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ABSTRACT

This paper describes the design and evaluation of Southampton-
SCM, the runner-up in the 2005 International Trading Agent Sup-
ply Chain Management Competition (TAC SCM). In particular, we
focus on the way in which our agent purchases components using a
mixed procurement strategy (combining long and short term plan-
ning) and how it sets its prices according to the prevailing market
situation and its own inventory level (because this adaptivity and
flexibility are key to its success). We analyse our buying and selling
strategies in the actual competition and in controlled experiments.
Through this evaluation, we show that SouthamptonSCM performs
well across a broad range of environments.

1. INTRODUCTION

Effective supply chain management is vital to today’s economy and
increasingly organisations are looking to the agility and automation
afforded by agent-based approaches [4]. To this end, the Interna-
tional Trading Agents Competition for Supply Chain Management
(http://www.sics.se/tac) (TAC SCM) provides a benchmark-
ing environment for testing and evaluating agents in a challenging
and realistic setting. Specifically, in the TAC SCM scenario, the
aim is to design an agent representing a computer manufacturer,
that competes with other agents for computer components (from
the supplier side) and computer orders (from the customer side).
These agents are also responsible for managing their limited pro-
duction capacities, in order to deliver the products to customers
before the due date they agreed in the order.

In more detail, a game includes six agents (competition entrants)
that compete with one another to procure raw components and ful-
fil customer orders for assembled PCs. Each agent can produce 16
distinct computer types from four components: CPU, motherboard,
memory and hard disk (e.g. a PC with a 2GHz IMD processor with
1GB memory and a 300GB hard drive). Consequently, on each of
the 220 simulation days of the game, agents receive new request for
quotes (RFQs) and actual orders (if offers they have previously sent
win) from the customers. From the supplier side, an agent receives
offers to deliver particular quantities and types of components at
particular prices in response to the RFQs that it sent on the previ-
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ous day. Thus, in each day of the game (lasting 15 seconds), the
agent must decide on the following: (i) which new supplier RFQs
to send and which supplier’s offers to accept; (ii) which customer
RFQs to respond to, and at what price; and (iii) how to schedule the
production of PCs given the availability of components, the limited
capacity of the factory and the delivery deadlines of pending orders.
Now, an agent spends money on buying the components, paying for
the storage of both components and PCs, paying penalties if it de-
faults on a promised delivery date and paying overdraft penalties
if it is in debt to the bank. The agent earns money by selling PCs
and receives interest from the bank if its balance is positive. The
success of an agent is measured in terms of its profit (i.e., its bank
balance at the end of the game).

Against this background, we present the design and evaluation of
our agent (SouthamptonSCM) that was the runner-up in the 2005
competition (out of 32 initial participants). The main contributions
of this work are as follows. First, we develop techniques to enable
the agent to adapt its price setting to the prevailing market situa-
tion, its own internal state (inventory level) and the time that has
elapsed. At their core, these techniques employ fuzzy reasoning
in order to allow the agent to adapt its prices daily so that it can
fully exploit its production capacity, while still maximising its rev-
enue by selling at appropriate prices. Second, we develop a mixed
procurement strategy that enables the agent to buy components ac-
cording to what is needed in the near future (by predicting customer
demand) and also to order a small quantity of components far in
advance (at a lower price) to meet the minimum daily usage. This
strategy balances flexibility in dealing with the dynamically chang-
ing market, with the need to procure components at low cost whilst
also minimising inventory stock. This is especially useful when
the demand is increasing and the agents are thus competing for the
components, since it is this case that causes component prices to
increase. To evaluate the effectiveness of these developments, we
analyse the performance of our agent in the actual competition and
also in more systematic controlled experiments.

The remainder of the paper is organized as follows. Section 2
presents our agent. In section 3 we evaluate it. Finally, in section 4
we conclude and discuss future work.

2. SouthamptonSCM

SouthamptonSCM is composed of three sub-agents (see figure 1).!
The customer agent receives RFQs from the customers and decides
what offers to respond with. It also communicates with the fac-
tory agent to obtain the updated inventory levels and to send the

'Here we use the notion of sub-agents (instead of modules) because
each of them can autonomously communicate with the suppliers
and customers to get the RFQs, can send offers and obtain orders,
and can decide how to respond to this information.
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Figure 1: SouthamptonSCM agent architecture.
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relevant customer PC orders. The component agent decides which
RFQs and which orders to send to which suppliers. The factory
agent receives the supplies delivered from the suppliers, decides
based on the available resources (computer components and fac-
tory cycles) in what order the customer orders should be produced,
and determines the schedules for delivering the finished PCs to the
customers. We now deal, in turn, with each sub-agent.

