
Proceedings of FCT ‘95, LNCS n. 965

Axiomatizing Petri Net Concatenable Processes

Vladimiro Sassone

BRICS* – Computer Science Dept., University of Aarhus

Abstract. The concatenable processes of a Petri net N can be characterized
abstractly as the arrows of a symmetric monoidal category P [N]. Yet, this
is only a partial axiomatization, since P [N] is built on a concrete, ad hoc
chosen, category of symmetries. In this paper we give a fully equational
description of the category of concatenable processes of N , thus yielding
an axiomatic theory of the noninterleaving behaviour of Petri nets.

Introduction

C oncatenable processes of Petri nets have been introduced in [3] to account,
as their name indicates, for the issue of process concatenation. Let us briefly

reconsider the ideas which led to their definition.
The development of theory Petri nets, focusing on the noninterleaving as-

pects of concurrency, brought to the foreground various notions of process,
e.g. [14, 5, 2, 12, 3]. Generally speaking, Petri net processes—whose standard
version is given by the Goltz-Reisig non-sequential processes [5]—are structures
needed to account for the causal relationships which rule the occurrence of events
in computations. Thus, ideally, processes are simply computations in which ex-
plicit information about such causal connections is added. More precisely, since
it is a well-established idea that, as far as the theory of computation is concerned,
causality can be faithfully described by means of partial orderings—though in-
teresting ‘heretic’ ideas appear sometimes—abstractly, the processes of a net N
are ordered sets whose elements are labelled by transitions of N . Concretely, in
order to describe exactly which multisets of transitions are processes, one defines
a process of N to be a map π: Θ → N which maps transitions to transitions and
places to places respecting the ‘bipartite graph structure’ of nets. Here Θ is a
finite deterministic occurrence net, i.e., roughly speaking, a finite conflict-free
1-safe acyclic net such that the minimal and maximal elements of the partial or-
dering 4 naturally induced by the ‘flow relation’ on the elements of Θ are places.
The role of π is to ‘label’ the places and the (partially ordered) transitions of Θ
with places and transitions of N compatibly with the structure of N .

Given this definition, one can assign the natural source and target states to a
process π: Θ → N by considering the multisets of places of N which are the image
via π of, respectively, the minimal and maximal (wrt. 4) places of Θ. Now, the
simple minded attempt to concatenate a process π1: Θ1 → N with source u to a
process π0: Θ0 → N with target u by merging the maximal places of Θ0 with the
minimal places of Θ1 in a way which preserves the labellings fails immediately.
In fact, if more than one place of u is labelled by a single place of N , there
are many ways to put in one-to-one correspondence the maximal places of Θ0

* Basic Research in Computer Science, Centre of the Danish National Research Foundation.

The author was supported by EU Human Capital and Mobility grant ERBCHBGCT920005.

Work partly carried out during the author’s doctorate at Università di Pisa, Italy.



and the minimal places of Θ1 preserving the labels, i.e., there are many possible
concatenations of π0 and π1, each of which gives a possibly different process
of N . In other words, as the above argument shows, process concatenation has
to do with merging tokens, i.e., instances of places, rather than merging places.

Therefore, any attempt to deal with process concatenation must disam-
biguate the identity of each token in a process. This is exactly the idea of
concatenable processes, which are simply Goltz-Reisig processes in which the
minimal and maximal places carrying the same label are linearly ordered. This
yields immediately an operation of concatenation, since the ambiguity about
the identity of tokens is resolved using the additional information given by the
orderings. Moreover, the existence of concatenation leads easily to the defini-
tion of the category of concatenable processes of N . It turns out that such a
category is a symmetric monoidal category whose tensor product is provided by
the parallel composition of processes [3]. The relevance of this result is that it
describes Petri net behaviours as algebras in a remarkably smooth way.

