analysis by giving explicitly the morphisms or,
in other words, by specifying how the given systems simulate each other. This,
in turn, means to choose precisely what the relevant (behavioural) structure
of the systems is. It is then clear that such morphisms should be preserved
at the semantic level. In our case, the functoriality of P[] means that if N

can be mapped to N ′ via a morphism 〈f, g〉, which by the very definition of
net morphisms implies that N can be simulated by N ′, there must be a way,
namely P[〈f, g〉], to see the processes of N as processes of N ′. However, this
is not possible for P[]. The problem, as illustrated by the following example,
is due to the first axiom in Definition 1.3 which, on the other hand, is exactly
what makes P[N] capture quite precisely the notion of processes of N .

Example 2.1

Consider the nets N and N̄ in the picture below, where we use the standard
graphical representation of nets in which circles are places, boxes are transitions,
and sources and targets are directed arcs. We have SN = {a0, a1, b0, b1} and TN

consisting of the transitions t0: a0 → b0 and t1: a1 → b1, while SN̄ = {ā, b̄0, b̄1}
and TN̄ contains t̄0: ā → b̄0 and t̄1: ā → b̄1.

a0 a1 ā

t0 t1 t̄0 t̄1

b0 b1 b̄0 b̄1

+*()
��

+*()
��

+*()8888
��

������� �� �
��

� �� �
��

� �� �
��

� �� �
��+*() +*() +*() +*()

Consider now the net morphism 〈f, g〉 where f(ti) = t̄i, g(ai) = ā and g(bi) = b̄i,
for i = 0, 1. We claim that 〈f, g〉 cannot be extended to a monoidal functor
P[〈f, g〉] from P[N] to P[N̄]. Suppose in fact that F is such an extension. Then,
it must be F(t0 ⊗ t1) = F(t0)⊗ F(t1) = t̄0 ⊗ t̄1. Moreover, since t0 ⊗ t1 = t1 ⊗ t0,
we would have

t̄0 ⊗ t̄1 = F(t1 ⊗ t0) = t̄1 ⊗ t̄0,

which is impossible since the leftmost and the rightmost terms above are dif-
ferent processes in P[N̄].

Formally speaking, the problem is that the category of symmetries sitting
inside P[N], say SymN , is not free. Moreover, it is easy to verify that as soon as
one imposes axioms on P[N] which guarantee to get a functor, one annihilates
all the symmetries and, therefore, destroys the ability of P[N] of dealing with
causality. It is important to observe that it would be definitely meaningless
to try to overcome the problem simply by dropping from Petri the morphisms

5

which ‘behave badly’: the morphism 〈f, g〉 of Example 2.1, for instance, is
clearly a simulation and, as such, it should definitely be allowed by any serious
attempt to formulate a definition of net morphisms. The following result shows
that the problem illustrated in Example 2.1 is serious, actually deep enough to
prevent any naive modification of P[] from being functorial.

Theorem 2.2

Let X [] be a function which assigns to each net N a symmetric strict monoidal
category whose monoid of objects is commutative and contains the places of
N . Suppose that the group of symmetries at any object of X [N] is finite and
suppose that there exists a net N with a place a ∈ N such that, for each n > 1,
we have that the components at (na, na) of the symmetry isomorphism of X [N]
is not an identity. Then, there exists a Petri net morphism 〈f, g〉:N0 → N1

which cannot be extended to a symmetric strict monoidal functor from X [N0]
to X [N1].

