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Abstract

Cutting planes are a well-known, widely used, and very
effective technique for Integer Linear Programming (ILP).
In contrast, the utilization of cutting planes in Pseudo-
Boolean Optimization (PBO) is recent and results still pre-
liminary. This paper addresses the utilization of cutting
planes, namely Gomory mixed-integer cuts, in Satisfiability-
based algorithms for PBO, and shows how these cuts can
be used for computing lower bounds and for learning new
constraints. A side result of learning new constraints is that
the utilization of cutting planes enables non-chronological
backtracking. Besides cutting planes, the paper also pro-
poses the utilization of search restarts in PBO. We show
that search restarts can be effective in practice, allowing
the computation of more aggressive lower bounds each time
the search restarts. Experimental results show that the inte-
gration of cutting planes and search restarts in a SAT-based
algorithm for PBO Yyields a very efficient and robust new
solution for PBO.

1. Introduction

Recent algorithms for Pseudo-Boolean (PB) Solving
(PBS) and Optimization (PBO) have been the subject of sig-
nificant improvements [2, 6, 9]. The most effective Boolean
Satisfiability (SAT) techniques, including clause learning,
lazy data structures and conflict-driven branching heuris-
tics, have been extended to PBO. From this work resulted
a generation of PB solvers significantly more effective than
previous ones [4]. In addition to the significant amount of
work on extending SAT techniques to PBS, there has also
been work specific to PBO, which entails techniques spe-
cific for optimizing the cost function associated with PBO
formulations [15, 17, 18].

This paper proposes to apply the identification of cut-
ting planes to SAT-based algorithms for PBO. The objec-
tive is to use cutting planes for computing more accurate

lower bounds, and consequently obtaining additional prun-
ing ability. Moreover, the paper shows how to exploit
the computation of cutting planes for creating new con-
straints, which enable non-chronological backtracking from
lower bounding information. In contrast with the work
of [15], which uses cutting planes solely for computing
lower bounds, we propose the use of cutting planes for con-
straint learning, and for backtracking non-chronologically
from conflicts involving those constraints. Besides the uti-
lization of cutting planes in SAT-based PBO algorithms, this
paper also proposes the utilization of search restarts [10].
Since cutting planes are used for generating new con-
straints, it is reasonable to assume that search restarts may
yield tighter lower bounds each time the search restarts. In
practice, we observed that this can indeed be the case.

The paper is organized as follows. The following two
sections address, respectively, definitions and a survey of
PBO algorithms. Afterwards, Section 4 presents Gomory
cutting planes and outlines its integration in SAT-based
PBO algorithms. Section 5 addresses the utilization of
search restarts and experimental results on representative
problem instances are discussed in Section 6. Finally, the
paper concludes in Section 7.

2. Preliminaries

In a propositional formula, a literal [; denotes either a
variable x; or its complement Z;. A literal is said to be a
positive literal if it denotes a variable x;. If a literal denotes
Z; is said to be a negative literal. If a literal [; = x; and
x; is assigned value 1 or [; = Z; and x; is assigned value
0, then the literal is said to be true. Otherwise, the literal
is said to be false. An instance P of the Pseudo-Boolean
Optimization (PBO) problem can be defined as follows:
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where c; is a non-negative integer cost associated with vari-
able 7,7 € N and a;; denote the coefficients of the literals
l; in the set of m linear constraints. Every pseudo-boolean
formulation can be rewritten such that all coefficients a;;
and right-hand side b; be non-negative.

In a given constraint, if all a;; coefficients have the same
value k, then it is called a cardinality constraint, since it
only requires that [b;/k] literals be true. A pseudo-boolean
constraint where any literal set to true is enough to satisfy
the constraint, can be interpreted as a propositional clause.
This occurs when the value of all a;; coefficients are greater
than or equal to b;. If every constraint can be interpreted as
a propositional clause then P is an instance of the binate
covering problem (BCP). When all literals of the proposi-
tional clauses are positive then P is an instance of the unate
covering problem (UCP). Covering formulations have been
the subject of thorough research work [8, 16, 17].

