
PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

An Architecture for Provenance Systems

Authors: Paul Groth
Sheng Jiang
Simon Miles
Steve Munroe
Victor Tan
Sofia Tsasakou
Luc Moreau

Reviewers: All project partners
Identifier: D3.1.1 (Final Architecture)
Type: Deliverable
Version: 0.6
Version: February 21, 2006
Status: public

Abstract

This document covers the logical and process architectures of provenance sys-
tems. The logical architecture identifies key roles and their interactions, whereas
the process architecture discusses distribution and security. A fundamental aspect
of our presentation is its technology-independent nature, which makes it reusable:
the principles that are exposed in this document may be applied to different tech-
nologies.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

1

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Executive Summary
Provenance Definition

According to the Oxford English Dictionary, provenance is defined as (i) the fact of
coming from some particular source or quarter; origin, derivation. (ii) the history or
pedigree of a work of art, manuscript, rare book, etc.; concr., a record of the ultimate
derivation and passage of an item through its various owners.

Provenance is already well understood in the study of fine art where it refers to
the trusted, documented history of some art object. Given that documented history,
the object attains an authority that allows scholars to understand and appreciate its
importance and context relative to other works. Art objects that do not have a trusted,
proven history may be treated with some scepticism by those that study and view
them. This same concept of provenance may also be applied to data and information
generated within computer systems. This being so, one of our primary objectives is
to define a representation of provenance that is suitable for computer systems, and the
necessary architecture to make use of such a representation. Hence, in this context, we
define the provenance of a piece of data as the process that led to that piece of data.

Computational Provenance

Generally, in computer systems, applications produce data. Our vision is to trans-
form applications into so called provenance-aware applications, so that when they run,
they produce a description of their execution. Such descriptions, which we refer to as
process documentation, are stored in a provenance store, which is a repository for the
storage and management of process documentation. Additionally, the provenance store
also provides querying facilities to enable services to retrieve the provenance of data
items. In support of this vision we have designed a provenance architecture, including
suitable data models and the necessary underpinning functionality, with concerns for
scalability and security.

The development of the architecture has been strongly influenced by the service-
oriented architectural style, according to which services or actors interact with each
other by exchanging messages. By enabling actors to make execution-related asser-
tions, or p-assertions, we ensure that necessary and sufficient forms of process docu-
mentation are captured to be able to give a complete account of any data item’s prove-
nance. For example, the p-assertion model allows us to document various aspects of
execution, and thus provide descriptions of those parts of an execution that relate to,
or impact upon, a given data item. This allows a user to determine the data item’s rela-
tionships to other data items and processes, such as its dependencies or causal effects
and, at the same time, provides a description of the data flow through an application.

The p-assertions within a provenance store are organised in a conceptual structure,
called the p-structure, based around interaction records, each of which is a collection
of p-assertions that relate to a single interaction (i.e. an individual message exchange).

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

2

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

The p-structure provides a hierarchical view of process documentation that facilitates
the retrieval of p-assertions, independently of the actual technology used in a given
application.

Provenance Functionality

From a functional perspective, the provenance store supports two operations: record-
ing p-assertions and queries over p-assertions.

In order to record p-assertions, the architecture offers a recording interface based
on the p-assertion recording protocol (PReP). PReP is designed to be stateless to allow
for asynchronous and out-of-order recording by actors. Furthermore, the provenance
store’s behaviour is specified to ensure that p-assertions do not become modified or
deleted, preserving documentation in its original form, thus reflecting execution as it
was originally documented.

Once recorded, documentation is then available for third parties to obtain the prove-
nance of data items, which is achieved via a process documentation query interface for
the retrieval of p-assertions and their contents, and a provenance query interface for
the retrieval of a data item’s provenance. Querying the provenance of a given data item
involves: identification of the data item at a specific point during execution, and scop-
ing of the process of interest to filter causal and functional relationships. The output of
queries comes in the form of a collection of p-assertions representing a portion of the
data flow graph, which allows a user to understand the provenance of the data item in
question up to the specified point in execution.

