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Abstract. In recent years, several semantics for place/transition Petri
nets have been proposed that adopt the collective token philosophy.
We investigate distinctions and similarities between three such mod-
els, namely configuration structures, concurrent transition systems, and
(strictly) symmetric (strict) monoidal categories. We use the notion of
adjunction to express each connection. We also present a purely logi-
cal description of the collective token interpretation of net behaviours in
terms of theories and theory morphisms in partial membership equational
logic.

Introduction

Petri nets, introduced by Petri in [I7] (see also [I8]), are one of the most widely
used and representative models for concurrency, because of the simple formal
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description of the net model, and of its natural characterisation of concurrent
and distributed systems. The extensive use of Petri nets has given rise to different
schools of thought concerning the semantical interpretation of nets, with each
view justified either by the theoretical characterisation of different properties of
the modelled systems, or by the architecture of possible implementations.

A real dichotomy runs on the distinction between collective and individual
token philosophies noticed, e.g., in [6]. According to the collective token phi-
losophy, net semantics should not distinguish among different instances of the
idealised resources (the so-called ‘tokens’) that rule the basics of net behaviour.
The rationale for this being, of course, that any such instance is operationally
equivalent to all the others. As obvious as this is, it disregards that operationally
equivalent resources may have different origins and histories, and may, therefore,
carry different causality information. Selecting one instance of a resource rather
than the other, may be as different as being or not being causally dependent on
some previous event. And this may well be an information one is not ready to
discard, which is the point of view of the individual token philosophy.

In this paper, however, we focus on the collective token interpretation as
the first step of a wider programme aimed at investigating the two approaches
and their mutual relationships in terms of the behavioural, algebraic, and logical
structures that can give adequate semantics account of each of them.

Starting with the classical ‘token-game’ semantics, many behavioural models
for Petri nets have been proposed that follow the collective token philosophy. In
fact, too many to be systematically reviewed here. Among all these, however, a
relatively recent proposal of van Glabbeek and Plotkin is that of configuration
structures [6]. Clearly inspired by the domains of configurations of event struc-
tures [22], these are simply collections of (multi)sets that, at the same time,
represent the legitimate system states and the system dynamics, i.e., the tran-
sitions between such states. One of the themes of this paper is to compare con-
figuration structure with the algebraic model based on monoidal categories [I1],
which also adopts the collective token philosophy and which provides a precise
algebraic reinterpretation [5] of yet another model, namely the commutative pro-
cesses of Best and Devillers [1]. In particular, we shall observe that configuration
structures are too abstract a model, i.e., that they make undesirable identifica-
tions of nets, and conclude that monoidal categories provide a superior model
of net behaviour.

To illustrate better the differences between the two semantic frameworks
above, we adopt concurrent transition systems as a bridge-model. These are
a much simplified, deterministic version of higher dimensional transition sys-
tems [3] that we select as the simplest one able to convey our ideas. Concurrent
transition systems resemble configuration structures, but are more expressive.
They also draw on earlier very significant models, such as distributed transition
systems [9], step and PN transition systems [16], and local event structures [S].
Moreover, the equivalence of the behavioural semantics of concurrent transi-
tion systems and the algebraic semantics of monoidal categories can be stated
very concisely. As we explain also in this paper, the algebraic semantics is itself
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amenable to a purely logical description in terms of theories in partial member-
ship equational logic [10].

The main result of this research is a new precise characterisation of the rela-
tionships between all these behavioural, algebraic, and logical models within the
collective token philosophy. We show that Best-Devillers commutative processes,
the algebraic monoidal category model, and the concurrent transition system be-
havioural model all coincide in the precise sense of being related by equivalences
of categories. And we also show how the behavioural model afforded by configu-
ration structures is too abstract, but is precisely related to all the above models
by a natural transformation that characterises the identification of inequivalent
nets and behaviours caused by configuration structures.

The structure of the paper is as follows. In Section [Ml we recall the basic
definitions about PT Petri nets, remarking the distinction between the collec-
tive and individual token philosophies, and we introduce the frameworks under
comparison, i.e., configuration structures, concurrent transition systems, and
monoidal categories (also in their membership equational logic characterisation),
discussing for each of them the corresponding models that they associate to a
Petri net. Section Pl and Section Bl compare concurrent transition systems with,
respectively, monoidal categories and configuration structures. Finally, the con-
cluding section describes related work on the individual token philosophy.