Observe that a linear pseudo-boolean optimization prob-
lem can also be viewed as a special case of linear integer
programming problem. The linear integer programming
formulation for the constraints can be obtained if we replace
literals Z; by 1 — ;.

Throughout the paper we refer extensively to backtrack
search algorithms. In addition, the PB inference techniques
of [6, 9] are assumed.

3. Pseudo-Boolean Optimization Algorithms

Given that PBO is a restriction of generic ILP, all algo-
rithms proposed in the past for ILP can also be used for
PBO. Among these, complete approaches include branch-
and-bound with linear programming relaxations [22], cut-
ting planes [11] and branch-and-cut [20]. Besides algo-
rithms for generic ILP, algorithms specific to PBO have also
been proposed. These include SAT-based algorithms [4],
branch-and-bound algorithms [8] and SAT-based algo-
rithms with lower bounding [17, 18].

This section addresses algorithms for PBO that are rel-
evant to the work described in the paper. We briefly
overview branch-and-bound algorithms for the Binate Cov-
ering Problem (BCP), representing a well-known restriction
of PBO [8], and address SAT-based algorithms for PBO.
Moreover, we describe the utilization of linear program-
ming relaxations, an extremely effective technique in PBO
algorithms that utilize lower bounding.

3.1. SAT-Based Algorithms

The first SAT-based approach for PBO was proposed by
P. Barth [4]. This algorithm is based on the DLL procedure
augmented with conditions on the value of the cost func-
tion. The algorithm performs a linear search on the pos-
sible values of the cost function, starting from the highest

value, and at each step requiring the next computed solu-
tion to have a cost lower than the previous one. If the re-
sulting instance is not satisfiable, then the solution is given
by the last recorded solution. The generalization of recent
advances in SAT to PB constraints resulted in new effective
algorithms [2, 6, 9] for several classes of PB instances. The
most relevant techniques include non-chronological back-
tracking in the search tree, conflict-based constraint learn-
ing mechanisms and lazy data structures. Observe that most
SAT-based approaches focus primarily on finding solutions
to the PB constraints. As a result, for highly constrained
problem instances, these techniques can be very effective.
However, these algorithms are less effective at handling the
information provided by the cost function [18].

3.2. Branch-and-Bound Algorithms

Unlike SAT-based algorithms, branch-and-bound algo-
rithms [8, 16] have proved to be very effective for instances
that are not highly constrained. In general, these algorithms
are able to prune the search tree earlier by using estimates
on the value of the cost function. In branch-and-bound al-
gorithms upper bounds on the value of the cost function
are identified for each solution to the constraints, and lower
bounds on the value of the cost function are estimated con-
sidering the current variable assignments. For a given in-
stance P of pseudo-boolean optimization, let P.upper de-
note the upper bound on the value of the cost function. The
search is pruned whenever the lower bound estimation is
larger than or equal to P.upper. In this case it is guaranteed
that a better solution cannot be found with the current vari-
able assignments and therefore the search can be pruned.
The algorithms described in [8, 16, 17] for the binate cov-
ering problem follow this approach.

For several classes of instances, the tightness of the
lower bounding procedure is crucial for the algorithm’s ef-
ficiency, because with higher estimates of the lower bound,
the search can be pruned earlier. Several procedures can be
used for lower bound estimation, namely the approximation
of a maximum independent set of constraints [8] or linear-
programming relaxations [16], among others.

In the remainder of the paper, we refer to lower bound
conflicts to denote the situations when the search process
backtracks because the lower bound estimate is greater than
or equal to a previously computed upper bound on the value
of the cost function.

3.3. Linear Programming Relaxations

Although the approximation of a maximum indepen-
dent set of constraints (MIS) is the most widely used lower
bound procedure for the binate covering problem [8], linear
programming relaxation (LPR) has also been used with suc-



cess [16, 18]. It is also often the case that the LPR bound is
tighter than the one obtained with the MIS approach.