Naturally linked to the fact that they are algebraic structures, concatenable
processes are amenable to abstract descriptions. In [3] the authors deal with this
by associating to each net N a symmetric monoidal category P [N] isomorphic to
the category of concatenable processes of N ; such a characterization, however,
is not completely abstract and it provides only a partial axiomatization of the
algebra of concatenable processes of N , since in the cited work P [N] is built on a
concrete, ad hoc constructed, category SymN . In this paper we show that SymN

can be characterized abstractly, thus yielding a purely algebraic and completely
abstract axiomatization of the category of concatenable processes of N . Namely,
we shall prove that P [N] is the free symmetric strict monoidal category on the
net N modulo two simple additional axioms.1 This result complements the
investigation of [3] on the structure of net computations by showing that they
can be described by an essentially algebraic theory (whose models are symmetric
monoidal categories), which, in our opinion, is a remarkable fact. In addition,
our axiomatization of P [N] naturally provides a term algebra and an equational
theory of concatenable processes of N , by means of which one can ‘compute’
with and ‘reason’ about them. The relevance of this is evident when one thinks
of N as modelling a complex system whose behaviour is to be analysed.

Concerning the organization of the paper, Section 1 recalls the needed def-
initions; the reader acquainted with [12, 3] and with monoidal categories can
safely skip it. In Section 2 we sketch the proof of our result. The present paper
intends to be an extended abstract; therefore, most of the proofs are omitted
and those remaining are just sketched. Full expositions can be found in [15, 16].

1 Background

T he notion of monoidal category dates back to [1] (see [11] for an easy thor-
ough introduction and [4] for advanced topics). In this paper we shall be

concerned only with a particular kind of symmetric monoidal categories, name-

1We remark that the existence of a similar axiomatization was conjectured also in [6].



ly those which are strict monoidal and whose objects form a free commutative
monoid. Remarkably, a very similar kind of categories have appeared as dis-
tinguished algebraic structures also in [10], where they are called PROP’s (for
Product and Permutation categories), and in [8].

A symmetric strict monoidal category (SSMC in the following) is a structure
(C,⊗, e, γ), where C is a category, e is an object of C, called the unit object,
⊗: C × C → C is a functor, called the tensor product, subject to the equations

⊗ ◦ 〈⊗ × 1C〉 = ⊗ ◦ 〈1C ×⊗〉, (1)

⊗ ◦ 〈e, 1C〉 = 1C, (2)

⊗ ◦ 〈1C, e〉 = 1C, (3)

where e: C → C is the constant functor which associate e and id e respectively to
each object and each morphism of C, 〈 , 〉 is the pairing of functors induced by
the cartesian product, and γ: 1 ⊗ 2

∼
−→ 2 ⊗ 1 is a natural isomorphism, called

the symmetry of C, subject to the Kelly-MacLane coherence axioms [9, 7]:

(γx,z ⊗ idy) ◦ (idx ⊗ γy,z) = γx⊗y,z, (4)

γy,x ◦ γx,y = idx⊗y. (5)

Equation (1) states that the tensor is associative on both objects and arrows,
while (2) and (3) state that e and id e are, respectively, the unit object and the
unit arrow for ⊗. Concerning the coherence axioms, axiom (5) says that γy,x

is the inverse of γx,y, while (4), the real key of symmetric monoidal categories,
links the symmetry at composed objects to the symmetry at the components.
A symmetry s in a symmetric monoidal category C is any arrow obtained as
composition and tensor of identities and components of γ. We use SymC to
denote the subcategory of the symmetries of C.

A symmetric strict monoidal functor from (C,⊗, e, γ) to (D,⊗′, e′, γ′), is a
functor F: C → D such that

F(e) = e′, (6)

F(x ⊗ y) = F(x) ⊗′ F(y), (7)

F(γx,y) = γ′

Fx,Fy. (8)

Let SSMC be the category of SSMC’s and symmetric strict monoidal functors
and let SSMC⊕ be the full subcategory consisting of the monoidal categories
whose objects form free commutative monoids.

Next, we recall the definition of Petri nets formulated in [12].