1 Background

1.1 Petri Nets and the Collective Token Philosophy

Place/transition nets, the most widespread flavour of Petri nets, are graphs with
distributed states described by (finite) distributions of resources (‘tokens’) in
‘places’. These are usually called markings and represented as multisets u: .S —
N, where u(a) indicates the number of tokens that place a carries in u. We shall
use u(S) to indicate the set of finite multisets on S, i.e., multiset that yield a zero
on all but finitely many a € S. Multiset union makes p(S) a free commutative
monoid on S.

Definition 1. A place/transition (PT for short) Petri net N is a tuple (9, 01,
S,T), where S is a set of places, T is a set of transitions, 8y, 01: T — u(S) are
functions assigning, respectively, source and target to each transition.

Informally, 9y(t) prescribes the minimum amount of resources needed to en-
able t, whilst 01 (t) describe the resources that the occurrence of ¢ contributes to
the global state. This is made explicit in the following definition, where we shall
indicate multiset inclusion, union, and difference by, respectively, C, +, and —.

Definition 2. Let u and v be markings and X a finite multiset of transitions
of a net N. We say that u evolves to v under the step X, in symbols u [X) v, if
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Fig. 1.

the transitions in X are concurrently enabled at u i.e., Y, X () - 0o(t) C u,
and

V=t er, X (@) (01(t) = do(t))-

A step sequence from ug to u,, is a sequence ug [X1) u1...up—1 [Xn) Un.

PT nets are often considered together with a state: a marked PT net N is
a PT net (0o, 01,5, T) together with an initial marking up € p(S). In order to
equip PT nets with a natural notion of morphism, since that p(S) is a monoid
under 4+ with unit &, we consider maps of transition systems that preserve the
additional structure.

Definition 3. A morphism of nets from N =(0y, 01, 5,T) to N'=(8},07,5",T")
is a pair (fy, fp) where f;: T — T is function, fp: u(S) — 1(S’) is homomorphism
of monoids such that 9; o f; = f, 0 8;, for i = 0,1. A morphism of marked nets
is a morphism of nets such that fp(uo) = uy.

We shall use Petri (respectively Petri,) to indicate the category of (marked)
PT nets and their morphisms with the obvious componentwise composition of
arrows.

To compare the effects of the collective and of the individual token philoso-
phy on observing causal relations between fired transitions, let us consider the
example in Figure [ that we adapt from [6]. (As usual, boxes stand for tran-
sitions, circles for places, dots for tokens, and oriented arcs represent Jy and
O1.)

Observe that the firing of ¢t produces a second token in place b. According
to the individual token philosophy, it makes a difference whether ¢ consumes
the token b originated from the firing of ¢, or the one coming from the initial
marking. In the first case the occurrence of ¢’ causally depends on that of ¢, and
in the second the two firings are independent. In the collective token philosophy,
instead, the two firings are always considered to be concurrent, because the firing
of t does not change the enabling condition of ¢'.

1.2 Configuration Structures

In the same paper where they introduce the distinction between collective token
and individual token philosophy, van Glabbeek and Plotkin propose configura-
tion structures to represent the behaviour of nets according to the collective
token philosophy. These are structures inspired by event structures [22] whose
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dynamics is uniquely determined by an explicitly-given set of possible configura-
tions of the system. However, the structures they end up associating to nets are
not exactly configuration structures. They enrich them in two ways: firstly, by
considering multisets instead of sets of occurrences, and secondly, by using an
explicit transition relation between configurations. While the first point can be
handled easily, as we do below, the second one seems to compromise the basic
ideas underlying the framework and to show that configuration structures do
not offer a faithful representation of the behaviour of nets under the collective
token philosophy.

Definition 4. A configuration structure is given by a set E and a collection C'
of finite multisets over the set E. The elements of E are called events, and the
elements of C' configurations.

The idea is that an event is an occurrence of an action the system may
perform, and that a configuration X represents a state of the system, which
is determined by the collection X of occurred events. The set C' of admissible
configurations yields a relation representing how the system can evolve from one
state to another.

Definition 5. Let (E,C) be a configuration structure. For X, Y in C' we write
X —Yif

(1) X CY,
(2) Y — X is finite,
(3) for any multiset Z such that X € Z C Y, we have Z € C.

The relation — is called the step transition relation.

Intuitively, X — Y means that the system can evolve from state X to
state Y by performing the events in Y — X concurrently. To stress this we shall

occasionally write X L, Y, with L =Y — X. Observe that the last condition
states that the events in Y — X can be performed concurrently if and only if
they can be performed in any order. In our opinion, this requirement embodies
an interleaving-oriented view, as it reduces concurrency to nondeterminism. As
we explain below, we view this as the main weakness of configuration structures.

In the following definition we slightly refine the notion of net configuration
proposed in [6], as this may improperly include multisets of transitions that
cannot be fired from the initial marking.