Non-Functional Considerations

In terms of non-functional requirements, a provenance architecture must address three
important considerations: scalability, security and management.

For many applications, extremely large amounts of process documentation can po-
tentially be captured. This presents problems for recording, querying, management
and storage of such information. Consequently, there is a need to deal explicitly with
such scalability issues and, since the applications that record provenance may be dis-
tributed and large scale, the sheer quantity of recorded p-assertions requires a scalable
means of storing them. To achieve this, the architecture enables several recording
patterns that provide flexible ways for recording actors to record p-assertions. For
example, one pattern allows different actors to record p-assertions in different stores,
even if they refer to the same interaction. Because the documentation of a single pro-
cess may end up being recorded in several provenance stores, in order to collect all the
p-assertions about a process, it is necessary to provide directional view links to these
provenance stores, where other parts of the documentation may be found.

For some applications, p-assertions may relate to large data sets, such as an actor’s
state, for example. In such cases, storage capacity problems can arise that are dealt
with by allowing p-assertions to reference data that may be stored externally. The re-

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

3

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

placement of a data item with a reference can be seen as the result of a transformation,
and constitutes just one of the possible ways that messages can be transformed using
several documentation styles, which provide for more flexible ways to make assertions
about data, and enable requirements on scalability and security to be met.

Security represents a central concern in many application domains, and it is stan-
dard software engineering methodology to integrate security features at the earliest
time possible in the development life-cycle. Security concerns, both in relation to the
interactions of the internal components of provenance systems and the actors using
such systems are addressed, to ensure that appropriate access control for provenance
stores is maintained. In addition, it is important that p-assertions can be attributed to
the actor responsible for creating them, which is achieved by the inclusion of assertion
signatures.

Management is not specific to provenance, but should contain functionality that is
common to most data management systems, such as notification to users of changes
to a provenance store (e.g. the addition or removal of p-assertions) and indexing of a
provenance store’s contents.

By developing an industrial strength provenance architecture, the EU Provenance
project has made possible the capture and exploitation of provenance, and thus greatly
facilitates the growth and utility of Grid-based applications by explicitly tackling the
problems of trust, accountability, compliance and validation in such open, distributed
systems.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

4

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Members of the PROVENANCE consortium:

IBM United Kingdom Limited United Kingdom
University of Southampton United Kingdom
University of Wales, Cardiff United Kingdom
Deutsches Zentrum fur Luft- und Raumfahrt s.V. Germany
Universitat Politecnica de Catalunya Spain
Magyar Tudomanyos Akademia Szamitastechnikai es
Automatizalasi Kutato Intezet Hungary

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

5

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Structure of Document . 11
1.3 Status of this Document . 12
1.4 Acknowledgements . 13

2 Provenance Definition 14
2.1 Common Sense Definition . 14
2.2 Context: Service Oriented Architectures 14
2.3 Definition of Provenance . 15
2.4 Representation of Provenance . 16
2.5 Provenance Lifecycle and Three Provenance Views 19
2.6 Beyond Computer Data . 21
2.7 The Nature of Queries . 22
2.8 Conclusion . 24

3 Logical Architecture 25
3.1 Architecture vs System . 25
3.2 Role Definition . 25
3.3 Logical Architecture . 26
3.4 The P-Header . 29
3.5 Conclusion . 31

4 Security Architecture 32
4.1 Background . 32
4.2 Provenance Related Security Issues 35
4.3 Provenance Store Security Architecture 37

4.3.1 Components of Security Architecture 37
4.3.2 Interaction Between Components 41

4.4 Security in Other Architecture Components 44
4.4.1 Between other components and the provenance store 44
4.4.2 Intermediate components . 45
4.4.3 Delegation of identity or access control 45