The general formulation of the LPR for a pseudo-
boolean problem instance is obtained from (1) as follows:

n
minimize  zpr = Y ¢ - T
Jj=1

subject to Z Qi T; > b; @)
Jj=1
0< T < l,aij,bi cZ

The solution of (1) is referred to as z;,,, whereas the
solution of (2) is referred to as z;,. It is well-known that
the solution z,,,. of (2) is a lower bound on the solution z.,,
of (1) [22]. Basically, any solution of (1) is also a feasible
solution of (2), but the converse is not true. Moreover, for
a given solution of (2) where x € {0,1}", we necessarily
have 27, , = z],,.. Hence, the result follows.

4. Cutting Planes

Linear Programming Relaxations are extensively used in
Integer Linear Programming (ILP) algorithms for estimat-
ing lower bounds on the value of the cost function and also
for the identification of cutting planes.

The work on cutting planes can be traced to Go-
mory [11]. Gomory introduced a cutting plane technique
that derives new linear inequalities in order to exclude some
non-integer solutions from (2). However, the new linear in-
equalities are valid for the original integer linear program
and so can be safely added to the original problem. More-
over, solving (2) with the added inequalities may yield a
tighter lower bound estimate.

Since Gomory’s original work, a large number of cutting
plane techniques have been proposed [5, 7, 22]. This sec-
tion addresses Gomory mixed-integer cuts and its integra-
tion in a SAT-based PBO solver. Moreover, we also estab-
lish conditions in order to backtrack non-chronologically in
the search tree when a conflict arises involving learned cut-
ting planes.

4.1. Gomory Mixed-Integer Cuts

Section 3.3 describes the utilization of linear program-
ming relaxation (LPR) for estimating lower bounds in
Pseudo-Boolean Optimization (PBO). In simplex-based so-
lutions for solving the LPR from (2), the simplex method
adds a set S of slack variables (one for each constraint) such
that

n
minimize  zpr = Y ¢ - X
j=1
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This formulation is called the slack formulation and it is
used to create the original simplex tableau [22].

If the solution z* of the LPR is integral, then x* provides
the optimal solution to the original problem. Otherwise,
choose a basic ! variable x; such that its value on the LPR
solution is not integral. Since x; is a basic variable, after the
pivot operations performed by the simplex algorithm on (3),
there is a row in the simplex tableau of the form,

T; + Z ;T + Z Bisi = x;‘ @
ieP icQ

where P and () are the sets of indexes of non-basic vari-
ables (problem variables and slack variables, respectively).
In [11], Gomory proves that the inequality,

> flaw)zi+ X f(Bi)si = f(2])
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where f(y) =y — [yl y € R
is violated by the solution of the LPR, but satisfied by all
non-negative integer solutions to (4). Hence, it is also sat-
isfied by all solutions to the original problem as formulated
in (1) and can be added to the LPR. Solving the LPR with
the new restriction will yield a tighter lower bound estimate
on the value of the PBO instance.

Several methods for strengthening the original Gomory
cuts have been proposed [3, 12, 14]. In [12], Gomory proves
that the cut

> glai)zi+ 3 g(Bi)si > 1
i€eP 1€Q
i <) ©
1— *
%&?) 2 ) > fla)
is stronger than (5) and satisfied by all solutions of (3).
Notice that from (3) each slack variable depends only

from the original problem variables and can be replaced
in (6) by,

&)

where g(y) =

S; = Zaijxj — bl (7)
j=1

Afterwards, if we apply the rounding operation on the non
integer coefficients we obtain a new pseudo-boolean con-
straint valid for the original PBO instance (1), since the
rounding operation will only weaken the constraint.

One should note that in a modern SAT-based algorithm,
a conflict analysis procedure is carried out whenever a con-
flict arises [19, 21]. Therefore, if the generated cutting plane
is involved in the conflict analysis process, it must be able
to determine its logical dependencies in order to backtrack
to a valid node of the search tree. In the next section we
propose conditions for associating dependencies with com-
puted cutting planes, thus enabling constraint learning and
non-chronological backtracking from constraints inferred
with cutting plane techniques.

I'See for example [22] for a definition of basic and non-basic variables.