Definition 6 (From PT Nets to Config. Structures [6]). Let N = (09, 01,
S, T,up), be a marked PT net. A finite multiset X of transitions is called fireable
if there exists a partition X1, ..., X, of X such that ug [X1) u1...un—1 [Xn) up
is a step sequence. A configuration of N is a fireable multiset X of transitions.
The configuration structure associated to N is ¢s(N) = (T,Cn), where Cy is
the set of configurations of N.
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Fig. 2. The nets N and M of our running example.

{t07t1}
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{to} {to,t1} {tl}

{to} {t1}
%)

Fig. 3. The configuration structure c¢s(N) = cs(M) for the nets N and M.

It follows that for each configuration X the function ux:S — Z given by

ux = Ug +ZX(t) . (80<t) —81<t))

teT

is a (reachable) marking, i.e., 0 < ux(a) for all a € S. Moreover, if X is a
configuration and ux [U) v, then X 4+ U is also a configuration and v = ux1y.

Generally speaking, if N is a pure net, i.e., a net with no self-loops, c¢s(N)
can be considered a reasonable semantics for N. Otherwise, as observed also
in [6], it is not a good idea to reduce N to cs(N). Consider for example, the
marked nets N and M of Figure @l They have very different behaviours, indeed:
in N the actions ty and t; are concurrent, whereas in M they are mutually
exclusive. However, since in M any interleaving of ¢y and ¢; is possible, the
diagonal @ — {to,t1} sneaks into the structure by definition. As a result,
both N and M yield the configuration structure represented in Figure Bl even
though {to,t1} is not an admissible step for M. The limit case is the marked
net consisting of a single self-loop: the readers can check for themselves that,
according to ¢s(_), it can fire arbitrarily large steps.

These problems have prompted us to look for a semantic framework that
represents net behaviours more faithfully than configuration structures. The key
observation is that there is nothing wrong with the assumption that if a step
involving many parallel actions can occur in a certain state, then all the possi-
ble interleaving sequences of those action can also occur from that state. The
problematic bit is assuming the inverse implication, because, as a matter of fact,
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it reduces concurrency to nondeterminism and makes the set of configurations
determine uniquely the transition relation. Our proposed solution is concurrent
transition systems.

1.3 Concurrent Transition Systems

The analysis of the previous section suggests seeking a model that enforces the
existence of all appropriate interleavings of steps, without allowing this to de-
termine the set of transitions completely. Several such models appear in the
literature. Among those that inspired us most, we recall distributed transition
systems [9], step transition systems [16], PN transition systems [16], and higher
dimensional transition systems [3]. Also closely related are the local event struc-
tures of [§], a model that extends event structures (rather than transition sys-
tems) by allowing the firing of sets (but not multisets) of events. Drawing on all
these, we have here chosen the simplest definition that suits our current aim.

Definition 7. A concurrent transition system (CTS for short) is a structure
H = (S, L, trans, so), where S is a set of states, L is a set of actions, sop € S is
the initial state, and trans C S x (u(L) — {@}) x S is a set of transitions, such
that:

(1) if (s,U, s1),(s,U, s2) € trans, then s1 = sa,
(2) if (s,U, s') € trans and Uy, Uy is a partition of U, then there exist v1,vy € §
such that (s, Uy,v1), (s, Ua,v2), (v1,Us, s'), (ve, U1, s') € trans.

Condition (1) above states that the execution of a multiset of labels U in a
state s deterministically leads to a different state. The second condition guar-
antees that all the possible interleavings of the actions in U are possible paths
from s to s if (s,U, s’) € trans. Notice that, by (1), the states v; and vy of (2)
are uniquely determined.

We formalise the idea that different paths which are different interleavings
of the same concurrent step can be considered equivalent.

Definition 8. A path in a CTS is a sequence of contiguous transitions
(S? U17 Sl)(817 U2a 82) e (Sn—1> Una Sn)

A run is a path that originates from the initial state.

Definition 9. Given a CTS H, adjacency is the least reflexive, symmetric, bi-
nary relation <y on the paths of H which is closed under path concatenation
and such that

(S, U, 81)<81, Us, 82) —q (S, Ui + Us, 82).

Then, the homotopy relation < g on the paths of H is the transitive closure of
<. The equivalence classes of runs of H with respect to the homotopy relation
are called computations.
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In order to simplify our exposition, we now refine the notion of concurrent
transition system so as to be able to associate to each path between two states
the same multiset of actions. As we shall see, such transition systems enjoy
interesting properties.