2.1 The Customer Agent

The customer agent is the key component in our architecture (be-
cause we believe that offering the appropriate price at the right time
is vital for success). If the price is too low, the agent will receive a
low profit and if it is too high it will fail to win any orders (because
customers always choose the lowest offer price among those they
receive). Given this, the key challenges are to determine which
customer RFQs to bid for and at what price. To achieve this, we
use fuzzy reasoning to determine how to set prices according to the
agent’s inventory level, the market demand and the time into the
game. Moreover, the parameters involved in the fuzzy rules can
be adapted according to the quantity of the received and expected
customer orders so as to maximise the factory utilisation.

The customer agent we used in last year’s competition has pre-
viously been described in [3] and in several respects this year’s de-
sign is similar. However, due in part to the changes in the rules of
this year’s competition and also because SouthamptonSCM 2005
is built upon last year’s experiences, there are also a number of
important differences. Most importantly:

e When prioritising customer RFQs, SouthamptonSCM 2005
considers the potential profit that each RFQ will generate
(SouthamptonSCM 2004 did not consider the cost of the com-
ponents). Moreover, when checking on the availability of
the components required to assemble the requested finished
product, unlike SouthamptonSCM 2004 that just considered
the quantity of components held as inventory, the 2005 agent
also considers pending component orders that are due to be
delivered before the due date of the RFQ (see Section 2.1.1).

e SouthamptonSCM 2005 also calculates the offer prices of
finished products differently. Although it uses the same ba-
sic technique as the 2004 agent, the 2005 agent has two rule
bases for calculating prices: one for when it is close to the
end of the game and one for other days in the game (see Sec-
tion 2.1.2). The 2004 agent, also used two rule bases but
these were: one for the end stage of the game and one for
when it was expecting a large component delivery.?

2This rule was motivated by the use of a day 0 procurement strategy
that ordered the majority of the components needed for the entire
game on day 0. Since changes in the TAC SCM game specification
for the 2005 competition removed the benefit of this procurement
strategy, the customer agent had to be updated.

‘We now deal, in turn, with each of the these differences.

2.1.1 Choosing Customer RFQs.

The customer agent receives customer RFQs requesting a quantity
of a particular PC for delivery on a specified day. When selecting
which RFQs to respond to, SouthamptonSCM rates them accord-
ing to the potential profit that they may bring and according to the
inventory it holds. The latter inventory driven strategy offers cus-
tomers PCs according to what is currently available and also what
can be produced given the delivery date of pending components or-
ders. This consideration of promised component deliveries is new
and is included this year since changes to the supplier model mean
that there are no longer significant delivery delays in these compo-
nent orders> [1].

In more detail, suppose a customer RFQ is represented as a tuple
(i @, Pres» Cpenalty> ddue)» Where i € {1,--- 16} is the type of PC
the customer wants, g > 0 is the quantity, p,.s > 0 is the reservation
price (maximum it will pay), ¢penairy > 0 is the fine paid if the
computers are not delivered on time, and d,,, is the desired delivery
date. On each day, the customer agent receives a bundle of such
RFQs and sorts them in the decreasing order of the profit margin of
the type of PC requested:

Pres — Pbase — Mv
q
where ppuse 18 the cost of buying components (sum of the buying
price for each component). The intuition is that the agent will first
serve customers with high profit margins and low penalties. This is
because the higher the p,.,, the more profit will be made (compared
to selling the same product to a customer with a low p,.s). At the
same time, the agent also wants to avoid getting high penalty orders
because of the inherent uncertainties that exist in the game.

For each RFQ in the list, the agent first checks whether it can
be supplied from its stock of finished PCs (see Section 2.3). If it
can, the corresponding PC inventory is decreased. Otherwise, the
agent checks whether it holds sufficient components within both its
current inventory and its expected delivery queue (i.e. components
that have been ordered, but have not yet arrived), and also whether
it has a sufficient remaining production capacity to manufacture the
required PCs. If it does, the agent decreases its available compo-
nent inventory.

2.1.2  Fuzzy Rules for Calculating Offer Prices

For each type of PC, the agent uses a fuzzy reasoning inference
mechanism which is based on the standard Sugeno controller [6] to
calculate the offer price of components. Full details of this process
are described in [3], however, here we present the rule bases as used
in the 2005 agent. Now, due to the constraint that the TAC SCM
game is played over a fixed number of days, we use two rule bases:
one for the majority of the game days where the aim is to sell fin-
ished products at maximum profit, and one for the last stages of the
game where the aim is to ‘off-load’ any remaining finished prod-
uct and component inventory. Splitting the rule bases enables us to
reduce their complexity and thus maintain their interpretability.