4.2. Learning from Gomory Mixed-Integer Cuts

The most straightforward solution, for safely determin-
ing a set of dependencies for the Gomory mixed-integer
cuts generated during the search process, is to declare that
these cuts depend on all decision assignments made from
the root node to the current node. This solution associates
with each cutting plane all decisions in the search tree, thus
forcing chronological backtracking and ensuring complete-
ness. The main idea is that if one of the decision assign-
ments were to be different, then the generated cut could not
be applied. In this case, we can determine a set of literals
weyt that defines the set of dependencies for the generated
cut. When one literal in w,; is set to 1, the cut will no
longer be active (i.e. the associated constraint will be sat-
isfied). Therefore, the generated cut would depend on all
decision assignments and, for all decision variables x; as-
signed from the root node to the current node, we would
have,

Tj € Weut lfﬁj =1
Tj € Weytif v; =0

®)

In order for the generated cut to be safely added to the set
of pseudo-boolean constraints, we must add all literals [; €
weut to the cut. The coefficient of each added literal [; must
be large enough to satisfy the constraint whenever I; = 1.

With this approach, we can safely add any new cuts
to our set of pseudo-boolean constraints, guaranteeing the
completeness of the algorithm. However, since the cuts de-
pend on all decision assignments made in the search tree
from the root node to the current node N where the cut was
generated, the constraint will not be used other than at the
subtree with root at the node N. Moreover, if a conflict
occurs involving the generated cuts at node [V, the search
cannot backtrack to a node higher than N in the search tree.

The second technique for associating dependencies with
cuts follows the ideas proposed in [18] for LPR. Since each
cut is derived from the outcome of solving the LPR formu-
lation, then we can associate with each cut the same de-
pendencies we associate with lower bound conflicts. Given
the solution to the LPR formulation, the dependencies are
identified as all O-valued literals in all clauses for which the
value of the slack variable is O [18]. Albeit this technique is
more accurate than the first one, it is possible to achieve in-
creased accuracy, by analyzing the process associated with
the identification of Gomory mixed-integer cuts.

For describing the third technique, one should note that
the tableau constraint (4), from which the Gomory mixed-
integer cut is inferred, depends on the pivot operations per-
formed while solving the LPR. As a result, the tableau con-
straint (4) contains the slack variables assigned value O from
the constraints from which it depends.

Let S be the set of constraints with slack variables as-
signed value O in the tableau constraint (4). If the literals

assigned value O in these constraints were to have a differ-
ent value, the tableau constraint might not be inferred in the
LPR. Therefore, we can consider the assignments to those
literals as the responsible for inferring the cut and we can
define wgy; as:

Weut ={l:1=0ANl€Ew; Nw; € S} 9)

Notice that the generated cut might not depend on all
decision assignments. Hence, if a conflict occurs involving
generated cuts at node N with its dependences determined
as in (9), it is possible to backtrack to a node higher than N
in the search tree, i.e. a non-chronological backtrack step.
Moreover, the generated cuts can also be used in different
parts of the search tree, in addition to the subtree with root
at the node N.

5. Search Restarts

Search restarts have been proposed by Gomes [10] and
have been successfully applied to SAT [21]. However, de-
spite its success in SAT, search restarts have seldom been
used in PBO. Our motivation to use search restarts is that
our algorithm not only learns new propositional clauses
when conflicts arise, but also learns new constraints by us-
ing cutting plane techniques. Hence, each time the search
restarts, the lower bound at the root node can be higher than
in the previous restart. Moreover, since the decision assign-
ment procedure is based on the information provided by the
LPR solution, by restarting the search, it is also possible
that the new decision assignments might drive the search to-
wards new areas of the search space where the new learned
constraints are more effective at pruning the search.

There are several methods to guarantee completeness of
backtrack search algorithms with search restarts. One of the
approaches is to keep a set of learned constraints (possibly
all learned constraints) in order to avoid exploring areas of
the search space already explored. However, in our algo-
rithm, we simply increase the cutoff point after each search
restart [21]. For each run of the algorithm there is a conflict
counter that counts the number of conflicts in that run. In
the first run, the algorithm restarts when the counter equals
a given number k that defines the initial cutoff. Each time
a new restart occurs, the cutoff limit is increased by k. If
during a given run of the algorithm, a new solution is found
that improves the upper bound value, we reset the conflict
counter of that run since the algorithm is being able to im-
prove on its previous solution.