Proof. (Sketch.) Let N ′ be a net such that, for each n, we have c′na,na 6= id ,

where c′ is the symmetry natural isomorphism of X [N ′], and let N be a net with two

distinct places a and b and with no transitions, and let c′ be the symmetry natural

isomorphism of X [N]. Since the group of symmetries at ab is finite, there is a cyclic

subgroup generated by ca,b, i.e., there exists k > 1, the order of the subgroup, such

that (ca,b)
k = id and (ca,b)

n 6= id for any 1 ≤ n < k. Let p be any prime number

greater than k. Then, exploiting general properties of monoidal categories and

reasoning as in Example 2.1, one sees that the Petri net morphism 〈f, g〉: N → N ′,

where f is the function ∅ → TN ′ and g is the monoid homomorphism such that

g(b) = (p− 1)a and g is the identity on the other places of N , cannot be extended

to a symmetric strict monoidal functor F:X [N] → X [N ′]. X

The contents of the previous proposition may be restated in different terms
by saying that in the free category of symmetries on a commutative monoid
M there are infinite homsets. This means that dropping axiom γa,b = ida⊕b in
the definition of P[N] causes an ‘explosion’ of the structure of the symmetries.
More precisely, if we omit that axiom we can find some object u such that
the group of symmetries on u has infinite order. Of course, since symmetries
represent causality, and as such they are integral parts of processes, this makes
the category so obtained completely useless for the application we have in mind.

The hypothesis of Theorem 2.2 can be certainly weakened in several ways, at
the expense of complicating the proof. However, we avoided such complications
since the conditions stated above are already weak enough if one wants to
regard X [N] as a category of processes of N . In fact, since places represent
the atomic bricks of which states are built, one needs to consider them in
X [N], since symmetries regulate the ‘flow of causality’, there will be cna,na

different from the identity, and since in a computation we can have only finitely
many ‘causality streams’, there will not be categories with infinite groups of
symmetries. Therefore, the given result means that there is no chance to have
a functorial construction of the processes of N along the lines of P[N] whose
objects form a commutative monoid.

6

3 The Category Q[N]

In this section we introduce the symmetric strict monoidal category Q[N] which
is meant to represent the processes of the Petri net N and which supports a
functorial construction. This will allow us to characterize the category of the
categories of net behaviours, i.e., to axiomatize net behaviours ‘in the large’.

Theorem 2.2 shows that, necessarily, there is a price to be payed. Here,
the idea is to renounce to the commutativity of the monoids of objects. More
precisely, we build the arrows of Q[N] starting from the Sym∗

N , the ‘free’ cat-
egory of symmetries over the set SN of places of N . This choice makes each
transition of N have many corresponding arrows in Q[N]; however, the arrows
of Q[N] which differ only by being instances of the same transition are linked
together by a ‘naturality’ condition which guarantees that Q[N] remains close
to the category P[N] of concatenable processes. Namely, the arrows of Q[N]
correspond to Goltz-Reisig processes in which the minimal and the maximal
places are linearly ordered.

Similarly to SymN , Sym∗
N serves a double purpose: from the categorical

point of view it provides the symmetry isomorphism of a symmetric monoidal
category, while from a semantic perspective it regulates the flow of causal de-
pendency. Generally speaking, a symmetry in Q[N] should be interpreted as a
‘reorganization’ of the tokens in the global state of the net which, when reorga-
nizing multiple instances of the same place, yields a exchange of causes exactly
as SymN does for P[N].

Notation. In the following, we use S
⊗ to indicate the set of (finite) strings on set S, more

commonly denoted by S
∗. In the same way, we use ⊗ to denote string concatenation, while 0

denotes the empty string. As usual, for u ∈ S
⊗, we indicate by |u| the length of u and by ui

its i-th element.

Definition 3.1 (The Category of Permutations)
Let S be a set. The category Sym∗

S has for objects the strings S⊗ and an arrow
p:u → v if and only if p is a permutation of |u| elements, and v is the string
obtained by applying the permutation p to u, i.e., vp(i) = ui.

Arrows composition in Sym∗
S is obviously given by the product of permutations,

i.e., their composition as functions, here and in the following denoted by ; .

Graphically, we represent an arrow p:u → v in Sym∗
S by drawing a line

between ui and vp(i), as for example in Figure 1. Of course, it is possible
to define a tensor product on Sym∗

S together with interchange permutations
which make it a symmetric monoidal category (see also Figure 1 where γ is the
permutation {1 → 2, 2 → 1}).