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

6

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

4.5 Additional security issues . 47
4.6 Conclusion . 49

5 Scalability Architecture 50
5.1 Recording Patterns . 50

5.1.1 SeparateStore Pattern . 51
5.1.2 ContextPassing Pattern . 52
5.1.3 SharedStore Pattern . 54
5.1.4 Pattern Application . 55

5.2 Linking . 56
5.2.1 View Links . 56
5.2.2 Object Links . 57
5.2.3 Linking Summary . 57

5.3 Data Staging . 59
5.4 References . 60

5.4.1 By-Value versus By-Reference recording 60
5.4.2 Record-Once versus Record-Many 61

5.5 P-Assertion Templates . 61
5.6 Large Query Results . 62
5.7 Security . 63
5.8 Conclusion . 65

6 Provenance Modelling 66
6.1 Identifying Interactions . 66
6.2 Identifying P-Assertions and Data 67
6.3 Interaction Contexts and the P-Header 68
6.4 Interaction P-Assertion Modelling 70
6.5 Documentation Style Modelling . 71
6.6 Actor State P-Assertion Modelling 75
6.7 Relationship P-Assertion Modelling 76
6.8 The P-Structure . 78
6.9 Security . 80
6.10 Conclusion . 83

7 Functionality 84
7.1 Recording Interface . 84
7.2 Provenance Query Interface . 87

7.2.1 Query Data Handles . 87
7.2.2 Relationship Target Filters 90
7.2.3 Provenance Query Results 92

7.3 Process Documentation Query Interface 95
7.4 Management Interface . 96

7.4.1 Notification of Provenance Store Use 96

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

7

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

7.4.2 Provenance Store Utility . 97
7.5 Policies . 97

7.5.1 Provenance Store Capability Policies 98
7.6 Security . 100
7.7 Conclusion . 101

8 Actor Behaviour 102
8.1 Introduction . 102
8.2 Architectural Rules . 102
8.3 Tracers . 104

8.3.1 Session Tracer . 104
8.3.2 Other Tracers . 105

8.4 Security . 105
8.5 Documentation Style Driven Message Transformation 107
8.6 Actor Capability Policies . 109

8.6.1 Recording . 109
8.6.2 Querying . 110
8.6.3 Service Requirement Policies 110

8.7 Actor Side Library . 110
8.8 Conclusion . 111

9 Justification 112
9.1 Software Requirements Document 112

9.1.1 Functional Requirements . 112
9.1.2 Performance Requirements 117
9.1.3 Interface Requirements . 118
9.1.4 Operational Requirements 118
9.1.5 Documentation Requirements 119
9.1.6 Security Requirements . 119
9.1.7 Other Requirements . 121

9.2 Tools Requirements . 121
9.3 Scalability Requirements . 124
9.4 Requirements from the OTM/EHCR Application 125
9.5 Requirements from the Aerospace Engineering Application 129
9.6 Implementation Recommendations 131

9.6.1 Provenance Store . 131
9.6.2 Processing and UI Services 132
9.6.3 Actor-Side Libraries . 132
9.6.4 Application Use of Provenance Architecture 133

9.7 Conclusion . 134

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

8

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

10 Related Work 135
10.1 Fine Granularity Provenance Systems 135
10.2 Domain Specific Provenance Systems 136

10.2.1 Current Practises of Document Management Systems 137
10.3 Provenance in Database Systems . 138
10.4 Middleware Provenance Systems . 139
10.5 Conclusions . 140

11 Conclusion 141
11.1 Summary . 141
11.2 Future Work . 142

A Notes 143

B Abbreviations 145

C XML Schema Diagrams 146

Index 148

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

9

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 1

Introduction

1.1 Motivation
The importance of understanding the process by which a result was generated is fun-
damental to many real life applications (science, engineering, medicine, supply man-
agement, etc). Without such information, users cannot reproduce, analyse or validate
processes or experiments. Provenance is therefore important to enable users, scientists
and engineers to trace how a particular result has been arrived at.

