
Good Learning and Implicit Model Enumeration

A. Morgado and J. Marques-Silva
IST/INESC-ID, Technical University of Lisbon, Portugal

{ajrm,jpms}@sat.inesc-id.pt

Abstract

A large number of practical applications rely on effec-
tive algorithms for propositional model enumeration and
counting. Examples include knowledge compilation, model
checking and hybrid solvers. Besides practical applica-
tions, the problem of counting propositional models is of
key relevancy in computational complexity. In recent years
a number of algorithms have been proposed for proposi-
tional model enumeration. This paper surveys algorithms
for model enumeration, and proposes optimizations to ex-
isting algorithms, namely through the learning and simpli-
fication of goods. Moreover, the paper also addresses open
topics in model counting related with good learning. Ex-
perimental results indicate that the proposed techniques are
effective for model enumeration.

1. Introduction

The enumeration of propositional models has a number
of significant practical applications, including knowledge
compilation, model checking and hybrid solvers (see [13]
for a detailed survey and list of references). In recent years
a number of algorithms have been proposed, for model
counting [3, 2, 1, 16, 4], but also for model enumera-
tion [12, 9, 4, 15, 8]. Interestingly, the algorithms for model
counting and model enumeration have been proposed in dif-
ferent contexts, and so utilize fairly different techniques.
For model counting, existing techniques include connected
components [2], conflict clause learning [2, 16] and com-
ponent caching [1, 16]. In contrast, algorithms for model
enumeration (most often in the context of model checking)
have mostly utilized techniques based on clause learning,
namely conflict clause (or nogood) learning and blocking
clause learning. Blocking clauses can be viewed as an in-
stantiation of good learning, a technique first suggested (but
not implemented or detailed) by Bayardo and Pehoushek
in [2]. It is also interesting to observe that model enumera-
tion algorithms are often allowed to produce repeated mod-
els, whereas model counting algorithms must necessarily

avoid repeated models.
This paper reviews algorithms for model counting and

for model enumeration, addresses limitations of current
model enumeration algorithms, and proposes new algo-
rithms for model enumeration. The new algorithms improve
the identification of blocking clauses. In addition, the paper
shows how to utilize blocking clauses (or goods) in model
counting algorithms.

The paper is organized as follows. The next section in-
troduces basic notation and concepts. Afterwards, Section 3
addresses clause learning, and its utilizations in model enu-
meration and counting algorithms. Section 4 proposes tech-
niques for simplifying satisfying assignments, with direct
application in model enumeration and counting. Section 5
presents experimental results and Section 6 concludes the
paper.

2. Preliminaries

A Conjunctive Normal Form (CNF) formula ϕ is defined
over a finite set of variables X = {x1, x2, . . . , xn}. A CNF
formula ϕ consists of a conjunction of clauses, where each
clause ω is a disjunction of literals, and where each literal l

is either a variable xi or its complement ¬xi. Where appro-
priate a CNF formula ϕ can be viewed as a set of clauses
and each clause ω can be viewed as a set of literals.

An assignment A is a function from X to {0, u, 1},
where u represents an unspecified (or don’t care) value,
with 0 ≤ u ≤ 1. An assignment A is said to be com-
plete if ∀xi∈X A(xi) ∈ {0, 1}; otherwise it is partial.
Where appropriate an assignment A can be viewed as a
set of pairs (xi, vi), A = {(x1, v1), . . . , (xn, vn)}, where
vi = A(xi) ∈ {0, u, 1} denotes the value assigned to
xi ∈ X . In general, A = AU ∪ AS , where AU denotes the
unspecified variable assignments, of the form (xi, u), and
AS denotes the specified variable assignments, of the form
(xi, vi), vi ∈ {0, 1}. Moreover, AS = AD ∪ AI , where
AD denotes the variable assignments declared as decision
assignments by the SAT solver, and AI denotes the variable
assignments implied by unit propagation.