Definition 3.2 (Operations on Permutations)
Given the permutations p:u → v and p′:u′ → v′ in Sym∗

S their parallel compo-
sition p ⊗ p′:u ⊗ u′ → v ⊗ v′ is the permutation such that

i 7→

{

p(i) if 0 < i ≤ |u|
p′(i − |u|) + |u| if |u| < i ≤ |u| + |u′|

7

a a a b b

a a a b b

((((((� �� �((((((������ '''''������ �� � ⊗

a a b

a a b

((((((� �� �������� �� � =

a a a b b a a b

a a a b b a a b

((((((� �� �((((((������ '''''����� ((((((������� �� �
γ

(

a a b
� �� �, a a a b b

� �� �) =

a a b a a a b b

a a a b b a a b

IIIIIIIII� �� �IIIIIIIIIIIIIIIIII������ ������ ������ ������ ������� �� �
Figure 1: The monoidal structure of Sym∗

S

Given a permutation π of m elements and the strings ui ∈ S⊗, i = 1, . . . ,m,
the interchange permutation π(u1, . . . , um) is the permutation p such that

p(i) = i −
h−1
∑

j=1

|uj| +
∑

π(j)<π(h)

|uj | if
h−1
∑

j=1

|uj | < i ≤
h
∑

j=1

|uj |.

It is easy to see that ⊗ extends to a functor ⊗:Sym∗
S × Sym∗

S → Sym∗
S

making Sym∗
S a strict monoidal category. Moreover, the family of interchange

permutations γ = {γ(u, v)}u,v∈Sym∗
S

provides the symmetry isomorphism which
makes Sym∗

S a symmetric strict monoidal category.

Theorem 3.3

Let S be a set, let C be a symmetric strict monoidal category and let F be
a function from S to the set of objects of C. Then, there exists a unique
symmetric strict monoidal functor F:Sym∗

S → C extending F .

The preceding result proves that the mapping S 7→ Sym∗
S extends to a

left adjoint functor from Set, the category of sets, to SSMC, the category of
symmetric strict monoidal categories. Equivalently, Sym∗

S is the free symmetric
strict monoidal category on the set S, which is the key point about Sym∗

S .

In the following, given a string u ∈ S⊗, let M(u) denote the multiset
corresponding to u, and, given a net N , let Sym∗

N the category Sym∗
SN

.

Definition 3.4 (The category Q[N])
Let N be a net in Petri. Then Q[N] is the category which includes Sym∗

N

as subcategory and has as additional arrows those defined by the following
inference rules:

t:M(u) → M(v) in TN

tu,v:u → v in Q[N]

α:u → v and β:u′ → v′ in Q[N]

α ⊗ β:u ⊗ u′ → v ⊗ v′ in Q[N]
α:u → v and β: v → w in Q[N]

α ; β:u → w in Q[N]

8

plus the axioms expressing the fact that Q[N] is a symmetric strict monoidal
category with symmetry isomorphism γ, and the following axiom involving
transitions and symmetries.

p ; tu′,v′ = tu,v ; q where p:u → u′ in Sym∗
N and q: v → v′ in Sym∗

N . (Φ)

Exploiting the freeness of Sym∗
N , it is easy to prove the following completely

axiomatic description of Q[N], which can be useful in many contexts.

Proposition 3.5

Q[N] is (isomorphic to) the category C whose objects are the elements of S⊗
N

and whose arrows are generated by the inference rules

u ∈ S⊗
N

idu:u → u in C

u, v in S⊗
N

cu,v:u ⊗ v → v ⊗ u in C

t:M(u) → M(v) in TN

tu,v:u → v in C

α:u → v and β:u′ → v′ in C

α ⊗ β:u ⊗ u′ → v ⊗ v′ in C

α:u → v and β: v → w in C

α;β:u → w in C

modulo the axioms expressing that C is a strict monoidal category, namely,

α; idv = α = idu;α and (α;β); δ = α; (β; δ),

(α ⊗ β) ⊗ δ = α ⊗ (β ⊗ δ) and id0 ⊗ α = α = α ⊗ id0,

idu ⊗ idv = idu⊗v and (α ⊗ α′); (β ⊗ β′) = (α;β) ⊗ (α′;β′),

the latter whenever the righthand term is defined, the following axioms express-
ing that C is symmetric with symmetry isomorphism c