We propose a definition of provenance that is suited to the computational model
underpinning service oriented architectures, an architectural style regarded as suitable
for large scale, open systems. Based on such a definition, we conceive a computer-
based representation of provenance that allows us to perform useful reasoning about
the origin of results.

Our overall aim is to present an architecture for provenance systems, its rationale
and a methodology guiding its use. According to Kruchten [Kru95], several views of
an architecture can be considered:

• The logical architecture primarily supports the functional requirements, i.e. what
the system should provide in terms of services to its users: the system is decom-
posed into a set of abstractions, and their high level interactions are identified.

• The process architecture takes into account some non-functional requirements
by addressing issues such as concurrency and distribution, system integrity,
fault-tolerance and how the main abstractions from the logical view fit within
the process architecture.

• The development architecture focuses on the actual software module organisa-
tion, including libraries.

• Finally, the physical architecture takes into account primarily non-functional re-
quirements of the system such as availability, reliability, performance and scala-
bility.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

10

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

This document covers the logical and process architectures of provenance systems.
Specifically, the logical architecture identifies key roles and their interactions, whereas
the process architecture discusses distribution, scalability and security. A fundamen-
tal aspect of our presentation is its technology-independent nature, which makes it
reusable: the principles that are exposed in this document may be applied to different
technologies.

The development and physical architectures are presented in separate documents,
explaining how the architectural design is mapped onto the Web Services stack of
standards, and how each individual architecture component is implemented [Ran05,
HI05].

1.2 Structure of Document
This document is structured as follows.

Chapter 2: Provenance Definition Based on the common sense definition of prove-
nance, we propose a new definition of provenance that is suited to the compu-
tational model underpinning service oriented architectures. Since our aim is to
conceive a computer-based representation of provenance that allows us to per-
form useful reasoning about the origin of results, we examine the nature of such
representation, which is articulated around the documentation of execution.

Chapter 3: Logical Architecture We then examine the architecture of a provenance
system, centred around the notion of a provenance store. We also examine mod-
els of execution documentation.

Chapter 4: Security Architecture Although security is a non-functional requirement,
software engineering methodology strongly recommends that security consider-
ations be integrated into the development life-cycle as early as possible. Many
of the application domains in which a provenance architecture could potentially
be deployed have stringent requirements on access to data manipulated within
the system. A security architecture that helps address these issues is discussed
in this chapter.

Chapter 5: Scalability Architecture This chapter discusses scalability in the prove-
nance architecture. Architectural scalability addresses how architectural com-
ponents can be organised and used by implementations to cater for increasingly
large loads in terms of such measures as computation, bandwidth and storage.
The chapter first presents a set of recording patterns that identify communica-
tions between key architecture roles. Second, it explains how the data organ-
isation adopted by the provenance store allows for data that is geographically
distributed. It then goes on to explain how the staging of data, references and
templates can be integrated into the provenance architecture to address scalabil-
ity.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

11

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 6: Provenance Modelling This chapter describes the various data models
for the information recorded in the provenance store. From the modelling, a
system designer can derive how this information can be organised, identified
and extended.

Chapter 7: Functionality This chapter provides a more detailed description of the
functionality supported by a provenance system. It relies on an overall model of
information recorded in the provenance store, which is acted upon by recording,
querying and managing capabilities. This presentation is in natural language,
informal, and will be used to derive more detailed, technology-specific presen-
tations.

Chapter 8: Actor Behaviour This chapter describes the expectations on actor be-
haviour so that process documentation can be correctly recorded and provenance
questions usefully answered.

Chapter 9: Justification This chapter describes how the software requirements iden-
tified by the EU Provenance project for a provenance system are satisfied by the
architecture.

Chapter 10: Related Work The chapter presents related work and discusses how our
approach to provenance differs from existing systems.

Notes A set of technology-specific comments.

Index An index of terms defined in this document.

During the presentation, it is sometimes convenient to refer to specific technologies
and explain how the ideas that are currently exposed apply to such technologies. In
order to avoid cluttering the presentation with technology-specific comments, we have
grouped all of them in Appendix A.