Given an assignment A, the value of a CNF formula ϕ,

ϕ|A is defined as follows. The value of a literal l|A is given
by A(xi) if l = xi and is given by 1−A(xi) if l = ¬xi. The
value of a clause ω, ω|A, is given by maxl∈ω l|A. A clause
ω ∈ ϕ is said to be satisfied if ω|A = 1 and unsatisfied if
ω|A = 0; otherwise it is said to be undecided. The value of a
CNF formula ϕ, ϕ|A, is given by minω∈ϕ ω|A. A formula ϕ

is said to be satisfied if ϕ|A = 1 and unsatisfied if if ϕ|A =
0; otherwise it is said to be undecided. An assignment A

such that ϕ|A = 1 is said to be a satisfying assignment.
An assignment A′ is said to be covered by an assign-

ment A if for every xi ∈ X , with A(xi) ∈ {0, 1}, we have
A′(xi) ∈ {0, 1}∧A(xi) = A′(xi). Hence, A′ is covered by
A provided A′ contains at least the specified assignments of
A. Two assignments A and A′ are said to intersect if and
only if ∀xi∈XA(xi) = A′(xi) ∨ A(xi) = u ∨ A′(xi) = u.
Finally, a model of a CNF formula ϕ is a complete assign-
ment A such that ϕ|A = 1.

2.1. Boolean Satisfiability Solvers

The evolution of Boolean Satisfiability (SAT) solvers
over the last decade [11, 14] has motivated the widespread
use of SAT solvers in practical applications. For real-world
instances the most effective SAT solvers are based on back-
track search [5] and share a number of key techniques in-
cluding unit propagation, clause learning, efficient and lazy
data structures, adaptive branching heuristics, and search
restarts (see [13] for a survey and list of references).

2.2. Model Counting

The most effective model counting algorithms are based
on the Davis-Logemann-Loveland (DLL) procedure [5].
Other algorithms have been proposed (see [10] and [13]
for surveys), but are in general impractical. The first DLL-
based algorithm for model counting was proposed by Birn-
baum and Lozinskii [3]. This algorithm corresponds to an
implementation of the standard DLL algorithm, but the al-
gorithm is modified to count identified models. Bayardo
and Pehoushek [2] improved the algorithm of [3] by exploit-
ing the existence of connected components in CNF formu-
las and by the utilization of a modern SAT solver. More
recently, Bacchus et al [1]. and Sang et al. [16] proposed
the utilization of the techniques used in [2], namely con-
nected components and clause learning, as well as compo-
nent caching.

2.3. Model Enumeration

Besides the work on model counting, a number of au-
thors have addressed model enumeration techniques [12, 9,
15, 8]. Whereas in algorithms for model counting the ac-
curacy of counting is paramount, in algorithms for model

enumeration the objective is to identify a small number of
partial assignments that cover all models of the original for-
mula, even though some models may be covered by more
than one partial assignment. Observe that practical model
enumeration algorithms consist of enumerating partial as-
signments, which implicitly represent sets of models, and
such that all model are covered by the enumerated partial as-
signments. Consequently, most recent work on model enu-
meration has focused on techniques for reducing the size
of computed satisfying partial assignments [12, 9, 15, 8]
(see [13] for a survey). Observe that most model enumera-
tion algorithms assume a Boolean circuit, and often the enu-
merated partial assignments are expressed in terms of pri-
mary inputs and state variables [12, 9, 15, 8]. Moreover, the
process of blocking the enumeration of satisfying partial as-
signments that intersect A′ usually involves creating a new
clause. Finally observe that the most effective techniques
used in model counting, namely connected components [2]
and component caching [16], are not readily applicable to
model enumeration. The utilization of connected compo-
nents allows multiplying the number of solutions in differ-
ent components. For model enumeration, one must actually
enumerate the products of the models for the different com-
ponents. The same holds true for component caching. As a
result, the remainder of the paper addresses techniques that
can be readily used in model enumeration.

3. Clause Learning

As indicated earlier in Section 2, algorithms for model
counting and for model enumeration have used clause learn-
ing extensively. Algorithms for model counting have solely
used clause learning from conflicts, i.e. conflict clause
learning [2, 1, 16], whereas algorithms for model enumer-
ation have used both clause learning from conflicts and
from identified satisfying partial assignments, i.e. blocking
clause learning [12, 9, 8].