In more detail, in the first rule base, for each PC type the agent
considers the current customer demand state and the inventory level
of the components that make up that particular PC type. There
are twelve such rules within this base and the following three are
representative examples:

Ry: if Dis high and [ is low then r| is very-big

3These changes were introduced to remove the incentive to adopt a
day 0 procurement strategy.
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Figure 2: Overview of the component agent.

Ro: if D is medium and [ is high then r; is very-medium
Rs: if Dis low and [ is high then r3 is small

In these rules, the customer demand (D) is expressed in the fuzzy
linguistic terms high, medium, and low, and the inventory level (1)
in the terms high, medium, and low. The output of each rule is a
fuzzy variable (r1 to r3 in these examples), and thus, the outputs
of all the rules are combined by the Sugeno controller to give a
single scalar result, r, that represents the price adjustment factor
used to generate a reference price [2] for each type of PC. When
r is high, the reference price approaches (or is even higher than)
the highest transaction price recorded on the previous day (this in-
formation is made available to the agents through the daily market
report), whilst when r is low, the reference price approaches the
lowest transaction price. Given the reference price of each type of
PC, an offer price is calculated by modifying the reference price by
a factor related to the requested due date. The intuition here is that
the sooner the due date, the higher the offered price. Thus, rule &;
captures the fact that if the customer demand for this kind of PC is
high and the agent has a low inventory in stock, then the offer price
should be very high since here there is an opportunity to maximise
the agent’s profit.

The second rule base is employed for the days near the end of
the game (last 20 in this case) and it considers the current inventory
level, the customer demand and also how close it is to the end of the
game. There are 22 such rules that capture different combinations
of situations of these three variables, and, three such rules in this
rule base, are:

17{1,: if D is high and I is high and E is far then r,1 is big
17{2,: if D is high and I is high and E is medium then r/2 is medium
17{3,: if D is low and I is high and E is close then r/3 is very-small

Here, the days to the end of the game (E) are expressed in the fuzzy
linguistic terms: far, medium, and close. Thus, for example, rule
ﬂ(é captures the fact that if there is little demand for a particular
type of PC, the agent has a high inventory, and there is a little time
until the end of the game, then the price adjustment factor should
be very small (thus ensuring a low offer price and hence reducing
the risk of being left with inventory at the end of the game).

2.2 The Component Agent

The component agent is responsible for dealing with the compo-
nent suppliers and aims to ensure that there are always sufficient
components in stock to address the customers’ changing demand
for finished products. In doing so, it addresses a challenge that
is common to all supply chains facing dynamically changing cus-
tomer demand. That is, it must procure components at a low cost,
whilst simultaneously maintaining a minimal component inventory
in order to reduce the daily storage cost and also the possibility of
being left with redundant stock if customer demand changes.

Now, the 2005 component agent uses a completely different strat-
egy to that of last year. In 2004, it procured most of its components
by placing a large order on day O (due to the fact that the suppli-
ers have their full capacity available on day O and thus offer the
lowest possible price [3]). However, in 2005, the game rules were
changed in order to reduce the lottery effect in the supplier inter-
actions, to discourage the use of a day 0 procurement strategy [7],
and to deter agents from requesting large quantities of components
without intending to order them [1]. This means that the compo-
nent agent used in 2004 is no longer effective, and thus, we present
our updated component agent here.

In addressing the procurement challenge this year, the agent faces
a common dilemma concerning the lead time of component orders.
More specifically, ordering components with a long lead time (i.e.
for delivery a long time into the future) generally leads to low pro-
curement costs (since the suppliers have adequate spare capacity
over this long period). However, the agent is then exposed to the
risk that the customer demand may change, leaving it with exces-
sive component stock. Conversely, ordering components with a
short lead time allows the agent to effectively track the changing
customer demand and maintain minimum stock inventory. How-
ever, due to the short lead time, the suppliers generally have less
flexibility in scheduling the production of these orders (since the
order is competing with those from other agents for the limited pro-
duction capacity available), and thus, procurement costs are high.

Now, to tackle this dilemma, SouthamptonSCM employs a mixed
procurement strategy; dividing the remaining days of the game into
two classes: near future and far future (see figure 2). For the days
in the far future, the agent periodically orders a small fixed quantity
of components, so as to ensure that a minimum quantity of stock is
available in order to keep the factory running (see section 2.2.1 for
details). For the days in the near future (which is 35 days in this
case®), the agent makes a short term prediction of the future cus-
tomer demand, and orders sufficient components to address this de-
mand (see section 2.2.2 for details). In addition, within this near fu-
ture, the agent also tests the market in order to track current prices.
This price information is used to choose the appropriate lead time
and reserve price of the RFQ sent to the suppliers. In more detail,
since each agent can send a maximum of five RFQs for a particu-
lar component to each supplier each day, the agent uses four RFQs
for the near future procurement (i.e. to actually order components
with short lead time and also to track the component prices). The
remaining RFQ is used to buy components for the far future.