Definition 10. A CTS is uniform if all its states are reachable from the initial
state, and the union of the actions along any two cofinal runs yield the same
multiset, where cofinal means ending in the same state.

In a uniform CTS H = (S, L, trans, sg) each state s can be associated with
the multiset of actions on any run to s. Precisely, we shall use ¢, to indicate
S Us, for (so,Ur, s1)(s1, Uz, $2)...(Sn—1, Uy, s) a run of H. Observe also that
uniform CTS are necessarily acyclic, because any cycle (s,Up, s1) ... (Sn, Un, )
would imply the existence of runs to s carrying different actions. In the rest of
the paper, we shall consider only uniform concurrent transition systems.

Introducing the natural notion of computation-preserving morphism for CTS,
we define a category of uniform concurrent transition systems. In the following,
for functions f: A — B, we denote by f*:u(A) — p(B) the obvious multiset

extension of f, i.e., fH(X)(0) =3 cs-10) X(a).

Definition 11. For H; and Hy CTS, a morphism from H; to Hs consists of a
map f:S57 — Ss that preserves the initial state and a function a: L1 — Lo and
such that (s,U, s') € trans; implies (f(s),a"(U), f(s)) € transs.

We denote by CTS the category of uniform CTS and their morphisms.

Definition 12 (From PT Nets to CTS). Let N = (9y,01,5,T,ug) be a
marked PT Petri net. The concurrent transition system associated to N is

ct(N) = (Mn, T, transy, &),

where M is the set of fireable multisets of transitions of N, and (X, U, X’) €
transy if and only if ux [U) ux/. (Recall that ux:S — Z is by definition a
reachable marking.)

Although this construction is formally very close to that proposed for con-
figuration structures, the difference is that CTS do not enforce diagonals to fill
the squares: these are introduced if and only if the associated step is actually
possible (see Figure H)). We shall give a precise categorical characterisation of the
representations of nets in the CTS framework in Section 21 For the time being,
we notice the following.

Proposition 1. ct(N) is a functor from Petri. to CTS.

Although all cofinal runs of a CTS carry the same multiset of actions, it is not
the case that all such runs are homotopic, i.e., they do not necessarily represent
the same computation. Enforcing this is the purpose of the next definition.
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{to,t1} {to,t1}

{y T {to} {y {to}
{to} {to,t1} {tl} {to} {tl}
{:0\ ‘ %} {to} {t1}

o o
ct(N) ct(M)

Fig. 4. The CTS ct(N) and ct(M) for the nets N and M of Figure 2

Definition 13. An occurrence concurrent transition system is a concurrent
transition system H in which all pairs of cofinal transitions (s1,Ut, ), (82, U,
s) € transy are the final steps of homotopic paths.

It can be shown that the previous definition implies the following property.
Proposition 2. All cofinal paths of an occurrence CTS are homotopic.

We shall use oCTS to indicate the full subcategory of CTS consisting of
occurrence CTS. Clearly, a uniform CTS can be unfolded into an occurrence
CTS.

Definition 14 (From CTS to Occurrence CTS). Let H = (S, L, trans, s¢)
be a concurrent transition system. Its unfolding is the occurrence concurrent
transition system O(H) = (S, L, trans’, €), where S’ is the collection of compu-
tations of H, and

trans' = {([r]=,U, [n']=) | 35,8’ € S, [n']l= € 8, 7' <p n(s,U,s)}.

Proposition 3. O(_) extends to a right adjoint to the inclusion of oCTS in
CTS.

Proof. For H a concurrent transition system, consider eg: O(H) — H that maps
each [7]< € So(m) to its final state s € Sy. It is easy to verify that this forms
the counit of the adjunction.

1.4 Monoidal Categories

Several interesting aspects of Petri net theory can be profitably developed within
category theory, see e.g. [21], 1] 2]. Here we focus on the approach initiated in
[I1] (other relevant references are [5[13, 19l [5] 20]) which exposes the monoidal
structure of Petri nets under the operation of parallel composition. In 11, 5] it
is shown that the sets of transitions can be endowed with appropriate algebraic
structures in order to capture some basic constructions on nets. In particular,
the commutative processes by Best and Devillers [I], which represent the natural
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behavioural model for PT nets under the collective token philosophy, can be
characterised adding a functorial sequential composition on the monoid of steps,
thus yielding a strictly symmetric strict monoidal category 7 (V).

Definition 15. For N a PT net, let 7(N) be the strictly symmetric strict
monoidal category freely generated by N.