3.1 Conflict and Blocking Clauses

Conflict clause learning has been used in model counting
and in model enumeration essentially as it is implemented in
modern SAT solvers [11, 14]. Conflict clauses prevent vis-
iting parts of the search space that exhibit conflicting condi-
tions equivalent to parts already visited, and are particularly
effective for algorithms that must (implicitly) visit the com-
plete search space.

Blocking clauses correspond to clauses that prevent satis-
fying assignments from being repeated [12, 9, 8]. In its sim-
plest form a blocking clause consists of the negation of the
current search path. Hence, if the search path corresponds
to the decision assignments {(xi1 , vi1), . . . (xik

, vik
)}, then

the blocking clause is defined by (xi1 6= vi1 ∨ . . . ∨ xik
6=

vik
), where xir

6= vir
corresponds to xir

if vir
= 1 and to

¬xir
if vir

= 0. Observe that blocking clause learning cor-
responds to good learning (whose utilization was suggested
in [2]).

3.2 Using Blocking Clauses

This section details the conditions for the utilization
of blocking clauses in algorithms for model counting and
model enumeration. Observe that blocking clauses have not
been used in model counting algorithms. In model enumer-
ation algorithms the utilization of blocking clauses has as-
sumed an underlying Boolean circuit [12, 9, 8]. In contrast,
our formulation is CNF-based, and can be integrated both
in model counting and in model enumeration algorithms.

Let ϕT = ϕ ∪ ϕC ∪ ϕB denote a CNF formula con-
sisting of the original formula ϕ, a set of clauses learned
from conflicts ϕC and a set of clauses learned from satisfy-
ing partial assignments ϕB . When a new satisfying partial
assignment is identified, all clauses in ϕT are satisfied. If
our objective is to minimize the size of the computed sat-
isfying partial assignment, then we can just consider as-
signments used for satisfying the clauses in ϕ. However,
if the computed satisfying partial assignment is simplified
by considering only ϕ, then we must develop techniques
for preventing duplicate counting of complete assignments
from different satisfying partial assignments. For example,
if A1 = {x1 = 1, x2 = 0, x3 = u, x4 = u} is one satis-
fying partial assignment and A2 = {x1 = u, x2 = 0, x3 =
1, x4 = u} is another satisfying partial assignment, then
both partial assignments contain the complete assignment
A3 = {x1 = 1, x2 = 0, x3 = 1, x4 = 0}. It is straight-
forward to conclude that the complete elimination of redun-
dancy from a set of satisfying partial assignments requires
exponential time on the number of satisfying partial assign-
ments.

Another, more practical, approach consists of consid-
ering decision assignments used for satisfying clauses in
ϕT − ϕC = ϕ ∪ ϕB . Since we require blocking clauses
to be satisfied, then each newly computed satisfying partial
assignment will not cover models included in previously
computed satisfying partial assignments. For the example
above, if the first satisfying partial assignment is A1, then
the blocking clause learned from A1 is ωB = (¬x1 ∨ x2).
The existence of ωB prevents A2 from being a satisfying
partial assignment for ϕ∪ϕB . An acceptable satisfying par-
tial assignment is A′

2 = {x1 = 0, x2 = 0, x3 = 1, x4 = u},
which does not intersect A1.

Observe that the condition for selecting partial assign-
ments that satisfy ϕ ∪ ϕB applies both to model enumera-
tion, where enumerated partial satisfying assignments will
not cover models covered by previously enumerated sat-
isfying partial assignments, and to model counting, where
the number of assignments associated with each satisfying

partial assignment needs not be corrected given previously
computed satisfying partial assignments. Hence, the cre-
ation of blocking clauses from partial assignments that sat-
isfy ϕ ∪ ϕB provides a simple mechanism for implement-
ing good learning [2]. Indeed, with learning of blocking
clauses, no new satisfying partial assignment will intersect
a previous satisfying partial assignment. Thus, each partial
assignment represents a disjoint set of models, and mod-
els cannot be multiply counted. Moreover, observe that
counting models given a set of disjoint partial assignments
is straightforward: a partial assignment with m unassigned
variables represents 2m models. Finally, note that block-
ing clauses derived from partial satisfying assignments for
ϕ ∪ ϕB can be integrated with existing techniques used
in model counting algorithms, including connected compo-
nents [2] and component caching [1, 16].