2.2.1 Far Future Procurement

Of the two strategies, the far future procurement one is the simpler.
For this, the agent assumes that in the far future, there will be a daily
minimum need for 30 CPU and 60 other components (this ratio is
required since there are four different types of CPU, but other com-
ponents are only available in two different types), and thus checks
whether there is sufficient current and pending component inven-
tory to meet this need. If not, it submits an RFQ for a fixed amount
to the relevant supplier, requesting delivery on the date at which
the predicted inventory falls below the daily minimum need (up to
a maximum of 120 days into the future).

2.2.2  Near Future Procurement
The near future procurement strategy is more complex. It con-

“In our experimental evaluation, we found that a larger number
than 35 led to significantly more redundant components in stock
due to the difficulty of predicting the fluctuating customer demand,
whilst a smaller amount was not able to keep the stock above a
minimum usable threshold.
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Figure 3: Linear regression process by which Southmapton-
SCM predicts the future customer demand.

sists of two elements, a daily demand predictor that predicts the
future demand of components, and a market tracker that generates
the RFQs to be sent to the suppliers, both to order actual compo-
nents required and to test the market to discern the most profitable
order lead time and set appropriate reserve price.

Demand Predictor

As described above, the agent buys components for the near fu-
ture based on a prediction of customer demand. Now, according
to the game specification, the number of RFQs that each agent re-
ceives from the customers is described by three independent ran-
dom walks; one for each market segment (finished product PCs are
classified into three such segments: high, mid and low range). In
more detail, the number of RFQs that an agent receives, within a
single market segment, on day d is denoted by N,, and is drawn
from a Poisson distribution whose expected value is given by the
parameter, Q. Thus, for each market segment:

Ny = Poisson (Q) (D

Again, according the game specification, the value of Q is updated
each each day between minimum and maximum limits according to
a multiplicative trend parameter, T, and thus:

Q41 = min (Omax, Max (Omin, TaQda)) 2

where the trend, T, is itself updated each day, again between min-
imum and maximum limits, according to a random walk:

Tg+1 = Max (Tyin, Min (Tmax, Ty +random (—0.01,0.01)))  (3)

Now, since T, varies relatively slowly (and can thus be assumed to
be constant over short periods of time), the agent can estimate the
values of Oy and T4 (these estimated values are denoted by Oy and
1) by recording, for the previous x days, the number of RFQs re-
ceived within each market segment (i.e. Ny_,...N;), and then per-
forming a linear regression of the logarithm of these values against
d (we take the logarithm since the trend is multiplicative). Having
found these values, the agent can then extrapolate, and predict the
number of RFQs that will be received on day d + n, and thus:

Nd+n = min (Qmam max (Qmim (%d)n Qd)) “4)

This process is shown diagrammatically in figure 3. In trials, we
found that by using data from the previous 10 days, and predicting
a value for 10 days into the future (i.e. x = 10 and n = 10), we
obtained a good estimate for the average demand within the near
future. This process gave significantly better results than the simple
alternative of using the number of RFQs received on the current
day, as an estimate for future days.
Having predicted the number of RFQs that will be received, within

each market segment, on each day within the near future, the agent
then calculates the expected daily usage of each component type

(Djg). This is calculated by weighting the maximum number of
PCs that can be manufactured on any day, D,y by a factor that
incorporates both the expected number of RFQs that will be re-
ceived within each market segment (i.e. ]Vé‘i”;l, Ng’fé"”m and Ngﬂl
as described above) and a weighting that describes how many of the
PC types within any market segment actually contain the specific
component being considered (for any component this weighting is

. ; high
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nent id of 200 these values are 0.4, 0.5 and 0.6 respectively). Thus:

Low Rrlow dium {ymedi high gshigh
Dtotal |:rigWN ow + r;’ze lllWlNgninlum + r,‘d N

d+n d+n
Dia = Nlow +]"vmedium +Nhi8h ©)
d+n d+n d+n

Given D;y, the current available stock of each component, and
the expected deliveries from the suppliers from previous orders, the
agent checks whether stock levels in the near future will fall below a
minimum threshold. This threshold represents a buffer stock level,
and guided by the principle that towards the end of the game the
inventory level should decrease, it starts from 0 on day 0, increases
gradually to a fixed number of 300 CPU and 600 other components
over the first 30 days, and subsequently decreases to zero again
over the last 10 days. If stock levels are predicted to fall below the
buffer level within the near future, the agent identifies the quantity
required (with a maximum order size of 80 components) and the
latest date that this quantity should arrive by. This information is
passed to the price tracker, which actually generates the RFQs that
are sent to the suppliers.