Using CMonCat to denote the category of strictly symmetric strict mono-
idal categories and strict monoidal functors, 7(_) is a functor from Petri to
CMonCat. The category 7 (N) can be inductively defined by the following
inference rules and axioms.

u € pu(Sn) teTn, 0p(t) =u, O1(t) =v
idy:u — u € T(N) t:u—wveT(N)

au—v, fiu -0 e€T(N) au—wv, fiv—weT(N)
a®dput+u —v+v €T(N) a; B:iu — w e T(N)

where the following equations, stating that 7 (V) is a strictly symmetric strict
monoidal category, are satisfied by all arrows a, o/, 3, 3, 7, 6 and all multisets
u and v:

neutral: idg @ a = a,

commutativity: adf=08Caq,

associativity: (adB)Ds=ad (BdI), (; B);v = a; (B;7),
tdentities: a;idy, = a = idy; a, tdy, @ tdy = idyto,

functoriality: (0 8) @ (a/;#) = (a ® a'); (B 7).

The intuition here is that arrows are step sequences and arrow composition is
their concatenation, whereas the monoidal operator & allows for parallel compo-
sition. It turns out that this algebraic structure describes precisely the processes
a la Best and Devillers.

Proposition 4 (cf. [11]). The presentation of T(N) given above provides a
complete and sound axiomatisation of the algebra of the commutative processes

of N.

By analogy with Petri,, we take a pointed category (C, co) to be a category
C together with a distinguished object ¢y € C. Similarly, a pointed functor
from (C,cp) to (D,dp) is a functor F:C — D that maps the distinguished
object ¢y to the distinguished object dy. Then, using CMonCat, to denote
the category of pointed strictly symmetric strict monoidal categories and their
pointed functors, the previous construction extends immediately to a functor
7.(N): Petri, — CMonCat,, such that for N = (9y, o1, 5, T, up) a marked PT
net, then

ﬂ(N) = (7(80,61,3, T),U()).
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1.5 A Logical Characterisation of the Algebraic Model

The algebraic semantics of PT Petri nets can be expressed very compactly by
means of a morphism between theories in partial membership equational logic
(PMEqtl) [10], a logic of partial algebras with subsorts and subsort polymor-
phism whose sentences are Horn clauses on equations ¢ = ' and membership
assertions ¢ : s. Such a characterisation can have also practical applications, as
there are tools available that support executable specifications in partial alge-
bras. This section and the Appendix provide an informal introduction to the
main ideas of PMEqtl. The interested reader is referred to [10, 12] for self-
contained presentations.

A theory in PMEqtl is a pair T = (£2,I"), where (2 is a signature over a
poset of sorts and I' is a set of PMEqtl-sentences in the language of 2. We
denote by PAlg,, the category of partial (2-algebras, and by PAlg, its full
subcategory consisting of T-algebras, i.e., those partial (2-algebras that satisfy
all the sentences in I

The features of PMEqtl (partiality, poset of sorts, membership assertions)
offer a natural framework for the specification of categorical structures. For in-
stance, a notion of tensor product for partial algebraic theories is used in [12] to
obtain, among other things, a very elegant definition of the theory of monoidal
categories that we recall in the Appendix. More precisely, we define the theories
PETRI of PT nets and CMONCAT of strictly symmetric strict monoidal categories,
using a self-explanatory Maude-like notation (Maude [4] is a language recently
developed at SRI International; it is based on rewriting logic and supports the
execution of membership equational logic specifications).

To study the relationships between PETRI and CMONCAT, the Appendix de-
fines also an intermediate theory CMON-AUT of automata whose states form a
commutative monoid. Our main result is then that the composition of the ob-
vious inclusion functor of Petri into PAlguyoy_ayr and the free functor Jy from
PAIgwon_aur t0 PAlgcyanear associated to the theory morphism V from CMON-AUT
to CMONCAT corresponds exactly to the functor 7(-): Petri — CMonCat.

Proposition 5. The functor T (-): Petri — CMonCat is the composition

. F
Petri ——— PAlggyoy_ o7 — PAlgcygncar

2 Concurrent Transition Systems and Monoidal
Categories

In this section we state the faithfulness of the CTS representation of nets, as given
in Definition [[2, with respect to the collective token philosophy. To accomplish
this aim, we show that both the ct(-) and the 7(.) constructions yield two
equivalent categories of net behaviours.

Regarding the monoidal approach, the obvious choice consists in taking the
comma category of 7 () with respect to the initial marking, thus yielding a cat-
egory whose objects are the commutative processes of IV from its initial marking.
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An arrow from process p to process ¢ is then the unique commutative process r
such that p;r = ¢ in 7(N). We denote the resulting category by (ug | T(N)).

An analogous construction can be defined starting from c¢t(NV). The first step
is to observe that the paths of a generic CTS under the homotopy relation define
a category.