4. Simplifying Partial Assignments

Given the results of the previous section, we know that
when a satisfying partial assignment is identified, we only
need to consider the decision assignments necessary for sat-
isfying ϕ ∪ ϕB . In this section we address techniques for
reducing the number of decision assignments that need be
associated with a computed satisfying partial assignment.
As a result we survey techniques recently proposed for the
simplification of satisfying partial assignments [12, 15], de-
scribe limitations of these techniques, and propose improve-
ments.

4.1. Simple Variable Lifting

Variable lifting denotes a number of techniques used for
the elimination of assignments that can be declared redun-
dant [12, 15]. In this section we detail a simple variable
lifting procedure, essential for modern SAT solvers. Ob-
serve that most modern SAT solvers need to assign all vari-
ables before declaring the partial assignment to be satisfy-
ing. This condition results from the organization of mod-
ern SAT solvers, and the utilization of lazy data structures,
where it is difficult to guarantee that the state of every clause
is always known. Consequently, a simple variable lifting
technique consists of eliminating from the satisfying partial
assignment A all variable assignments that do not satisfy
any clause and do not imply any other variable assignment.
As described in [12, 15] other lifting techniques exist, but
require significant computational overhead.

4.2. Set Covering Model

Another approach for simplifying computed satisfying
partial assignments consists of formulating and solving a

set covering model. Observe that in practice there are effi-
cient algorithms for computing approximations for the set
covering problem [6]. Our model follows the one suggested
in [15].

Let A be a satisfying assignment for ϕ. Our objective
is to minimize the number of specified assignments in A,
obtaining a new assignment A′. For each xi ∈ X , such that
A(xi) ∈ {0, 1}, define a selector variable si, that denotes
whether the assignment on xi is selected, i.e. si = 1 if and
only if the assignment A(xi) is included in A′.

Observe that since implied variable assignments are
required for satisfying at least one clause (i.e. its an-
tecedent [11]), the optimization model can be restricted to
the set of decision variable assignments AD [15]. Let ∆(A)
denote the clauses of ϕ that are exclusively satisfied by
the decision variable assignments of A. For each clause
ω ∈ ∆(A), let Σ(A, ω) denote the selector variables as-
sociated with the variable assignments that satisfy ω. In
addition, let Υ(A) denote the set of selector variables cor-
responding to the decision variable assignments that are in-
cluded in the set of 0-valued literals associated with the an-
tecedents of all implied variable assignments. As a result,
the conditions that must be satisfied by the selector variables
are the following:

Ψ1 ∧
∧

s∈Υ(A)

(s) ,
∧

ω∈∆(A)

∨

s∈Σ(A,ω)

s

∧

s∈Υ(A)

(s) (1)

Finally, the objective is to minimize the number of deci-
sion variable assignments specified in A′. Let Θ(A) denote
the set of selector variables associated with decision vari-
able assignments. Then the cost function is to minimize
∑

s∈Θ(A) s. A simple observation, often applied in prac-
tice, is that for every clause ω such that |Σ(A, ω)| = 1, then
the assignment that satisfies ω must be included in A′.

4.3. Binate Covering Model

Unfortunately, the set covering model described in the
previous section does not yield the smallest partial assign-
ment A′, which satisfies the CNF formula ϕ, and which cov-
ers the partial assignment A computed by the SAT solver.
Consider the CNF formula ϕ = (x1 ∨ x4) ∧ (x2 ∨ x5) ∧
(x3 ∨ x6) ∧ (x2 ∨ x3 ∨ x4), and the partial assignment
A1 = {x1 = 0, x2 = 0, x3 = 0}. Clearly, the set cov-
ering model proposed in Section 4.2 will not further min-
imize A1, corresponding to three specified assignments.
However, it is clear from the example that the assignment
A2 = {x2 = 0, x3 = 0} also satisfies ϕ, and implies the
same variable assignments.

Given the previous example, we first formalize the no-
tion of partial assignment minimization and then propose

a binate covering formulation1 for identifying a minimum
size partial assignment given a satisfying partial assignment
computed by a SAT solver.