cu,v⊗w = (cu,v ⊗ idw); (idv ⊗ cu,w),

cu,u′ ; (β ⊗ α) = (α ⊗ β); cv,v′ for α:u → v, β:u′ → v′,

cu,v; cv,u = idu⊗v,

and the following axiom corresponding to axiom (Φ)

p ; tu′,v′ ; q = tu,v where p:u → u′ and q: v′ → v are symmetries.

We show next that Q[] can be lifted to a functor from the category of
Petri nets to an appropriate category of symmetric strict monoidal categories
and equivalence classes of symmetric strict monoidal functors. The role of
such an equivalence is to take into account that we look at the strings of S⊗

N

as concrete representatives of the multisets of S⊕
N and, therefore, we want to

consider perfectly equal those functors which differ only by picking different,
yet compatible, linearizations of multisets.

Definition 3.6 (Symmetric Petri Categories)
A symmetric Petri category is a symmetric strict monoidal category C in SSMC

whose monoid of objects is the free monoid S⊗ for some set S.

9

For any pair C and D of symmetric Petri categories, consider the binary
relation RC,D on the symmetric strict monoidal functors from C to D defined
as F RC,D G if and only if there exists a monoidal natural isomorphism σ: F ∼= G

whose components are all symmetries. Clearly, RC,D is an equivalence relation
and the family R = {RC,D}C,D∈SSMC is a congruence with respect to functor
composition. Therefore, the following definition makes sense.

Definition 3.7 (The category SSMC
⊗)

Let SSMC
⊗ be the quotient of the full subcategory of SSMC consisting of the

symmetric Petri categories modulo the congruence R.

Theorem 3.8 (Q[]: Petri → SSMC
⊗)

Q[] extends to a functor from Petri to SSMC
⊗.

Proof. (Sketch.) Let 〈f, g〉: N0 → N1 be a morphism of Petri nets. In order define

Q[〈f, g〉] we need to be able to embed N in Q[N]. To this end, consider any function

inN1
: S⊕

N1
→ S⊗

N1
such that M(inN1

(ν)) = ν. Since g is a monoid homomorphism

from the free monoid S⊕
N0

to S⊕
N1

, it corresponds to a unique function g′ from SN0

to S⊕
N1

, whence we obtain ĝ = inN1
◦ g′: SN0

→ S⊗
N1

, i.e., a function from SN0
to

the set of objects of Q[N1]. Then, from Theorem 3.3, we have the symmetric strict

monoidal functor F
′:SymSN0

→ Q[N1]. Finally, we extend F
′ to a functor Q[〈f, g〉]

from Q[N0] to Q[N1] by considering the symmetric strict monoidal functor F which

coincides with F
′ on SymN0

and maps tu,v: u → v to f(t)F(u),F(v): F(u) → F(v).

Since monoidal functors map symmetries to symmetries, and since f(t) is transition

of N1, it follows immediately that F preserves axiom (Φ), i.e., that F is well defined.

Moreover, since a different choice of inN1
would clearly give a functor G such that

F R G, we have that Q[] does not depend on inN1
. It is easy to check that this

definition makes Q[] into a functor. X

However, the category SSMC
⊗ is still too general for our purpose. In par-

ticular, it is easily noticed that Q[] is not full. This signifies that SSMC
⊗ has

too little structure to represent net behaviours precisely enough; equivalently,
since the structure of the objects of a category C is ‘encoded’ in the morphisms
of C, it signifies that the morphisms of SSMC

⊗ do not capture the structure
of symmetric Petri categories precisely enough. Specifically, the transitions,
which are definitely primary components of nets, and as such are treated by
the morphisms in Petri, have no corresponding notion in SSMC

⊗: we need to
identify such a notion and refine the choice of the category of net computations
accordingly.