Notation. We denote by S⊕ the free commutative monoid on S, i.e., the monoid of finite

multisets of S. Recall that a finite multiset is a functions from S to ω which yields nonzero
values at most on finitely many elements of S. As usual, we represent u ∈ S⊕ as a formal sum
⊕

i∈I
u(ai) · ai where only the ai ∈ S such that u(ai) > 0 appear.

A Petri net is a structure N = (∂0

N , ∂1

N : TN → S⊕

N), where TN is a set of
transitions, SN is a set of places, and ∂0

N and ∂1

N are functions assigning to each
transition, respectively, a source and a target multiset. A morphism of PT nets



f : N0 → N1 is a pair 〈ft, fp〉, where ft: TN0
→ TN1

, the transition component, is
a function and fp: S

⊕

N0
→ S⊕

N1
, the place component, is a monoid homomorphism

which respect source and target, i.e., the two diagrams below commute.

TN0

//
∂0

N0

��
ft

S⊕

N0

��
fp

TN1

//

∂0

N1

S⊕

N1

TN0

//
∂1

N0

��
ft

S⊕

N0

��
fp

TN1

//

∂1

N1

S⊕

N1

The data above define the category Petri of PT nets.
Let N be a net. We recall now the construction of the symmetric strict

monoidal category P [N]. We start by introducing the vectors of permutations
(vperms) of N ,2 which from the categorical viewpoint play the role of the sym-
metry isomorphism for P [N].

Notation. We denote by Π(n) the group of permutations of n elements and we write |σ| = n

when σ ∈ Π(n). To simplify notation, we shall assume that the empty function ∅: ∅ → ∅ is
the (unique) permutation of zero elements.

For u ∈ S⊕, a vperm s: u → u is a function which assigns to each a ∈ S
a permutation s(a) ∈ Π(u(a)). Given u = n1 · a1 ⊕ . . . ⊕ nk · ak in S⊕

N , we
shall represent a vperm s on u as a vector of permutations, 〈σa1

, . . . , σak
〉, where

s(aj) = σaj
, whence their name. One can define the operations of sequential

and parallel composition of vperms, so that they can be organized as the arrows
of a SSMC. The details follow (see also Figure 1).

Given the vperms s = 〈σa1
, . . . , σak

〉: u → u and s′ = 〈σ′
a1

, . . . , σ′
ak
〉: u → u

their sequential composition s; s′: u → u is the vperm 〈σa1
; σ′

a1
, . . . , σak

; σ′
ak
〉,

where σ; σ′ is the composition of permutation which we write in the diagram-
matic order from left to right. Given the vperms s = 〈σa1

, . . . , σak
〉: u → u and

s′ = 〈σ′
a1

, . . . , σ′
ak
〉: v → v (where possibly σaj

= ∅ for some j), their parallel
composition s⊗ s′: u⊕ v → u⊕ v is the vperm 〈σa1

⊗ σ′
a1

, . . . , σak
⊗ σ′

ak
〉, where

(σ ⊗ σ′)(x) =

{

σ(x), if 0 < x ≤ |σ|,
σ′(x − |σ|) + |σ|, if |σ| < x ≤ |σ| + |σ′|.

Let γ be {1 ⇆ 2} ∈ Π(2) and consider ui = ni
1
·a1⊕. . .⊕ni

k ·ak, i = 1, 2, in S⊕,
the interchange vperm γ(u1, u2) is the vperm 〈σa1

, . . . , σak
〉: u1 ⊕ u2 → u1 ⊕ u2

where

σaj
(x) =

{

x + n2

j , if 0 < x ≤ n1

j ,

x − n1

j , if n1

j < x ≤ n1

j + n2

j .

It is now immediate to see that ; is associative. Moreover, for each u ∈ S⊕

the vperm u = 〈ida1
, . . . , idan

〉: u → u, where idaj
is the identity permutation, is

an identity for sequential composition. Let 0 be the empty multiset on S. Then,
the vperm s: 0 → 0 is a unit for parallel composition. Now, given a net N , let

2Vperms are called symmetries in [3]. Here, in order to avoid confusion with the general
notion of symmetry in a symmetric monoidal category, we prefer to use another term.



a

..
..