Definition 16. For H = (S, L, trans, sg) a CTS, we define the category of com-
putations of H to be the category C(H) whose

> objects are computations [7]« of H,
> arrows are the homotopy equivalence classes of paths in H such that
We:rle — e iff 7oy,
> arrow composition is defined as the homotopy class of path concatenation,
ie.,

[Wle; [V]e = [Pi']e,

> ddentity arrow at [T]< is €[], the homotopy class of the empty path at
the final state of 7.

This construction extends easily to a functor C(.) from CTS to Cat, the
category of (small) categories and functors, yielding a functor C(ct(.)) from
Petri, to Cat. Observe also that C(_) factors through O: CTS — oCTS via the
obvious path construction.

Theorem 1. Let N be marked PT net with initial marking ug. Then, the cate-
gories C(ct(N)) and (ug | T(N)) are isomorphic.

Proof. We sketch the definition of functors
F:(up ] T(N)) = C(ct(N)) and G:C(ct(N)) — (ug | T(N))

inverses to each other. The functor F maps an object of the comma category
to the homotopy class of any of the object’s interleaving (which is well-defined
because of the diamond equivalence of [1). Its action on morphisms is analogous.

On the other hand, for a computation [7]< in C(ct(N)), starting from the
initial marking we can determine uniquely the corresponding arrow on 7 (N),
and therefore define the action of G on both objects and arrows.

The categories of computations for the concurrent transition systems associ-
ated to nets N and M of Figure Blare shown in Figure Bl where we use ¢y and ¢; to
denote, respectively, the computations [(&, {to}, {to})]«=, and [(&, {t1}, {t1})]=
in both of ¢t(N) and ct(M). Analogously, p; and pg indicate the homotopy
classes of the paths [({to}, {t1}, {t0,t1})]<= and [({t1}, {to}, {to,t1})]<, respec-
tively. However, co; p1 and ¢1; po yield the same result c=[(&, {to, 1}, {to, t1})]<
in C(ct(N)), whereas in C(ct(M)) they denote different objects: ¢/ = [(&, {to},

{toh)({to} {t1}, {to, 1] and ¢ = [(&, {t }, {t: }) ({11}, {0}, {to, 11 })] =
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"
C

TN S

C(ct(N)) C(ct(M))

Fig. 5. The categories C(ct(N)) and C(ct(M)) for the nets of Figure

3 Configuration Structures and Concurrent Transition
Systems

In this section we first give a categorical structure to the class of configuration
structures, and then show that the obvious injection of configuration structures
into CTS yields a reflection.

Definition 17. For (F1,C4) and (E3,C3) configuration structures, a cs-mor-
phism from (Eq,C1) to (Eg,Cs) is a function ¢g: By — FE» such that for each
configuration X € Cy, then g#(X) € C3. We denote by CSCat the category of
configuration structures and cs-morphisms.

The obvious injection functor J(_) from CSCat to CTS maps a configuration
structure CS = (E,C) into the concurrent transition system

J(CS) = (C, E, transcs, S0),

where transcs = {(X,L,Y) | X L, Y}, and maps a cs-morphism g: E; — E»
to the morphism (¢’, g), where ¢g’: C; — Cs is the obvious extension g* of ¢ to
multisets, with domain restricted to Cj.

Theorem 2. The functor I3(_): CSCat — CTS is the right adjoint of a func-
tor R(.): CTS — CSCat. Moreover, since the counit of the adjunction is the
identity, I(_) and R(_) define a full reflection.

Proof. We sketch the proof, giving the precise definition of the reflection functor.
The reflection functor R(_) maps a uniform CTS H = (S, L, trans, so) into the
configuration structure R(H) = (L, Cg) such that Cs = {¢; | s € S} (recall that
Gs is the multiset union of the actions of any run leading to s).

We denote the component at H of the unit of the adjunction by py: H —
J(R(H)).

Theorem 3 (Configuration Structures via CTS). Let N be a marked PT
net. Then cs(N) = R(ct(N)).
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Proof. The events of ¢s(N), the actions of ct(IN) and, therefore, the events of
R(ct(N)) are the transitions of N. The states S of the uniform CTS ct(N)
are exactly the configurations of ¢s(N), and for each s € S, we have ¢, = s.
This suffices, since a configuration structure is entirely determined by its set of
configurations.

These results support our claim that configuration structures do not offer
a faithful representation of net behaviours. In fact, R(.) clearly collapses the
structure excessively, as the natural transformation associated to the reflection
map p can identify non homotopic runs (e.g., ¢’ and ¢” of Figure[H).