The key to accomplish our task is the following observation about axiom (Φ)
in Definition 3.4: as already mentioned, it simply expresses that the collection
of the arrows tu,v of Q[N], for t ∈ TN and u, v ∈ S⊗

N , is a natural transformation.
Namely, for C a symmetric Petri category with objects S⊗, and ν a multiset
in S⊕, let Sym

C,ν be the subcategory of C consisting of those objects u ∈ S⊗

such that M(u) = ν and the symmetries between them, and let inC,ν be the
inclusion of Sym

C,ν in C. Then, for ν, ν ′ ∈ S⊕, one obtains a pair of parallel

10

functors πC,ν and πC,ν′ by composing inC,ν and inC,ν′ respectively with the first
and with the second projection of Sym

C,ν × Sym
C,ν′ .

Sym
C,ν

Sym
C,ν × Sym

C,ν′ C

Sym
C,ν′

inC,ν
MMMMMMM&&

π0pppppp 77

πC,ν
//

π
C,ν′

//

π1

NNNNNN '' in
C,ν′qqqqqqq88

It follows directly from the definitions that, when C is Q[N], axiom (Φ) states
exactly that, for all t: ν → ν ′ ∈ TN , the set {tu,v | M(u) = ν,M(v) = ν ′} is a
natural transformation from πQ[N],ν to πQ[N],ν′.

A further very relevant property of the transitions of N when considered
as arrows of Q[N] is that of being decomposable as a tensor only trivially and
as a composition only by means of symmetries. This is easily captured by the
following notion of primitive arrow.

Definition 3.9 (Primitive Arrows)
Let C be a symmetric Petri category. An arrow τ in C is primitive if

i) τ is not a symmetry;

ii) τ = α;β implies α is a symmetry and β is primitive, or viceversa;

iii) τ = α ⊗ β implies α = id0 and β is primitive, or viceversa.

A simple inspection of Definition 3.4 shows that the only primitive arrows
in Q[N] are the arrows tu,v, for t:M(u) → M(v) a transition of N . As a
consequence, the natural transformations τ :πQ[N],ν

�→ πQ[N],ν′ whose compo-
nents are primitive are in one-to-one correspondence with the transitions of N .
Following the usual categorical paradigm, we then use the properties that char-
acterize the transitions of N in Q[N], expressed in abstract categorical terms,
to define the notion of transition in any symmetric Petri category.

Definition 3.10 (Transitions of Symmetric Petri Categories)
Let C be a symmetric Petri category and let S⊗ be its monoid of objects. A
transition of C is a natural transformation τ :πC,ν

�→ πC,ν′ , for ν, ν ′ in S⊕,
whose components τu,v are primitive arrows of C.

It is clear now what the extra structure required in SSMC
⊗ is: transitions

must be preserved by morphisms of symmetric Petri categories. Formally, for
C and D in SSMC

⊗ and F: C → D in SSMC, F respects transitions if, for each
transition τ :πC,ν

�→ πC,ν′ of C, there exists a transition τ ′:πD,ν̄
�→ πD,ν̄′ of D

such that F(τu,v) = τ ′
F(u),F(v) for all (u, v) in Sym

C,ν × Sym
C,ν′ ; in this case, we

say that τ ′ corresponds to τ via F.

The following lemma shows that a symmetric strict monoidal functor which
preserves transitions defines a mapping between sets of transitions and that,
moreover, this property extends to the arrows of SSMC

⊗. It follows immediately
that Definition 3.12 is well given.

11

Lemma 3.11

If F: C → D respects transitions, then for any transition τ of C, there exists a
unique transition τ ′ of D which corresponds to τ via F.

If F R G, then F respects transitions if and and only if G does so, and then τ ′

corresponds to τ via F if and only if τ ′ corresponds to τ via G.