'& %$
 ! "#a

..
..
a

��
��

b
,,

, b

��
�

a'& %$
 ! "#a a b b

;

a

..
..

'& %$
 ! "#a

��
��

a b
,,

, b

��
�

a'& %$
 ! "#a a b b

=

a'& %$
 ! "#a

..
..
a

��
��

b b

a'& %$
 ! "#a a b b

a

..
..

'& %$
 ! "#a

..
..
a

��
��

b
,,

, b

��
�

a'& %$
 ! "#a a b b

⊗

a

..
..

'& %$
 ! "#a

��
��

b

a'& %$
 ! "#a b

=

a

..
..

'& %$
 ! "#a

..
..
a

��
��

a

..
..
a

��
��

b
,,

, b

��
�

b

a'& %$
 ! "#a a a a b b b

γ

(

a'& %$
 ! "#a b , a'& %$

 ! "#a a b b

)

=

a

GG
GG

GG
'& %$
 ! "#a

GG
GG

GGa

��
��

a

��
��

a

��
��

b
99

99
b

��
�

b

��
�

a'& %$
 ! "#a a a a b b b

Figure 1: The monoidal structure of vperms

SymN be the category whose objects are the elements of S⊕

N and whose arrows
are the vperms s: u → u for u ∈ S⊕

N . Then, it is easy to show that SymN is a
SSMC with respect to the given composition and tensor product, with identities
and unit element as explained above and the symmetry natural isomorphism
given by the collection γ = {γ(u, v)}u,v∈SymN

of the interchange vperms.
We can now define P [N] as the category which includes SymN as subcategory

and has as additional arrows those defined by the following inference rules:

t: u → v in TN

t: u → v in P [N]

α: u → v and β: u′ → v′ in P [N]

α ⊗ β: u ⊕ u′ → v ⊕ v′ in P [N]

α: u → v and β: v → w in P [N]

α; β: u → w in P [N]

plus axioms expressing the fact that P [N] is a SSMC with composition ; ,
tensor ⊗ (extending those already defined on vperms) and symmetry isomor-
phism γ, and the following axioms

t; s = t, where t: u → v in TN and s: v → v in SymN ,
s; t = t, where t: u → v in TN and s: u → u in SymN .

(Ψ)

In other words, P [N] is built on the category SymN by adding the transitions
of N and freely closing with respect to sequential and parallel composition of
arrows, so that P [N] is made symmetric strict monoidal and the axioms (Ψ) hold.
The relevant fact about P [N] is that its arrows can be interpreted precisely as
concatenable processes of N , i.e., P [N] represents exactly the noninterleaving
behaviour of N , including its algebraic structure. (See [3] for the details.)

Theorem 1.1 (P [N] vs. Concatenable Processes [3])
Let N be a net. Then there exists a one-to-one correspondence between the
arrows of P [N] and the concatenable processes of N such that, for each u, v ∈ S⊕

N ,
the arrows of the kind u → v correspond to the processes enabled by u and
producing v, and such that sequential and parallel composition (tensor product)
of processes (arrows) are respected.



2 Axiomatizing Concatenable Processes

I n this section we show that the category of vperms SymN can be described
abstractly, thus yielding a fully axiomatic characterization of concatenable

processes. We start by associating a free SSMC to each net N . Although this
may not be very surprising, our proof will identify a ‘minimal’ description of the
free category on N which will be useful later on.