Let A be a satisfying assignment for a CNF formula ϕ,
with A = AD ∪ AI , where AD denotes the decision vari-
able assignments, and AI denotes the implied variable as-
signments. A minimum satisfying assignment given the as-
signment A, µ(A), is an assignment that covers A and AI ,
such that ϕ|µ(A) = 1, and such that any other assignment
A′ that covers µ(A) is such that ϕ|A′ 6= 1.

Given an assignment A, a minimum satisfying assign-
ment is the least specified assignment, in terms of decision
variable assignments, that covers A, but satisfies ϕ. Ob-
serve that our definition requires the set of implied variable
assignments AI to be kept constant.

Let the satisfying partial assignment be A, and let the
specified variable assignments be AS , with AS ⊆ A. We
concentrate on implied variable assignments with an an-
tecedent clause having at least one 0-value literal corre-
sponding to a decision variable, and represent these implied
variable assignments by AD

I . For each implied variable
assignment (xi, vi) ∈ AD

I , let Γ(A, xi) denote the set of
clauses in ϕ which explain the implied value xi = vi, and
such that each clause has at least one 0-value literal corre-
sponding to a decision variable (i.e. these are clauses for
which all literals besides the literal in xi are assigned value
0, and such that at least one literal corresponds to a decision
variable). For each clause ω ∈ Γ(A, xi) let γ(A, ω) denote
the set of decision literals of clause ω assigned value 0.

As before, with each variable assignment (xk, vk) ∈ AS

we associate a selector variable sk that denotes whether the
assignment is to be included in the simplified assignment
A′. Given γ(A, ω), with ω ∈ Γ(A, xi), let Φ(A, ω) denote
the selector variables associated with the literals in γ(A, ω).

Since at least one of the clauses in Γ(A, xi) must imply
the value assignment on xi, we can specify a set of con-
straints the selector variables must satisfy:

Ψ2 ,
∧

(xi,vi)∈AD
I

∨

ω∈Γ(A,xi)

∧

s∈Φ(A,ω)

(s)

 (2)

Besides these constraints, we need to include the original set
covering conditions, associated with satisfying clauses that
are satisfied with decision variable assignments, to obtain
the complete set of constraints the selector variables must
satisfy:

Ψ3 , Ψ1 ∧ Ψ2 (3)

As for the set covering model of the previous section, let
Θ(A) denote the set of selector variables associated with
decision variable assignments. Then the cost function is to

1The binate covering problem is a variant of pseudo-Boolean optimiza-
tion where each constraint is a propositional clause [7].

minimize
∑

s∈Θ(A) s. Observe that the constraints (3) are
not in CNF format. However, it is straightforward to map
(3) into CNF format with the inclusion of additional vari-
ables. As a result the binate covering problem formulation
results.

The main difficulty with the binate covering model is that
it cannot be approximated, unless P = NP [6]. In the next
section we propose a set covering model, that builds on the
binate covering model described above, and for which ap-
proximation algorithms can still be used. Finally, and to our
best knowledge, this section provides the first example illus-
trating the inadequacy of the set covering model for finding
the minimum satisfying assignment of a CNF formula that
covers an initial satisfying partial assignment A.

4.4. A Variant of the Set Covering Model

One of the drawbacks of the model described in Sec-
tion 4.2 results from the structure of practical instances of
SAT. Practical instances of SAT contain a large number of
binary clauses, that often account for more than 80% of
the total number of clauses. Moreover, binary and ternary
clauses can often represent more than 90% of the total num-
ber of clauses. The large number of binary clauses mo-
tivates that most decision assignments, when they imply
variable assignments, will do so most often due to binary
clauses. Hence, these decision assignments will be declared
essential and reduce the ability of the set covering model of
Section 4.2 for simplifying the satisfying partial assignment
computed by the SAT solver.