This document is the outcome of a rigorous software engineering process. In order
to clearly identify design decisions, and their relationship with captured requirements,
design decisions are marked by the symbol †, and a cross-reference to original require-
ment and analysis appears in the margin. In the online version of this document, the
link can simply be followed by clicking on the requirement reference; for the paper
version, a page number is also provided for convenience.

1.3 Status of this Document
This report is a live document that will continue to evolve during the course of the
EU Provenance project. Different chapters contribute to different milestones of the
project, summarised in the following table, with schedules of drafts, reviews and final
revisions.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

12

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Once a chapter has been finalised, following changes will be agreed and clearly
documented.
Milestone Chapters Draft by Review by Final by
Logical architecture frozen: 2, 3 24/6/05 8/7/05 15/7/05
Functional architecture frozen: 4, 5 7/10/05 21/10/05 28/10/05
Requirement analysis: 9 30/11/05 10/12/05 20/12/05
Final architecture frozen: 6, 7, 8, 10 5/2/06 18/2/06 21/2/06

For reference, the versions of individual chapters are summarised in the following
table.

Chapter Revision
Chapter 1 Revision: 1.39
Chapter 2 Revision: 1.46
Chapter 3 Revision: 1.62
Chapter 4 Revision: 1.61
Chapter 5 Revision: 1.67
Chapter 6 Revision: 1.96
Chapter 7 Revision: 1.100
Chapter 8 Revision: 1.87
Chapter 9 Revision: 1.127

1.4 Acknowledgements
This document was reviewed internally by project members. Special thanks to Andics
Árpád, Alexis Biller, Miguel Branco, Liming Chen, Arnaud Contes, Frank Danne-
mann, Vikas Deora, Neil Hardman, Guy Kloos, Michael Luck, John Ibbotson, Omer
Rana, Andreas Schreiber, Laszlo Varga, Javier Vazquez, Fenglian Xu, and Steven Will-
mott for their contributions. We also thank Jim Myers for his comments.

The architectural design presented in this document is the output of research funded
in part by the EU Provenance project (IST 511085). It draws on the recording pro-
tocol (PReP), the P-Structure, the query interface and requirements of the PASOA
(Provenance-Aware Service Oriented Architecture) project (EPSRC GR/S67623/01).

Specifically, this document is inspired by the following EU Provenance publica-
tions [And05a, And05b, MCG+05, XBC+05, IHT05, IGM05, Ran05, KS05] and PA-
SOA publications [Gro04, GLM04a, GLM04b, MGBM05, GMF+05, Gro05a, GMM05,
WMF+05b, Bra05, MM06].

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

13

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 2

Provenance Definition

2.1 Common Sense Definition
We first introduce the common sense definition of the word ‘provenance’. Its etymol-
ogy is the French verb ‘provenir’, which means to come forth, originate. According to
the Oxford English Dictionary, provenance is defined as follows.

Definition 2.1 (OED Provenance Definition) (i) the fact of coming from some par-
ticular source or quarter; origin, derivation. (ii) the history or pedigree of a work of
art, manuscript, rare book, etc.; concr., a record of the ultimate derivation and passage
of an item through its various owners. 2

Likewise, the Merriam-Webster Online Dictionary defines provenance as follows.

Definition 2.2 (MWO Provenance Definition) (i) the origin, source; (ii) the history
of ownership of a valued object or work of art or literature. 2

Both definitions are compatible since they regard provenance as the derivation from
a particular source to a specific state of an item. The nature of the derivation, or history,
may take different forms, or may emphasise different properties according to interest.
For instance, for a piece of art, provenance usually identifies its chain of ownership.
Alternatively, the actual state of a painting may be understood better by studying the
different restorations it underwent.

From Definitions 2.1 and 2.2, we can also distinguish two different understandings
of provenance: first, as a concept, it denotes the source or derivation of an object;
second, more concretely, it is used to refer to a record of such a derivation. We shall
return to such a distinction when we define the notion of provenance we adopt in this
project.