Price Tracker

The price tracker acts to maintain an estimate of the current market
price of the components. Due to the behaviour of the competing
agents, this market price depends on the due date with which com-
ponents are requested. For example, if the competing agents are
ordering components with very short lead times, then the supplier
will have little spare capacity, and thus, the corresponding offer
prices that the agent receives will be greater than those of orders
with long lead times. Every day the the price tracker generates four
RFQs which are sent to each supplier. The due dates of these RFQs
are distributed over three regions within the near future (i.e. less
than 10, 10 to 20, and more than 20 days into the future) and the
offer price that the agent receives in response to these RFQs en-
ables it to track the changing market price of the component and
also to identify the order lead times that will result in the minimum
procurement costs.

Now, in more detail, the four RFQs generated by the price tracker
fall into two different classes: those that actually order the compo-
nents requested by the demand predictor, and those that have zero
quantity (and are simply used to track the market price). On any
day, up to four of these RFQs will be used to actually order com-
ponents (depending on the requirements of the demand predictor),
and within the constraints of the delivery date requested by the de-
mand predictor, the lead time of these RFQs will be determined by
the results of the market testing. This market testing is also used to
set an appropriate reserve price for the RFQ.°

SIn this case, Dypq = 364, since, given the factory production ca-
pacity of 2000 cycles per day and an average production cost for a
PC of 5.5 cycles, approximately 2000/5.5 = 364 PCs can be man-
ufactured per day.

Note, the setting of this reserve price is particularly important in
the case of our agent. This is because the suppliers maintain a
record of the reputation of each agent that is dependent on the ratio
of offers that are sent compared to the actual number of orders that
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Figure 4: Cumulative order quantities in game tac4-4253.

2.3 The Factory Agent

One of the main challenges for the factory agent is scheduling what
to produce and when to produce it (i.e., how to allocate supply re-
sources and factory time). The strategy we use for Southampton-
SCM 2005 agent is broadly similar with that of last year’s agent.
This strategy involves manufacturing PCs according to customer
orders and satisfying orders with an earlier delivery date (see [3]
for more detail). Now, since the computers stored in the factory
will be charged storage cost, each order will be delivered as soon
as it is filled. The agent builds the PCs according to the customers’
orders it has obtained (which has the advantage of ensuring that
the factory always produces the needed computers on time). How-
ever, if on any day, there are still free factory assembling cycles
available, and the numbers of finished PCs in stock are below a
certain threshold, then the agent produces additional PCs of each
kind uniformly (subject to the availability of components) in order
to maximise the factory utilisation. It is critical that this threshold
is set appropriately; a high threshold will lead to excessive finished
PC inventory, which may be hard to sell if demand is low. In 2005,
this threshold is set to 80, and this is shown to work well in both
low and high demand markets.

3. EVALUATION

Our evaluation is composed of three components: (i) the results
from the 2005 competition; (ii) our post-hoc analysis of some typi-
cal games in the actual competition; and (iii) a systematic range of
controlled experiments.

3.1 Competition Results

TAC SCM consists of a preliminary round (predominantly used for
practice and fine tuning) followed by a seeding round that deter-
mines the groupings for the final rounds. The top 24 agents from
the seeding round are organised into 4 groups that represent each of
the four quarter-finals. The top three teams of quarter-finals 1 and
3 are entered into semi-final 1, and similarly, the first 3 teams from
quarter-finals 2 and 4 are entered into semi-final 2. Finally, the first
3 teams in both semi-finals are entered into the final round.

In the 2005 competition, there were 32 entries and Southampton-
SCM was placed seventh among all the participants in the seeding

are placed. Agents with higher reputation are given priority treat-
ment and receive lower offer prices. Thus SouthamptonSCM main-
tains a perfect reputation record by adopting the policy of accepting
all offers that it receives (this is dealt with by the Offer Processing
in figure 2). Thus, it is essential that the agent sets the reserve price
of RFQs to an appropriate value, to avoid being obliged to accept
an excessively expensive offer.

round and entered group B for the quarter-final. Here, it had the
second highest score, in its semi-final it had the highest score, and
in the final, it was the runner-up (to TacTex-05 517

3.2 Competition Game Analysis

In this section, we analyse the performance of SouthamptonSCM
in terms of the efficiency of both its buying and selling strategies.
That is, we consider the effectiveness of the customer pricing model
and the mixed component procurement strategy. Thus we select a
particular game from the final (game tac4-4253) and analyse it in
more detail.®