6. Experimental Results

In order to empirically evaluate the techniques described
in the paper, we incorporated these techniques in bsolo and



ran it on PBO instances from logic synthesis [24] and satis-
fiable instances of the DIMACS benchmark set [13], using
the model described in [23].

The bsolo solver also incorporates SAT-based tech-
niques, namely unit propagation, non-chronological back-
tracking in the search tree and conflict-based learning mech-
anisms [17, 18]. The results presented in the paper were ob-
tained by configuring bsolo to use the constraint strength-
ening technique described in [9]. Besides bsolo, we also
ran PBS [2], Galena [6] and the commercial MILP solver
CPLEX (version 7.5) [1].2

The experimental results are shown in Table 1. After the
column with the instance name, there is the indication of
the optimum value of the cost function. Notice that there
are some instances for which no solver was able to prove
optimality *. For bsolo we present results for different con-
figurations: without using cutting planes, using strength-
ened Gomory mixed-integer cuts during the search and us-
ing both Gomory cuts and restarts with different initial cut-
offs (100, 200 and 500). For all bsolo configurations, the
lower bound estimates were obtained using LPR.

The CPU times presented are from a AMD Athlon pro-
cessor at 1.9 GHz with 1 GB of physical memory. The time
limit for each instance was set to one hour. If the time limit
is reached, we provide an indication of which was the best
upper bound value found when the search was stopped.

Experimental results show that pure SAT-based algo-
rithms (PBS and Galena) are not suitable to deal with these
logic synthesis instances due to their lack of lower bound es-
timation procedures. These algorithms can easily find a so-
lution to the constraints, but are unable to identify the opti-
mum value of the cost function. On the other hand, CPLEX
and bsolo are able to prove optimality for most of these in-
stances. Moreover, by using search restarts, bsolo is able to
prove optimality for instance alu4.b and find a better solu-
tion than CPLEX for e64.b and test4.pi. One should note
that CPLEX is faster than bsolo for some instances since
CPLEX is a commercial tool, with highly optimized code.

SAT-based algorithms perform better than CPLEX for
instances of the minimum-size prime implicant problem,
since finding a solution to the problem constraints is harder.
Nevertheless, bsolo is the most robust algorithm. Not only
is bsolo able to solve all aim instances, essentially exploit-
ing its SAT-based techniques, but is also able to solve the
ssa instances when using Gomory mixed-integer cuts. Re-
sults also show that the use of search restarts allow bsolo to
perform better for the ii§ instances, being able to find better
solutions than CPLEX for several instances.

2The Eclipse tool [15] is not yet available for benchmarking purposes.
3Entries with — denote instances for which a given solver was unable to
provide either an upper bound or the optimum value.

7. Conclusions

This paper describes the integration of Gomory mixed-
integer cuts in SAT-based algorithms for PBO. In addi-
tion, the paper outlines conditions for performing constraint
learning and non-chronological backtracking based on pre-
viously inferred cutting planes. These conditions provide
novel mechanisms for extending the most effective SAT
techniques to PBO, including the ability for backtracking
non-chronologically from lower bound conflicts. In clear
contrast with the work of [15], our approach uses cut-
ting planes for learning new constraints, and consequently
for performing non-chronological backtracking from lower
bound conflicts.

Besides the integration of cutting planes in SAT-based
algorithms, the paper also proposes the utilization of search
restarts, and shows that the constraints learned from iden-
tified cutting planes can be useful for accurating the com-
puted lower bounds. Hence, the constraints inferred from
identified cutting planes motivate the use of search restarts.

The experimental results show that the utilization of cut-
ting planes can be extremely effective. In fact, bsolo using
Gomory cuts and search restarts is able to solve problem in-
stances that no other PBO solver is able to solve (including
the commercial ILP solver CPLEX). Moreover, the results
give further evidence that the use of lower bounding tech-
niques is essential for developing effective PBO algorithms.
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