Proposition 2.1 (F ⊣ U)
The forgetful functor U: SSMC⊕ → Petri has a left adjoint F: Petri → SSMC⊕.
Proof. (Sketch.) Consider the category F(N) whose objects are the elements of S⊕

N

and whose arrows are generated by the inference rules

u ∈ S⊕

N

idu: u → u in F(N)

a and b in SN

ca,b: a ⊕ b → b ⊕ a in F(N)

t: u → v in TN

t: u → v in F(N)

α: u → v and β: u′ → v′ in F(N)

α ⊗ β: u ⊕ u′ → v ⊕ v′ in F(N)

α: u → v and β: v → w in F(N)

α; β: u → w in F(N)

modulo the axioms expressing that F(N) is a strict monoidal category, namely,

α; idv = α = idu; α and (α; β); γ = α; (β; γ),

(α ⊗ β) ⊗ γ = α ⊗ (β ⊗ γ) and id0 ⊗ α = α = α ⊗ id0,

idu ⊗ idv = idu⊕v and (α ⊗ α′); (β ⊗ β′) = (α; β) ⊗ (α′; β′),

the latter whenever the righthand term is defined, and the following axioms

ca,b; cb,a = ida⊕b,

cu,u′ ; (β ⊗ α) = (α ⊗ β); cv,v′ , for α: u → v, β: u′ → v′, (9)

where cu,v for u, v ∈ S⊕

N denote any term obtained from ca,b for a, b ∈ SN by
applying recursively the following rules (compare with axiom (4)):

c0,u = idu = cu,0,

ca⊕u,v = (ida ⊗ cu,v); (ca,v ⊗ idu), (10)

cu,v⊕a = (cu,v ⊗ ida); (idv ⊗ cu,a).

Observe that equation (9), in particular, equalizes all the terms obtained from (10)

for fixed u and v. In fact, let cu,v and c′u,v be two such terms and take α and β to

be, respectively, the identities of u and v. Now, since idu⊗idv = idu⊕v = idv⊗idu,

from (9) we have that cu,v = c′u,v in F(N). Then, it can be shown that the collection

{cu,v}u,v∈S
⊕

N

is a symmetry natural isomorphism which makes F(N) into a SSMC

which is free on N . This means that F extends to a functor left adjoint to U. X

Thus, establishing the adjunction Petri ⇀ SSMC⊕, we have identified the
free SSMC on N as a category generated, modulo appropriate equations, from
the net N viewed as a graph enriched with formal arrows idu, which play the
role of the identities, and ca,b for a, b ∈ SN , which generate all the needed
symmetries. In the following, we speak of the free SSMC on N to mean F(N)
as constructed above.

The following is the adaptation to SSMC’s of the usual notion of quotient
algebras characterized, as usual, by a universal property.



Proposition 2.2 (Monoidal Quotient Categories)
For a given SSMC C, let R be a function which assigns to each pair of objects a
and b of C a binary relation Ra,b on the homset C(a, b). Then, there exist a
SSMC C/R and a symmetric strict monoidal functor QR: C → C/R such that

i) If fRa,bf
′ then QR(f) = QR(f ′);

ii) For each symmetric strict monoidal H: C → D such that H(f) = H(f ′)
whenever fRa,bf

′, there exists a unique functor K: C/R → D, which is
necessarily symmetric strict monoidal, such that K ◦ QR = H.

Proof. (Sketch.) Say that R is a ⊗-congruence if Ra,b is an equivalence for each a
and b and if R respects composition and tensor, i.e., whenever fRa,bf

′ then, for all
h: a′ → a and k: b → b′, we have (k ◦ f ◦ h)Ra′,b′(k ◦ f ′ ◦ h) and for all h: a′ → b′

and k: a′′ → b′′, we have (h ⊗ f ⊗ k)Ra′⊗a⊗a′′,b′⊗b⊗b′′ (h ⊗ f ′ ⊗ k). Clearly, if R is
a ⊗-congruence, the following definition is well-given: C/R is the category whose
objects are those of C, whose homset C/R(a, b) is C(a, b)/Ra,b, i.e., the quotient
of the corresponding homset of C modulo the appropriate component of R, and
whose arrow composition and tensor product are given by [g]R ◦ [f]R = [g ◦ f]R
and [f]R ⊗ [g]R = [f ⊗ g]R, respectively. Moreover, it is easy to check that C/R

is a SSMC with symmetry isomorphism given by the natural transformation whose
component at (u, v) is [γu,v]R and unit object e.