Definition 3.12 (Symmetric Petri Morphisms and the Category TSSMC
⊗)

A morphism of symmetric Petri category is an arrow in SSMC
⊗ which respects

transitions. We shall use TSSMC
⊗ denote the (lluf) subcategory of SSMC

⊗

whose arrows are the morphisms of symmetric Petri categories.

Finally, it is easy to prove that Q[] is actually a functor to TSSMC
⊗.

Proposition 3.13 (Q[]: Petri → TSSMC
⊗)

The functor Q[] restricts to a functor from Petri to TSSMC
⊗.

Proof. It is enough to verify that, for any morphism 〈f, g〉: N0 → N1 in Petri, a

representative F of Q[〈f, g〉] respects transitions. This follows at once, since f is a

function TN0
→ TN1

, F(tu,v) = f(t)F(u),F(v), and the transitions of Q[Ni] are exactly

the natural transformations {tu,v | M(u) = ν,M(v) = ν′} for t: ν → ν′ ∈ TNi
. X

Interestingly enough, we can identify a functor from TSSMC
⊗ to Petri which

is a coreflection right adjoint to Q[]. It is worth remarking that this answers
to a possible legitimate doubt about the category TSSMC

⊗: in principle, in
fact, the functoriality of Q[] could be due to a very tight choice of the tar-
get category, e.g., the congruence R could induce too many isomorphisms of
categories and Q[] make undesirable identifications of nets. The existence of
a coreflection right adjoint to Q[] is, of course, the best possible proof of the
adequacy of TSSMC

⊗: it implies that Petri is embedded in it fully and faithfully
as a coreflective subcategory. This result supports our claim that TSSMC

⊗ is
an axiomatization of the category of net computations.

Theorem 3.14 (Q[] ⊣ N []: Petri → TSSMC
⊗)

Let C be a symmetric Petri category, and let S⊗ be its monoid of objects.
Define N [C] to be the Petri net (∂0, ∂1:T → S⊕), where

• T is the set of transitions τ :πC,ν
�→ πC,ν′ of C;

• ∂0(τ :πC,ν
�→ πC,ν′) = ν and ∂1(τ :πC,ν

�→ πC,ν′) = ν ′.

Then, N [] extends to a functor TSSMC
⊗ → Petri which is right adjoint to Q[].

In addition, since the unit is an isomorphism, the adjunction is a coreflection.

Proof. For any symmetric Petri category C, there is a (unique) symmetric strict

monoidal functor εC:QN [C] → C which is the identity on the objects and which

sends the component at (u, v) of the transition τ : ν → ν′ of N [C] to the component

τu,v of the natural transformation τ : πC,ν
�→ πC,ν′ :SymC,ν×SymC,ν′ → C. Since it

clearly preserves transitions, we have that εC is a (representative of a) morphism of

symmetric Petri categories. It is not difficult to prove that εC enjoys the couniversal

property making it the counit of the adjunction. The unit ηN : N → NQ[N] is the

morphism 〈f, id〉, where f sends t ∈ TN to {tu,v} ∈ TNQ[N], which is an iso. X

12

We end this section by identifying the replete image of Q[] in TSSMC
⊗, i.e.,

the full subcategory of TSSMC
⊗ consisting of those symmetric Petri categories

isomorphic to Q[N], for some N in Petri.

Theorem 3.15 (Petri ∼= PSSMC)
Let PSSMC be the full subcategory of TSSMC

⊗ consisting of those symmetric
Petri categories C whose arrows can be generated by tensor and composition
from symmetries, and components of transitions of C, uniquely up to the axioms
of symmetric strict monoidal categories, i.e., the axioms in Proposition 3.5, and
the naturality of transitions, i.e., axiom (Φ).

Then, PSSMC and Petri are equivalent.