3.2.1 Analysing the Selling Strategy

To complement and better understand the competition result and to
evaluate the effectiveness of our pricing model (since we attribute
our success in selling PCs to the pricing technique we employ),
we conducted a post hoc analysis of a game from the final. In
order to reduce the complexity of this analysis, we consider just
the top three performing agents within this game (i.e. in this case
SouthamptonSCM, TacTex-05 and Mertacor (who also happen to
be the top 3 agents in the overall competition)). Now, an essential
factor in the performance of the trading agent is the ability to re-
spond to customer RFQs with competitive offer prices. Thus, we
analyse the game data and we consider just those RFQs for which
all three of the above agents responded with offers. We then con-
sider which of the three agents actually won these orders (noting
that the order is always assigned to the agent that offers the lowest
price). In figure 4 we show the resulting order quantities (expressed
as factory production cycles averaged over all products), that were
won by each of the three agents. Significantly, the Southampton-
SCM agent wins a far larger proportion of the orders than the other
two agents. This is consistent with the overall game analysis, where
the orders these three agents delivered in the game are: 7331 for
SouthamponSCM, 6742 for TacTex-05, and 5588 for Mertacor.

Now, there is little advantage to win these orders, if the offer
price was excessively low. Thus, in figure 5, we compare the av-
erage offer prices for those orders that were won by each of the
three agents. Specifically, in figure 5a we show the average offer
prices of the orders that were actually won by SouthamptonSCM,
in figure 5b those won by TacTex-05, and in figure Sc those won
by Mertacor. In each case, as expected, we see that the agent that
won the orders actually submitted offers with the lowest average
price. However, despite winning the majority of the orders, the
prices offered by SouthamptonSCM were not significantly lower
than those of the other agents. Indeed, the opposite is true. The
margin by which SouthamptonSCM undercut the other agents is
actually smaller than the margin with which the other agents un-
dercut SouthamptonSCM. For example, in this game, on average
SouthamptonSCM undercut Mertacor’s prices by 3.0% and TaxTex-
05’s prices by 4.1%. Conversely, on average, TacTex-05 under-
cut SouthamptonSCM’s prices by 6.5% and Mertacor undercut the
prices of SouthamptonSCM by 5.6%.

Thus, the selling strategy of our agent is able to accurately pre-
dict the market price of the finished products, and is able to under-
cut the competing agents by a small margin. In so doing, our agent
wins a greater proportion of the orders than the other agents, but

7TacTex-05 is believed to have won by learning between games,
and improving its buying strategy over the course of the final.

8In order to analyse a representative game, we select randomly
from those games in the final that did not experience particurly low
customer demand where all players ended the game year in debt.
As such, we choose the first game of the final on server tac4 (i.e.
game tac4-4253).
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Figure 5: Daily offer prices for orders won by (a) SouthamptonSCM, (b) TaxTex-05 and (c) Mertacor in game tac4-4253.

does not unnecessarily reduce the price of its offers. Since the ul-
timate profitability of the agent depends on both the price and the
quantity, SouthamptonSCM thus has the highest revenue.

3.2.2 Analysing the Buying Strategy

To investigate the effectiveness of its mixed procurement strategy,
we compare, on a daily basis, the component ordering policies
adopted by the three top performing agents (i.e. SouthamptonSCM,
TacTex-05 and Mertacor). Now, in order to make this comparison,
we can not average over all components as we did in the previous
section. The large range in the base price of the components makes
such averages meaningless. Thus, we select one component for this
comparison, and here we use the IMD 2GHz CPU, since this is not
the most expensive component (the higher performing SGHz CPU
has a higher base price), and yet, it largely determines the cost of
the finished product PC. Whilst space does not allow us to present
all the results, we note that the qualitative results that we present
are representative for all the other components.

Now, in figure 6a, we show the daily average unit cost of the
CPUs that were procured by each of the agents. As can be seen,
SouthamptonSCM paid a similar price to TacTex-05 in the first
half of the game. However, after that, SouthamptonSCM procures
components at a much cheaper price. In figure 6b, we show the
cumulative quantity of CPUs that were procured by each of the
agents. Now, in this game, the demand for the IMD 2GHz CPU
increased in the second half of the game, and thus we observe that
all three agents purchase CPUs at a greater rate in the second half
of the game (i.e. the gradient of the cumulative plot increases). In-
deed, SouthamptonSCM and TacTex-05 end up having obtained an
identical quantity of CPU, with Mertacor buying significantly less.
However, since, on average, SouthamptonSCM is able to procure
these CPUs at a lower price, when we compare the cumulative cost
of this procurement, as shown in figure 6¢, we see that Southamp-
tonSCM has paid less for these CPUs in total than TecTex-05 al-
though they both have obtained identical quantity of CPU.%