Next we propose a modified set covering model, which
addresses the simplification of satisfying partial assign-
ments when a large number of binary clauses exists. The
model resembles the binate covering model but, for the re-
arrangement of antecedents, we solely consider variables
that have a binary clause ω as the antecedent, for which
the 0-value literal corresponds to a decision variable, and so
|Φ(A, ω)| = 1. As a result, the number of selector variables
per clause becomes one, because |Φ(A, ω)| = 1, and (3)
reduces to the following set covering model:

Ψ1 ∧
∧

s∈ΥNB(A)

(s)
∧

(xi,vi)∈A
D,B

I

∨

ω∈Γ(A,xi),s∈Φ(A,ω)

s

(4)
where ΥNB(A) corresponds to Υ(A), used in the previous
sections, but denotes the selector variables associated with
decision variable assignments that imply variable assign-
ments through a ternary or larger clause (i.e. the non-binary
clauses, since implied assignments due to unit clauses do
not depend on decision assignments). Moreover, A

D,B
I de-

notes the implied variable assignments that have a binary
clause as the antecedent and such that the 0-value literal
corresponds to a decision assignment. Observe that we now

have a set covering formulation, which can be approximated
in polynomial time.

As an example, let us consider the CNF formula ϕ =
(x1 ∨ x4) ∧ (x2 ∨ x5) ∧ (x3 ∨ x4) ∧ (x3 ∨ x6), and the
partial assignment A1 = {x1 = 0, x2 = 0, x3 = 0}. In
this case, the basic set covering model of Section 4.2 will
be unable to reduce A1. However, the variant of the set
covering model (4) yields the constraints (s1 ∨ s3)∧ (s2)∧
(s3), which can be satisfied with s2 = s3 = 1, yielding the
new satisfying partial assignment A2 = {x2 = 0, x3 = 0}.

5. Results

This section presents experimental results for three
model simplification techniques: variable lifting, the set
covering model and the variant of the set covering model.
The classes of instances considered, from SATLIB2 are
relatively easy for modern SAT solvers, but challenging
enough for model enumeration purposes. Moreover, the
model enumeration algorithm has been implemented on top
of SAT solver CQuest, a zChaff-like SAT solver [14]. For
the results presented in this section, all experiments have
been run under Linux RH 9, on a Pentium 1.7 GHz ma-
chine, with 1 GByte of RAM. The CPU time limit was set
to 600 seconds.

The results are shown in Table 1, for each of the sim-
plification techniques considered, respectively variable lift-
ing (A), the set covering model (B), and the variant of the
set covering model (C). In each table, the following fig-
ures are shown. Alg denotes which algorithm is assumed.
Class denotes the class of instances considered. #I de-
notes the number of instances in each class. #C denotes the
total number of partial assignments that need to be enumer-
ated for covering all models, for all instances in the class
for which the algorithm terminates in less than the allowed
CPU time. #M denotes the total number of models for each
class of instances, for which the algorithms terminates in
less than the allowed CPU time. R denotes (#C/#M in per-
centage, representing the average number of partial assign-
ments needed for each identified model. T denotes the CPU
time for running all instances, for which the algorithms ter-
minates in less than the allowed CPU time. #A denotes the
number of instances aborted, i.e. for which the algorithm
was unable to terminate in the allowed CPU time.

From the results several conclusions can be drawn. First,
the utilization of simplification techniques yields in general
much smaller numbers of partial assignments when com-
pared with the total number of models. Moreover, the pro-
posed simplification techniques can be very effective, albeit
in general requiring additional overhead, which causes a
few instances to take more than the allowed CPU time limit.
The results also suggest that the variant of the set covering

2Available from http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html.

Table 1. Experimental results
Alg Class #I #C #M R(%) T(sec) #A
(A) BMS 28 9.2e4 2.4e8 0.04 0.1e3 2

CBS 84 2.6e5 1.1e7 2.34 0.5e3 1
RTI 496 1.1e6 5.4e7 2.06 2.6e3 1
UF 42 2.1e5 2.9e8 0.07 1.5e3 5

(B) BMS 28 8.1e4 2.4e8 0.03 0.9e3 2
CBS 84 1.5e5 7.7e6 1.93 1.8e3 4
RTI 496 6.1e5 3.3e7 1.87 6.6e3 10
UF 42 3.4e4 5.8e6 0.60 0.9e3 10

(C) BMS 28 8.1e4 2.4e8 0.03 1.0e3 2
CBS 84 1.3e5 7.0e6 1.85 1.2e3 5
RTI 496 6.2e5 3.3e7 1.89 6.9e3 10
UF 42 3.6e4 5.8e6 0.62 0.9e3 10