Observe now that, given R as in the hypothesis, it always possible to find the least

⊗-congruence R
′ which includes (componentwise) R. Then, take C/R to be C/R

′

and QR to be the obvious projection of C into C/R. Clearly, QR is a symmetric

strict monoidal functor. Moreover, it is not difficult to show that it enjoys the

properties (i) and (ii) above. X

Our next step is to show that P [N] is the quotient of F(N) modulo two
simple additional axioms. In order to show this, we need the following lemma.

Lemma 2.3 (Axiomatizing SymN)
The arrows of SymN are generated via sequential composition by the vperms of
the kind idu ⊗ γ(a, a) ⊗ idv: u ⊕ 2 · a ⊕ v → u ⊕ 2 · a ⊕ v. Moreover, two such
compositions yield the same vperm if and only if this can be shown by using the
axioms

((idu⊕a ⊗ γ(a, a) ⊗ idv) ; (idu ⊗ γ(a, a) ⊗ ida⊕v))3 = idu⊕3·a⊕v,

((idu ⊗ γ(a, a) ⊗ id2·b⊕v) ; (idu⊕2·a ⊗ γ(b, b) ⊗ idv))2 = idu⊕2·a⊕2·b⊕v, (11)

(idu ⊗ γ(a, a) ⊗ idv)2 = idu⊕2·a⊕v.

where fn indicates the composition of f with itself n times.

Proof. (Sketch.) Concerning the first claim, a vperm p = 〈σa1
, . . . , σan〉 coincides

with the tensor σa1
⊗· · ·⊗σan which, exploiting the functoriality of ⊗, can be writ-

ten as (σa1
⊗· · ·⊗ idun); · · · ; (idu1

⊗· · ·⊗σan). Now, since σai
is a permutation, it

is a composition of transpositions of adjacent elements, and since the transposition

τi: n·a → n·a, 1 ≤ i < n, can be written as id(i−1)·a⊗γ(a, a)⊗id(n−i−1)·a in SymN ,

we have that σai
= (idu′

1

⊗γ(ai, ai)⊗idu′′
1

); · · · ; (idu′
k
⊗γ(ai, ai)⊗idu′′

k
). Therefore,



the vperms idu ⊗ γ(a, a) ⊗ idv generate via composition all the vperms of SymN .

Concerning the axiomatization, it is easy to verify that the equations (11) hold

in SymN . On the other hand, the completeness of axioms (11) follows non trivially

from a non-trivial axiomatization of the groups of permutations [13]. X

Proposition 2.4 (Axiomating P [N])
P [N] is the monoidal quotient of the free SSMC on N modulo the axioms

ca,b = ida⊕b, if a, b ∈ SN and a 6= b, (12)

s; t; s′ = t, if t ∈ TN and s, s′ are symmetries. (13)

Proof. (Sketch.) We show that P [N] enjoys the universal property of F(N)/R s-
tated in Proposition 2.2, where R is the congruence generated from equations (12)
and (13). It follows then from general facts about universal constructions that P [N]
is isomorphic to F(N)/R.

First of all observe that P [N] belongs to SSMC⊕. Therefore, corresponding to the
Petri net inclusion morphism N → UP [N], there is a symmetric strict monoidal
functor Q: F(N) → P [N] which is the identity on the places and on the transitions
of N . It follows easily from the definition of P [N] that Q equalizes the pairs in R.
Then, we have to show that Q is universal among such functors.

We start by observing that SymN can be embedded in Sym
F(N) via a monoidal

functor. Consider the mapping G of objects and arrows of SymN to, respectively,
objects and arrows of SymF(N) which is the identity on the objects and such that

G(idu ⊗ γ(a, a) ⊗ idv) = idu ⊗ ca,a ⊗ idv,

G(p; q) = G(p);G(q),

G(idu) = idu.