2.2 Context: Service Oriented Architectures
Given that our work predominantly focuses on Grid and Web Services, we summarise
some relevant terminology in this section. We take the broad view that open, large-

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

14

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

scale systems are typically designed using a service-oriented approach [SH05], usually
referred to as service-oriented architectural style [Bur00]. As far as services are con-
cerned, we do not intend to restrict ourselves to a specific technology; instead, we take
services to be components that take inputs and produce outputs. Such services are (1)
brought together to solve a given problem typically via a workflow that specifies their
composition. In this abstract view, invocations of services take place using messages (2)
that are constructed in accordance with service interface specifications. In a service- (3)
oriented architecture (SOA), clients typically invoke services, which may themselves
act as clients for other services; hence, we use the term actor to denote either a client
or a service in a SOA. An actor that sends a message is referred to as a sender, whereas
an actor that receives a message is known as a receiver. One message exchanged be-
tween a sender and a receiver is termed an interaction. Hence, a given interaction
comprises two views: the sending of the message and its receiving. The running of an
application programmed in a SOA style requires the execution of the workflow, which
characterises composition of the services that belong ‘to the application. Hence, the
execution of a workflow is referred to as a process. (We note that this use of the term (4)
‘process’ differs from the one in ‘process architecture’.)

Actors may have internal states that change during the course of execution. An
actor’s state is not directly observable by other actors; to be seen by another actor, the
state (or part of it) has to be communicated within a message sent by the actor owning
the state. (5)

Our broad, technology-independent approach to SOAs has formal foundations in
the π-calculus [Mil99] and asynchronous distributed systems [Lyn95, Tel94]. Accord-
ing to such a view of the world, messages are the only mechanism used to transfer
information between actors. The π-calculus is of interest in this context because of
its approach to defining events that are internal to actors as hidden communications;
an asynchronous view of distributed systems is, however, a better match to service-
oriented architectures.

2.3 Definition of Provenance
In this section, we focus on data produced by computer systems, and we define the
provenance of a piece of data (or data item). Specifically, we consider service-oriented
architectures, as discussed in Section 2.2, since they constitute the architectural style
generally adopted to build large scale open systems. (In Section 2.6, we examine
how our definition of provenance can be extended to cater for objects or events of the
physical world.)

The two common sense definitions consider provenance to be the derivation from
a particular source to a specific state of an item. We have identified a process in a SOA

as the execution of a workflow, which we broadly see as a specification of a given ser-
vice composition. Hence, by having a description of the process that resulted in a data
item, we can explain how such a data item has been obtained. Inspired by previous

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

15

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

work [GLM04a, GLM04b, Gro04, TGX05, MGBM05, SM03b], the EU Provenance
project pre-prototype [XBC+05], its requirements documents [And05a, And05b], and
an architecture strawman [MCG+05], we propose the following definition of prove-
nance, which makes explicit the notion of process.

Definition 2.3 (Provenance of a piece of data) The provenance of a piece of data is
the process that led to that piece of data. 2

In relation to the two common sense definitions of provenance, we note that Definition
2.3 is concerned with provenance as a concept. Ultimately, our aim is to conceive a
computer-based representation of provenance that allows us to perform useful analysis
and reasoning to support our use cases. Consequently, the provenance of a piece of
data is to be represented in a computer system by some suitable documentation of the
process that led to the data.

While specific applications determine the actual form that such documentation
should take, we can identify several of its general properties. Documentation can be
complete or partial (for instance, when the computation has not yet terminated); it can
be accurate or inaccurate; it can present conflicting or consensual views of the actors
involved; it can be descriptive or conceptual; and it can abstract more or less from
reality.

2.4 Representation of Provenance
In this section, we introduce the key elements that form the representation of prove-
nance in a SOA; further refinement will ultimately lead to data types for provenance
representation (cf. Chapter 6).