Concluding Remarks and Future Work

We have investigated the expressiveness of some ‘collective-token’ semantics for
PT nets. In particular, to remedy the weakness of configuration structures, we
have introduced concurrent transition systems — a version of higher dimensional
transition system [3] more suited to the collective token philosophy, as they do
not assign individual identities to multiple action occurrences in a multiset —
and have shown that they can provide a faithful description of net behaviours.

CP(-)
Petri, ——— CMonCa7 Cat
X - o)
cs(-) — R(Z) CTS — c(-)
CSCat © = > CTS
Fig. 6.

The diagram of functors, equivalences and natural transformations in Fig-
ure [B] summarises the relationships between all these models. In the diagram,
commutation on the nose (resp. natural equivalence) is represented by = (resp.~),
and p denotes the unit of the reflection into the subcategory of configuration
structures. The functor CP(.) gives the category of Best-Devillers commutative
processes. The functor ct(-) corresponds to the construction of the CTS for a
given net, as defined in Section [[3] The functor C(.) yields the construction of
the category of computations (i.e., homotopy equivalence classes of paths be-
ginning in the initial state) of a CTS. The equivalence ~ between C(ct(.)) and
(uin | T7(2)) is shown in Section 2] providing the faithfulness of the construction.
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The functor cs(-) represents the abstraction from nets to configuration struc-
ture, defined in Section Unfortunately, CSCat is a reflective subcategory
of CTS, as shown in Section B] via the adjunction R(.) 4 J(_). The reflection
functor R(_) identifies too many things, so that the natural transformation as-
sociated to the reflection map p can identify non homotopic runs. Our running
example shows that causality informations can get lost when using configura-
tion structures, because homotopic paths are mapped into the same equivalence
class.

Structures

Computation Behavioural Algebraic Logical
Model
Nets and Collective  |Conf. structures, CTS, |7 (V) CAT ® CMON
Token Philosophy Commutative processes
Nets and Individual |Conc. Pomsets, Event |P(N),Q(N) |CAT ® MON
Token Philosophy Struct., Processes Z(N)? + SYM

Table 1.

The conceptual framework of this paper is summarised in Table [, which
makes explicit our research programme on the behavioural, algebraic and logical
aspects of the two computational interpretations of PT nets, namely the col-
lective token and the individual token philosophies, from the viewpoints of the
structures suited to each of them and their mutual relationships.

The first row of Table [ has been treated in this paper. As for the individual
token interpretation, obvious candidates for suitable behavioural structures are
event structures, concatenable pomsets and, especially, various kinds of concaten-
able processes [5) 20]. From the logical viewpoint, it is not difficult to formulate
a theory SYM of permutations and symmetries (cf. [19]) bridging the gap from
strictly symmetric categories to categories symmetric only up to coherent iso-
morphism. On the other hand, the investigation of suitable algebraic models is
still open, as our current best candidates, the symmetric strict monoidal cat-
egories P(N) of concatenable processes [5] and Q(N) of strongly concatenable
processes |20)], are both somehow unsatisfactory: P(_) is a non-functorial con-
struction, a drawback that inhibits many of the applications we have in mind,
whilst Q(_) solves the problem at the price of complicating the construction and
relying on a non commutative monoid of objects.

We are currently searching for a better categorical construction, say Z(N),
based on a suitable notion of pre-net that may subsume and underly the theory
of PT nets and allow us to complete our programme.

Also, the complete analysis and comparison of bisimulation related issues in
the various models considered in the paper (as in [6] for configuration structures)
deserve further work that we leave for a future paper.
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Appendix. Recovering the Algebraic Semantics of Nets via
Theory Morphisms

In order to define the theory of strictly symmetric strict monoidal categories, we
first recall the definition of the theory of categories from [12].

The poset of sorts of the PMEqtl-theory of categories is Object < Arrow.
There are two unary operations d(_) and c(_), for domain and codomain, and
a binary composition operation _;_ defined if and only if the codomain of the
first argument is equal to the domain of the second argument. Functions with
explicitly given domain and codomain are always total.

fth CAT is

sorts Object Arrow.

subsort Object < Arrow.

ops d(_) c(_) : Arrow -> Object.
op _;_.

var a : Object.

vars f g h : Arrow.

eq d(a) = a.
eq c(a) = a.
ceq a;f = f if d(f) == a.
ceq f;a = f if c(f) == a.

cmb f;g : Arrow iff c(f) == d(g).

ceq d(f;g) = d(f) if c(f) == d(g).

ceq c(f;9) = c(g) if c(f) == d(g).