It follows from Lemma 2.3 that the equations above define G on all vperms. Thus,
to conclude that G is a functor we only need to show that it is well-defined; exploit-
ing Lemma 2.3, this can be seen by showing that it respects axioms (11). Clearly,
G is not symmetric strict monoidal, since G(γ(a, b)) = ida⊕b 6= ca,b, i.e., axiom (8)
does not hold. However, G is strict monoidal in the sense that (6) and (7) hold.

Let C = (C,⊗, e, γ) be a SSMC and suppose that there exists a symmetric strict
monoidal functor H: F(N) → C such that, for any pair a 6= b ∈ SN and for any
symmetries s and s′, H(ca,b) = H(ida⊕b) and H(s; t; s′) = H(t). We have to show
that there exists a unique K:P [N] → C such that H = KQ. We consider the
following definition of K on objects and generators

K(u) = H(u), if u ∈ S⊕

N ,

K(s) = H(G(s)), if s is a symmetry

K(t) = H(t), if t ∈ TN ,

extendend to P [N] by K(α; β) = K(α); K(β) and K(α ⊗ β) = K(α) ⊗ K(β).

First of all, we have to show that K is well-defined, i.e., that the equations which
hold in P [N] are preserved by K. Since H and G are strict monoidal, it follows that
the functoriality of ⊗, axioms (1)–(3) and (Ψ) are preserved. The key to show that
the same holds for the naturality of the symmetry, for (4) and for (5) is to show



that K(γ(u, v)) = γK(u),K(v), which can be done by induction on the least of the
sizes of u and v. Once this fact is established, the aforesaid points follow from fact
that C is a SSMC.

The next task is to show that H = KQ. It follows from the fact that Q is symmetric

strict monoidal and from the definition of the symmetries of F(N) that H and KQ

coincide on SymF(N). Then, one proves that H = KQ by proving, by easy induction

on the structure of the terms, that each arrow of F(N) can be written as the

composition of symmetries and arrows of the kind idu ⊗ t ⊗ idv, for t ∈ TN .

Finally, concerning the uniqueness condition on K, observe that it must necessarily

be K(idu ⊗ γ(a, a) ⊗ idv) = idH(u) ⊗ γH(a),H(a) ⊗ idH(v), which, by Lemma 2.3,

defines K uniquely on SymN . Moreover, the behaviour of K on the arrows formed

as composition and tensor of transitions is uniquely determined by H. X

The next corollary gives an alternative form for axiom (13).

Corollary 2.5 (Axiom (13) revisited)
Axiom (13) in Proposition 2.4 can be replaced by the axioms

t; (idu ⊗ ca,a ⊗ idv) = t if t ∈ TN and a ∈ SN ,

(idu ⊗ ca,a ⊗ idv); t = t if t ∈ TN and a ∈ SN .

Proof. Since (idu ⊗ γa,a ⊗ idv) and all the identities are symmetries, axiom (13)

implies the present ones. It is easy to see that, on the contrary, the axioms above,

together with axiom (12), imply (13). X

Finally, in the next corollary, we sum up the purely algebraic characterization
of the category of concatenable processes that we have proved in the paper.

Corollary 2.6 (Axiomatizing Concatenable Processes)
The category P [N] of concatenable processes of N is the category whose objects
are the elements of S⊕

N and whose arrows are generated by the inference rules

u ∈ S⊕

N

idu: u → u in P [N]

a in SN

ca,a: a ⊕ a → a ⊕ a in P [N]

t: u → v in TN

t: u → v in P [N]

α: u → v and β: u′ → v′ in P [N]

α ⊗ β: u ⊕ u′ → v ⊕ v′ in P [N]

α: u → v and β: v → w in P [N]