We can see the reason for this difference in procurement costs by
considering the lead time of these component orders. Thus, figures
6d, 6e and 6f, show a histogram of the lead time of component
orders that arrive during each simulation day (in this figure larger
orders are shown with darker shading). In figure 6d, we can see the

9The difference in costs in figure 6 is small, but reflects the com-
petition’s competitive nature (note that 6b and 6¢ are cumulative
plots). The difference represents a 6 — 7% saving in material costs,
whilst the difference in overall margin between SouthamptonSCM
and TacTex-05 was only 1%.

result of the mixed procurement strategy that SouthamptonSCM
adopts. Here, it is clear that each case sees a combination of orders
that were placed with a long lead time (up to to 120 days during
the second half of the game) and a short lead time of 5-20 days
(corresponding to the near and far future procurement strategies).
Note that TacTex-05 uses a predominantly short lead time strategy,
whilst Mertacor uses a long lead time strategy.

Thus, during the first half of the game, orders with a short lead
time result in procurement at a low cost. Here we see that TaxTec-
05 procures components at less cost than Mertacor. However, in
the second half of the game, the opposite is true and orders with a
short lead time are more expensive. Here in this half of the game,
SouthamptonSCM procures components at less cost than Mertacor.
However, overall, the mixed procurement strategy of Southampton-
SCM allows it to achieve the best result in both halves of the game;
in the first half it achieves similar low prices to TacTex-05, whilst in
the second half it achieves prices significantly lower than both the
other agents. Thus, we believe that the mixed procurement strat-
egy incorporating both long and short lead times with market price
tracking, enables SouthamptonSCM to adapt to the behaviour of
the competing agents and buy components at a cheap price.

3.3 Controlled Experiments

To evaluate the performance of our agent in a more systematic fash-
ion than is possible within the actual competition, we ran a series of
controlled experiments. In previous work we have already analysed
our pricing model through controlled experiments and showed that
the way SouthamptonSCM sets its offering prices is significantly
better than the benchmark strategies we considered [3]. Thus, here
we focus on evaluating the buying strategy.

As mentioned earlier, we attribute the success of our agent to
the mixed procurement strategy that it uses to purchase compo-
nents at minimum cost. Thus, here we analyse how the buying be-
haviour works when compared to two other common alternatives.
These two strategies are identical to SouthamptonSCM, except for
the method they use to procure components (i.e. the way in which
they schedule factory production and offer finished products to the
customers is unchanged). The three types of agents we use are:

e Mixed agent (MIX-agent). This agent uses our mixed pro-
curement strategy (described in Section 2.2). In this case, the
daily minimum need for CPU in the far future is set to 30 and
the corresponding value for other components, is set to 60.

e Long-term planning agent (LTP-agent). Compared with
the mixed strategy, the LTP-agent still uses one RFQ each
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Figure 6: Comparison of component order prices, quantity and daily lead times for IMD 2GHz CPU orders in game tac4-4253.

day for far future procurement, but the quantity that is re-
quested is greater. Thus this agent attempts to guarantee that
it can obtain the components cheaply (by ordering with long
lead times), but runs the risk that some components may ul-
timately turn out to be unusable (due to a downturn in cus-
tomer demand). Specifically, the minimum need for CPU in
the far future is set to 60 and the corresponding value for
other components, is set to 120.

Short-term planning agent (STP-agent). This agent does
not buy any components for the far future, and thus, only uses
the near future procurement strategy. This strategy is able to
predict and adapt to changes in customer demand. However,
it runs the risk of paying a high price for some components
when the supplier has little spare capacity.

Besides these three kinds of agents, the other competing par-
ticipants within the game are the dummy agents provided by the
organisers. These use a naive build-to-order strategy that procures
components with a short lead time (typically several days). Thus
this agent risks paying high component prices, particularly so since
it also sets the reserve price of RFQs that it submits to 0, and thus,
to maintain its reputation, it may have to accept high offer prices.

Given this background, five groups of experiments were con-
ducted to examine the performance of each kind of agent in various
situations. The number of MIX-agent, LTP-agent and STP-agent
were: in setting A (1, 1, 1), in setting B (1, 2, 1), in setting C (1, 1,
2), in setting D (1, 1, 3), and in setting E (1, 3, 1). In each case, the
remaining agents are the dummy agent provided by the organiser.
The average revenue of each kind of agent in each experiment is

then plotted (see figure 7).