In the previous section, we stated that provenance of a data item is to be represented
in a computer system by some suitable documentation of the process that led to it. To
this end, we distinguish a specific piece of information documenting some step of a
process from the whole documentation of the process. The former shall be referred to
as a p-assertion, which we define as follows.

Definition 2.4 (p-assertion) A p-assertion is an assertion that is made by an actor
and pertains to a process. 2

From this definition, we derive the notion of process documentation.

Definition 2.5 (Process Documentation) The documentation of a process consists of
a set of p-assertions made by the actors involved in the process. 2 (6)

We note that a given p-assertion may belong to the provenance representation of
multiple pieces of data. When a p-assertion is created (and later recorded), it docu-
ments a step of a process in progress, which ultimately will lead to a piece of data.
At the time of the p-assertion creation, we may not know the piece of data that will

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

16

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

be produced; however, the p-assertion being recorded constitutes an element of the
provenance representation of the data. For instance, when some quality wood is being
transported in the Amazon forest, one may not know that it will be used for creating
the frame for a future famous painting, still to be painted and framed.

Among all the p-assertions, we now introduce two kinds of p-assertions that allow
us to capture an explicit description of the flow of data in a process: interaction p-
assertions and relationship p-assertions.

Computer science has a long tradition of focusing on communications and interac-
tions as a central concept used in the study and modelling of complex systems, e.g.,
programming language semantics, process algebra and more recently in biological sys-
tems models. In the context of SOAs, interactions consist of the messages exchanged
between actors. By capturing all the interactions that take place between actors in-
volved in the computation of some data, one can replay an execution, analyse it, verify
its validity or compare it with another execution. Describing such interactions is thus
core to the documentation of process.

Therefore, the documentation of a process includes a set of interaction p-assertions,
each describing an interaction between actors involved in the process.

Definition 2.6 (Interaction p-assertion) An interaction p-assertion is an assertion of
the contents of a message by an actor that has sent or received that message; the
message must include information that allows it to be identified uniquely. 2

We do not prescribe the nature of the assertion of the message contents; instead, such
decisions are left to the specific application. For instance, an interaction p-assertion
could simply contain a copy of the message exchanged between two actors. Alterna-
tively, if some data contained in the message is regarded as confidential by the actor
or too large to be manipulated, the assertion may consist of the message in which the
data concerned has been replaced by some other data or a pointer. (7)

A crucial element of an interaction p-assertion is information to identify a mes-
sage uniquely. Such information allows us to establish a flow of data between actors.
Indeed, let us consider two interaction p-assertions: actor A making an assertion αA

that it sent actor B a message with identity i, and actor B making an assertion αB

that it received from A a message with the same identity i. Such a pair of interaction
p-assertions αA, αB is said to be matching; it identifies a flow of data from actor A to
B.

Actors may directly return outputs for the inputs they receive; alternatively, they
may invoke other actors in order to obtain intermediate results that help them return
their outputs. In both circumstances, the relationship between the outputs and the in-
puts of the actor is not explicit in the messages themselves, and can only be understood
by an analysis of the actor’s business logic, which is private to the actor.

We do not expect the source code of the actor to be made available, because it
may not be feasible, or the code may not be at a suitable level of abstraction. Instead,
in order to permit some understanding of the flow of data, an actor may decide to

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

17

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

“volunteer” some information that is only available to it. An actor may provide re-
lationship p-assertions that identify the relationship between its outputs (whether as
returned result or invocation message to other actors) and its inputs (or intermediary
results received from invoked actors).

Definition 2.7 (Relationship p-assertion) With respect to an interaction, a relation-
ship p-assertion is an assertion, made by an actor, that describes how the actor ob-
tained output data or the whole message sent in that interaction by applying some
function to input data or messages from other interactions. A relationship p-assertion
is directional. 2

While matching interaction p-assertions denote a flow of data between actors, relation-
ships explain how data flows inside actors. Relationship p-assertions are directional
since they explain how some data was computed from other data.