α; β: u → w in P [N]

modulo the axioms expressing that P [N] is a strict monoidal category, namely,

α; idv = α = idu; α and (α; β); γ = α; (β; γ),

(α ⊗ β) ⊗ γ = α ⊗ (β ⊗ γ) and id0 ⊗ α = α = α ⊗ id0,

idu ⊗ idv = idu⊕v and (α ⊗ α′); (β ⊗ β′) = (α; β) ⊗ (α′; β′),

the latter whenever the righthand term is defined, and the following axioms

ca,a; ca,a = ida⊕a,

t; (idu ⊗ ca,a ⊗ idv) = t, if t ∈ TN ,

(idu ⊗ ca,a ⊗ idv); t = t, if t ∈ TN ,

cu,u′ ; (β ⊗ α) = (α ⊗ β); cv,v′ , for α: u → v, β: u′ → v′,



where cu,v for u, v ∈ S⊕

N is obtained by repeatedly applying the following rules:

ca,b = ida⊕b, if a = 0 or b = 0 or (a, b ∈ SN and a 6= b),

ca⊕u,v = (ida ⊗ cu,v); (ca,v ⊗ idu),

cu,v⊕a = (cu,v ⊗ ida); (idv ⊗ cu,a).
Proof. Easy from Proposition 2.1, Proposition 2.4 and Corollary 2.5. X

Acknowledgements. I wish to thank José Meseguer and Ugo Montanari to whom I am greatly
indebted for introducing me to this subject and for many helpful discussions. Many thanks to
Mogens Nielsen for his comments on the exposition of this paper.

References

[1] J. Bénabou. Categories with Multiplication. Comptes Rendus Académie Science Paris,
n. , pp. –, .

[2] E. Best, and R. Devillers. Sequential and Concurrent Behaviour in Petri Net Theory.
Theoretical Computer Science, n. , pp. –, .

[3] P. Degano, J. Meseguer, and U. Montanari. Axiomatizing Net Computations and
Processes. In Proceedings of the th LICS Symposium, pp. –, IEEE, .

[4] S. Eilenberg, and G.M. Kelly. Closed Categories. In Proceedings of the Conference

on Categorical Algebra, La Jolla, S. Eilenberg et al., Eds., pp. –, Springer, .

[5] U. Goltz, and W. Reisig. The Non-Sequential Behaviour of Petri Nets. Information

and Computation, n. , pp. –, .

[6] R. Gorrieri, and U. Montanari. Scone: A Simple Calculus of Nets. In Proceedings of

CONCUR ‘, LNCS n. , pp. –, .

[7] G.M. Kelly. On MacLane’s Conditions for Coherence of Natural Associativities, Com-
mutativities, etc. Journal of Algebra, n. , pp. –, .

[8] W. Lawvere. Functorial Semantics of Algebraic Theories. PhD Thesis, Columbia Uni-
versity, New York, 1963. An abstract appears in Proceedings of the National Academy

of Science, n. , pp. –, .

[9] S. MacLane. Natural Associativity and Commutativity. Rice University Studies, n. ,
pp. –, .

[10] S. MacLane. Categorical Algebra. Bulletin American Mathematical Society, n. ,
pp. –, .

[11] S. MacLane. Categories for the Working Mathematician. Springer-Verlag, .

[12] J. Meseguer, and U. Montanari. Petri Nets are Monoids. Information and Computa-

tion, n. , pp. –, Academic Press, .

[13] E.H. Moore. Concerning the abstract group of order k! isomorphic with the symmetric
substitution group on k letters. Proceedings of the London Mathematical Society, n. ,
pp. –, .

[14] C.A. Petri. Non-Sequential Processes. Interner Bericht ISF––5, Gesellschaft für
Mathematik und Datenverarbeitung, Bonn, Germany, .

[15] V. Sassone. On the Semantics of Petri Nets: Processes, Unfoldings and Infinite Com-

putations. PhD Thesis TD /, Dipartimento di Informatica, Università di Pisa, .

[16] V. Sassone. Some Remarks on Concatenable Processes. Technical Report TR /,
Dipartimento di Informatica, Università di Pisa, .