Now, in figure 7a, the results for setting A, B and E are pre-
sented.!® Here from A to B to E, we increase the number of LTP-
agents and decrease the number of dummy agents. In setting A,
MIX- and LTP-agents perform significantly better than the STP-
agent,!! but we cannot differentiate statistically which is better be-
tween MIX- and LTP-agents. In setting B, we cannot differentiate
statistically which agent is better among these three type of agents.
In setting E, the STP-agent is significantly better than the LTP-
agent and MIX-agent is slightly better than the LTP-agent. But we
cannot differentiate statistically which agent is better between STP-
and MIX-agents. From these three experiments, we can conclude
that with an increasing number of LTP-agents, the performance of
the STP- and MIX-agents are getting better, while that of the LTP-
agent is relatively worse. This is because more agents are request-
ing components for the far future, leaving more spare production
capacities for the suppliers in the near future. Thus the component
price for the near future will drop which means the agents that pur-
chase many more components in the near future will benefit from
this price and thus have a low cost.

Similarly, in figure 7b, the result for settings A, C and D are
presented. Here from A to C to D, we increase the number of STP-
agents and decrease the number of dummy agents. In settings A

10The performance for the dummy agents are not shown in the figure

since they are much worse than these three type of agents and incor-
porating them would make it difficult to see the difference among
the three.

' this case and in the statistics below, significance is computed
by a Student’s t-test (p < 0.15).
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Figure 7: Comparison of performance in various settings.

and C, MIX- and LTP-agents are significantly better than the STP-
agent. But we cannot differentiate statistically which agent is better
between MIX- and LTP-agent. This is because there are only two
agents that purchase components for far away which is not likely to
cause the price increase of the components in the far future. But for
the STP-agent, there are some dummy agents which order compo-
nents for a due date in the next several days, thus more competition
in the near future leads to an the increase in the component price
and higher overall procurement costs. In setting D, we obtain the
same result as in setting C, but with a much smaller p value of
the Student’s t-test. This means the performance of STP-agents are
actually getting worse when there are more agents like itself. How-
ever, in all the cases we investigated, the MIX-agent is the most
stable one as it performs consistently in the presence of various
numbers of STP- and LTP-agents. Overall, it obtains the highest
average performance (17.82) and the lowest variance (11.68).

Moreover, as more agents use the same broad strategy of sens-
ing the market and ordering intelligently for the near and far future,
the performance of all the agents are negatively affected, (i.e., the
performance of all the agents is getting worse from experiment A
through B to E, and from A through C to D). This happens because
as the agents within the game become increasingly homogeneous,
there is greater competition for components at a given time (be-
cause there are several agents ordering components for broadly the
same due date for the far future), and thus the suppliers have less
spare capacity, and component costs increase.

4. CONCLUSIONS

This paper provides a number of insights into building agents for
supply chain management applications. Specifically, it details the
design, implementation and evaluation of SouthamptonSCM; an
agent that successfully participated in the 2005 TAC SCM. This
agent employs fuzzy reasoning to determine how to set prices and
uses a mixed component procurement strategy that balances long
and short term orders. Through analysing an actual competition

game from the 2005 final we found that this strategy enables Southamp-

tonSCM to buy more components at lower prices than the other
most successful agents in the game. In a series of controlled exper-
iment, where we varied the number of short-term and long-term-
planning agents in the game, we found that the mixed procurement
strategy was the most stable in all the cases that we considered.
Now, as well as being successful with the TAC SCM competi-
tion, several aspects of our agent design and strategy are applicable
in a wider context. Firstly, the general structure of the component
agent is to employ a mixed strategy where orders in the far fu-
ture cover the minimum baseline quantities needed in low demand

markets, whilst orders in the near future handle current changing
demand. This mixture of baseline and opportunistic purchasing be-
haviour is a common strategy in this domain and the technology
we develop for achieving this can be readily transferred. Second,
we believe our pricing model technology will also be useful in real
SCM applications where just undercutting competitors’ prices can
significantly improve profitability. Specifically, to apply our model
in other domains, the designers of the rule base would need to adapt
the fuzzy rules to reflect the factors that are most relevant. Now we
believe that customer demand and inventory level are highly likely
to be critical factors for almost all cases and thus these rules can
remain unaltered. By using different rule bases, different factors
can easily be incorporated (as we did here, in order to handle the
additional need to reduce inventory towards the end of the game).

Our future work in this area focuses on the component agent. We
would like to improve it so that it can adapt the quantity for far fu-
ture and near future procurement automatically between the rounds
of the games according to the procurement behaviours employed by
the opponents. This can be achieved based on our controlled exper-
iment results, where if there are more LTP-agents in the game, the
agent will adapt its behaviour to the direction of STP-agent. Sim-
ilarly, if there are more STP-agents, the best response is to change
the buying behaviour to the direction of the LTP-agent. This knowl-
edge of opponnets’ behaviour can be obtained from the game his-
tory and thus this adaptation can be used in repeated games within
the same participants.
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