Proof. By general results in category theory, it is enough to show that C belongs

to PSSMC if and only if εC:QN [C] → C is an isomorphism, which is easy. X

4 Strongly Concatenable Processes

In this section we introduce a slight refinement of concatenable processes and we
show that they are abstractly represented by the arrows of the category Q[N].
In other words, we find a process-like representation for the arrows of Q[N].
This yields a functorial construction for the category of the processes of a net N .

Definition 4.1 (Strongly Concatenable Processes)
Given a petri net N in Petri, a strongly concatenable process of N is a tuple
(π, ℓ, L) where π: Θ → N is a process of N , and ℓ:min(Θ) → {1, . . . , |min(Θ)|}
and L:max(Θ) → {1, . . . , |max(Θ)|} are isomorphisms, i.e., total orderings of,
respectively, the minimal and the maximal places of Θ.

An isomorphism of strongly concatenable processes is an isomorphism of the
underlying processes which, in addition, preserves the orderings ℓ and L. As
usual, we identify isomorphic strongly concatenable processes.

As in the case of concatenable processes, it is easy to define an operation of
concatenation of strongly concatenable processes. We associate a source and a
target in S⊗

N to each strongly concatenable process by taking the string corre-
sponding to the linear ordering of, respectively, min(Θ) and max(Θ). Then, the
concatenation of (π0: Θ0 → N, ℓ0, L0):u → v and (π1: Θ1 → N, ℓ1, L1): v → w

is the strongly concatenable process u → w obtained by merging the maximal
places of Θ0 and the minimal of Θ1 according to L0 and ℓ1. (See Figure 2, where
we enrich the usual representation of non-sequential processes by labelling the
minimal and the maximal places with the values of, respectively, ℓ and L.)

Proposition 4.2

Under the above defined operation of sequential composition, the strongly con-
catenable processes of N form a category CQ[N] whose identities are those pro-
cesses consisting only of places, which therefore are both minimal and maximal,
and such that ℓ = L.

13

a a

t0 t1

a a

1+*()
��

2+*()
��� �� �

��

� �� �
��

2

+*()
1

+*()
;

a a

t0

a

1+*()
��

2

1

+*()� �� �
��

2

+*()
=

a a

t0 t1

a a

t0

a

1+*()
��

2+*()
��� �� �

��

� �� �
��

1

+*()+*()
��� �� �
��

2

+*()
=

a

t0

a

1+*()
��� �� �
��

1

+*() ⊗

a

t1

a

t0

a

1+*()
��� �� �
��+*()
��� �� �
��

1

+*()
Figure 2: An example of the algebra of concatenable processes

Strongly concatenable processes admit a tensor product ⊗ such that, given
SCP = (π0: Θ0 → N, ℓ0, L0):u → v and SCP ′ = (π1: Θ1 → N, ℓ1, L1):u

′ → v′,
SCP⊗SCP ′ is the strongly concatenable process (π: Θ → N, ℓ, L):u⊗u′ → v⊗v′

given below (see also Figure 2), where +, besides the usual sum of natural
numbers, denotes also the disjoint union of sets and functions, and in0 and in1

the corresponding injections.

• Θ = (∂0
Θ0

+ ∂0
Θ1

, ∂1
Θ0

+ ∂1
Θ1

:TΘ0
+ TΘ1

→ (SΘ0
+ SΘ1

)⊕);

• π = π0 + π1;

• ℓ(in0(a)) = ℓ0(a) and ℓ(in1(a)) = |min(Θ0)| + ℓ1(a);

• L(in0(a)) = L0(a) and L(in1(a)) = |max(Θ1)| + L1(a).

Observe that ⊗ is a functor ⊗: CQ[N] × CQ[N] → CQ[N]. The strongly
concatenable processes consisting only of places are analogous in CQ[N] of the
permutations of Q[N]. In particular, for any u, v ∈ S⊗, the strongly concaten-
able process γ̄(u, v) consisting of places in one-to-one correspondence with the
elements of the string u ⊗ v mapped by π to the corresponding places of N ,
and such that ℓ(ui) = i, ℓ(vi) = |u| + i, L(ui) = |v| + i and L(vi) = i, plays in
CQ[N] the role played by the permutation γ(u, v) in Q[N] (see also Figure 3).