ceq (f;59);h = f;(g;h) if c(f) == d(g) and c(g) == d(h).
endfth

The extension of the theory CAT to the theory of monoidal categories is
almost effortless thanks to the tensor product construction of theories, which is
informally defined as follows.
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Let T = (£2,I") and T" = ({2, I"") be theories in partial membership equa-
tional logic, with 2 = (5,<,X) and ' = (5',<’, X’). Their tensor product
T®T' is the theory with signature 2® 2’ having: poset of sorts (S, <) x (5, <),
and signature X' ® X', with operators f; € (Y ® X'),, and g, € (¥ ® %), for
each f € X, and g € X/ (indices [ and r stand respectively for left and right
and witness whether the operator is inherited from the left or from the right
component). The axioms of T ® T” are the determined from those of T" and T”
as explained in [12].

The essential property of the tensor product of theories is expressed in the
following theorem, where PAlg,(C) indicates the category of T-algebras taken
over the base category C rather than over Set, the category of small sets and
function.

Theorem 4. Let T, T’ be theories in partial membership equational logic. Then,
we have the following isomorphisms of categories:

PAlg,(PAlg; ) ~ PAlg, o ~ PAlg,, (PAlg,).

To define the theory of monoidal categories, we introduce a theory CMON of
commutative monoids and apply the tensor product construction. Here we ex-
ploit the possibility given by Maude of declaring the associativity, commutativity
and unit element as attributes of the monoidal operator.

fth CMON is

sort Monoid.

op O : -> Monoid.

op _@_ : Monoid Monoid -> Monoid [assoc comm id: O].
endfth

The theory of strictly symmetric strict monoidal categories is then defined
as follows. Notice also the use of left and right corresponding to the indices [
and r discussed above.

fth CMONCAT is CMON ® CAT renamed by (
sort (Monoid,Object) to Object.

sort (Monoid,Arrow) to Arrow.

op O left to O.

op _P_ left to _D_.

op _;_ right to _;_.

op d(_) right to d(_).

op c(_) right to c(.).).
endfth

In order to define a theory in PMEqtl that represents PT Petri nets and
their morphisms, we first introduce a theory whose models are automata whose
states form a commutative monoid.
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fth CMON-AUT is

sorts State Transition.

op 0 : -> State.

op _®_ : State State -> State [assoc comm id: 0].
ops origin(_) destination(_) : Transition -> State.
endfth

Proposition 6. The category Petri is a full subcategory of PAlgwon_aut-

Proof. Tt is immediate to check that each PT net is just a model of CMON-AUT
whose states are the object of the commutative monoid freely generated by the
set of places.

Exploiting the modularity features of Maude, we can characterise Petri as a
subcategory of PAlgoy_agr- We import a functional module MSET[E :: TRIV]
of multisets, parametrised on a functional theory of TRIV of elements, whose
models are sets corresponding to the places of the net.

fth TRIV is sort Element.
endfth

fmod MSET[E :: TRIV] is

sort MSet.

subsort Element < MSet.

op & : —> MSet.

op _+_ : MSet MSet -> MSet [assoc comm id: &].
endfm

fth PETRI[S :: TRIV] is

protecting MSET[S] renamed by (sort MSet to Marking.).
sort Transition.

ops pre(_) post(_) : Transition -> Marking.
endfth

A theory morphism H from T to T”, also called a view in Maude, is a map-
ping of the operators and sorts of T into T”, preserving domain, codomain and
subsorting, and such that the translation of the axioms of T" are entailed by those
of T". Tt originates a forgetful functor Uy: PAlg, — PAlg, that — for T and
T’ theories without freeness constraints, such as those required in PETRI [S] —
admits a left adjoint Fg: PAlg, — PAlg,, whose effect is to lift H to a free
model construction in PAlg. The inclusion functor from Petri to PAIgyoy_aur
is induced as the forgetful functor of a theory morphism I specified as a view in
Maude as follows.

view I from CMON-AUT to PETRI[S :: TRIV] is
sort Marking to MSet.
op origin(_) to pre(_).
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op destination(_) to post(_).

op 0 to &.
op _®_ to _+_.
endview

Finally, the algebraic semantics of PT nets under the collective token phi-
losophy, i.e., the construction 7 (-), can be easily recovered via a simple theory
morphism specified in Maude-like notation as

view V from CMON-AUT to CMONCAT is
sort State to Object.
sort Transition to Arrow.
op origin(_) to d(_).
op destination(_) to c(_).
endview

As stated in Proposition B the construction 7(.): Petri — CMonCat is
then the following functor composition.

. F
Petri ——— PAlguyoy_aur — PAlgevoncar
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