(D) BMS 28 – 2.3e7 – 1.0e3 7
CBS 84 – 9.4e6 – 3.6e3 1
RTI 496 – 4.1e7 – 7.5e3 2
UF 42 – 4.1e6 – 1.4e3 11

model is not effective for the classes of instances consid-
ered. This is in part to be expected, since the classes consid-
ered correspond to randomly generated problem instances,
with little structure, and so particularly difficult for the vari-
ant of the set covering model. Besides comparing the three
simplification techniques, we also ran relsat [2], which enu-
merate models explicitly. The results are shown in Table 1
for algorithm (D). As can be observed (and when compared
to our simplest model), relsat aborts more instances, and re-
quires more than twice the CPU time for enumerating all
models. For some of the instances for which relsat aborts
the reason for aborting results from the very large number
of models to be explicitly enumerated.

6. Conclusions and Future Work

This paper surveys algorithms for implicit model enu-
meration based on learning goods (or blocking clauses), and
proposes new improvements to these algorithms based on
techniques for simplifying learned goods. The objective
for simplifying learned goods is to effectively reduce the
number of partial assignments that must be enumerated for
covering all models of a propositional formula. Moreover,
the paper illustrates how techniques for model enumeration
can be applied in model counting. This entails the utiliza-
tion of good learning in model counting.

In addition, and even though we have focused on model
enumeration, most often a requirement in several appli-
cations, including model checking and hybrid solvers, all
the techniques described in this paper can be applied in
model counting algorithms, and integrated with the tech-
niques proposed in recent years [2, 1, 16].

Despite the promising preliminary results, the problem

instances studied are still fairly small. This is motivated by
the difficulty of enumerating all satisfying partial assign-
ments for real-world problem instances with current SAT
solver technology. In the near future, the development of
additional simplification techniques, and improvements to
SAT solver technology, is expected to allow enumerating
models for more complex problem instances.

References

[1] F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and
complexity results for #SAT and bayesian inference. In
Symp. Found. Comp. Science, 2003.

[2] R. Bayardo Jr. and J. Pehoushek. Counting models using
connected components. In Proc. National Conference on
Artificial Intelligence, July 2000.

[3] E. Birnbaum and E. Lozinskii. The good old Davis-Putnam
procedure helps counting models. Journal of Artificial Intel-
ligence Research, 10:457–477, 1999.

[4] A. Darwiche. New advances in compiling CNF to decom-
posable negational normal form. In Proc. National Confer-
ence on Artificial Intelligence, 2004.

[5] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM,
5:394–397, July 1962.

[6] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man, 1979.

[7] G. Hachtel and F. Somenzi. Logic Synthesis and Verification
Algorithms. Kluwer Academic Publishers, 1996.

[8] H. Jin, H. Han, and F. Somenzi. Efficient conflict analysis
for finding all satisfying assignments of a Boolean circuit. In
Proc. Int. Conf. Tools and Algorithms for the Construction
and Analysis of Systems, April 2005.

[9] B. Li, M. Hsiao, and S. Sheng. A novel SAT all-solutions
solver for efficient preimage computation. In Proc. Design
and Test in Europe Conf., March 2004.

[10] E. Lozinskii. Computing propositional models. Information
Processing Letters, 41:327–332, 1992.

[11] J. P. Marques-Silva and K. A. Sakallah. GRASP: A new
search algorithm for satisfiability. In Int. Conf. Computer-
Aided Design, November 1996.

[12] K. L. McMillan. Applying SAT methods in unbounded
symbolic model checking. In International Conference on
Computer-Aided Verification, July 2002.

[13] A. Morgado and J. P. Marques-Silva. Algorithms for propo-
sitional model counting and enumeration. Technical Report
RT-004-05-CDIL, INESC-ID, February 2005.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Engineering an efficient SAT solver. In Design Automa-
tion Conference, June 2001.

[15] K. Ravi and F. Somenzi. Minimal satisfying assignments for
conjunctive normal form formulae. In Proc. Int. Conf. Tools
and Algorithms for the Construction and Analysis of Sys-
tems, April 2004.

[16] T. Sang, F. Bacchus, P. Beame, H. Kautz, and T. Pitassi.
Combining component caching and clause learning for effe-
cive model counting. In Proc. Int. Conf. Theory and Appli-
cations of Satisfiability Testing, May 2004.