Proposition 4.3

Under the above defined tensor product CQ[N] is a symmetric strict monoidal
category whose symmetry isomorphism is the family {γ̄(u, v)}u,v∈S⊗

N
.

The transitions t of N are faithfully represented in the obvious way by
processes with a unique transition which is in the post-set of any minimal place

14

u1 · · · un

t

v1 · · · vm

1+*()777
��

n+*()������ �� ������ 777
��

1

+*()
m

+*() u1 · · · un v1 · · · vm

1

m+1

+*() n

m+n

+*()n+1

1

+*() n+m

m

+*()
Figure 3: A transitions tu,v:u → v and the symmetry γ(u, v) in CQ[N]

and in the pre-set of any maximal place, minimal and maximal places being in
one-to-one correspondence, respectively, with ∂0

N (t) and ∂1
N (t). Thus, varying

ℓ and L on the process corresponding to a transition we obtain a representative
in CQ[N] of each instance tu,v of t in Q[N] (see also Figure 3).

Theorem 4.4

CQ[N] and Q[N] are isomorphic.

Proof. (Sketch.) Consider the following mapping F from the arrows of Q[N] to
strongly concatenable processes.

• An instance tu,v of a transition t of Q[N] is mapped to the strongly con-
catenable processes with a unique transition and two layers of places: the
minimal, in one-to-one correspondence with ∂0

N (t) and ordered by ℓ to form
the string u, and the maximal, in one-to-one correspondence with ∂1

N (t) and
ordered to form v.

• The permutation γ(u, v) is sent to the strongly concatenable process γ̄(u, v).

• F is extended inductively to a generic term α of Q[N], i.e., α0⊗α1 is mapped
to F(α0) ⊗ F(α1) and α0 ; α1 to F(α0); F(α1).

Then, defining F to be the identity on the objects gives the required isomorphism

F:Q[N] ∼= CQ[N]. X

References

[1] E. Best and R. Devillers. Sequential and Concurrent Behaviour in Petri Net Theory.
Theoretical Computer Science, n. 55, pp. 87–136, 1987.

[2] C. Brown, D. Gurr, and V. de Paiva. A Linear Specification Language for Petri

Nets. Technical Report DAIMI PB-363, Computer Science Dept., Aarhus University,
1991.

[3] P. Degano, J. Meseguer, and U. Montanari. Axiomatizing Net Computations and
Processes. In Proceedings of the 4th LICS Symposium, pp. 175–185, IEEE, 1989.

[4] U. Goltz and W. Reisig. The Non-Sequential Behaviour of Petri Nets. Information

and Computation, n. 57, pp. 125–147, 1983.

[5] S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.

[6] J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and Compu-

tation, n. 88, pp. 105–154, Academic Press, 1990.

15

[7] M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science, n. 13, pp. 85–108, 1981.

[8] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle
Mathematik, Bonn, Germany, 1962.

[9] C.A. Petri. Non-Sequential Processes. Interner Bericht ISF–77–5, Gesellschaft für
Mathematik und Datenverarbeitung, Bonn, Germany, 1977.

[10] W. Reisig. Petri Nets. Springer-Verlag, 1985.

[11] V. Sassone. On the Semantics of Petri Nets: Processes, Unfoldings, and Infinite Com-

putations. PhD Thesis TD 6/94, Dipartimento di Informatica, Università di Pisa, 1994.

[12] V. Sassone. Some Remarks on Concatenable Processes. Technical Report TR 6/94,
Dipartimento di Informatica, Università di Pisa, 1994.

[13] G. Winskel. A New Definition of Morphism on Petri Nets. In Proceedings of STACS ‘84,
LNCS, n. 166, pp. 140–150, Springer-Verlag, 1984.

[14] G. Winskel. Petri Nets, Algebras, Morphisms and Compositionality. Information and

Computation, n. 72, pp. 197–238, 1987.

16