Figure 2.1 illustrates two actors. The first is a primitive actor, i.e., one that receives
a message and produces a result, but does not invoke subsequent actors, or alterna-
tively, an actor that does not make assertions of the invocations it makes of subsequent
actors (say, for privacy reasons). In order to contribute some information about its
internal flow of information, it can indicate that its output data (in the output message)
is a function of the input data (contained in the input message). The second actor of
Figure 2.1 is not primitive, and makes assertions of the contents of the messages it
sends to and receives from another actor that it invokes. Like the first actor, it may
indicate that its output is a function of its input; alternatively, it may explain how the
data contained in the secondary invocation message and its result relate to the input
and output.

f

M1

M2

f

M1

M2

f

M1

M2

M3

M4
f2

f1

d1

d2

d3

d4

d1

d2

interaction key p-assertion type p-assertion content
1 interaction M1
2 interaction M2
2 relationship d2=f(d1)

interaction key p-assertion type p-assertion content
1 interaction M1
2 interaction M2
3 interaction M3
4 interaction M4
2 relationship d2=f(d1)
3 relationship d3=f1(d1)
2 relationship d2=f2(d4,d1)

Figure 2.1: Data flow assertions by opaque and transparent actors

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

18

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 2.1 displays the ideal case of purely functional actors, which do not maintain
a persistent state across invocations. The same approach generalises to stateful actors:
the data in an output message can be a function of the data received during a previous
interaction and kept in a persistent store. On the right-hand side of Figure 2.1, we see (8)
a symbolic representation of the p-assertions generated by the actors. Each p-assertion
has a type and a content, and is asserted in the context of an interaction identified by a
key.

Hence, interaction p-assertions denote data flows between actors, whereas relation-
ship p-assertions denote data flows within actors. Such data flows are core elements to
reconstitute functional data dependencies in execution. In the most general case, such
data flows constitute a directed acyclic graph (DAG). From a specific data item, the
data flow DAG indicates where and how the data item is used; vice versa, following
relationships in reverse helps us identify how a data item was produced. The data flow
DAG is thus a core element of provenance representation, but it is not the only one;
other p-assertions can provide further information about internal states of actors during
execution, as we now explain.

Interaction and relationship p-assertions capture the flow of data in a process. In
some circumstances, however, actors’ internal states may also be necessary to under-
stand the functionality, performance or accuracy of actors, and therefore the nature of
the result they compute. Hence, we introduce the notion of an actor state p-assertion
(†) as the documentation provided by an actor about its internal state in the context of [SR-1-6, p. 113]
a specific interaction.

Definition 2.8 (Actor State p-assertion) An actor state p-assertion is an assertion
made by an actor about its internal state in the context of a specific interaction. 2

Actor state p-assertions can be extremely varied: they may include the function the
actor performs, the workflow that is being executed, the amount of disk and CPU a
service used in a computation, the floating point precision of the results it produced,
or application-specific state descriptions.

In summary, p-assertions can be of three(†) disjoint kinds: interaction p-assertions, [SR-1-12, p. 115]
relationship p-assertions and actor state p-assertions. We note that p-assertions are
independent of the actual service technology used to implement applications.

2.5 Provenance Lifecycle and Three Provenance Views
In the previous section, we characterised the syntactic nature of p-assertions, in the
form of a broad classification in three different categories, according to whether they
document interactions, relationships or actor states. We now focus on a dynamic char-
acterisation of p-assertions and, in particular, when they are created, recorded, queried
and managed, with respect to process execution. These different phases identify a
provenance lifecycle, which we now describe. (We note that such a lifecycle is to be
understood in the context of application execution and should be distinguished from

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

19

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

a methodology that identifies design steps in order to conceive an application that is
provenance aware.)

Before discussing the provenance lifecyle, it is necessary to introduce an archi-
tectural element, which we expand upon in Chapter 3. Since we aim to provide a
long-term facility for storing the provenance representation of data items, we delegate
to a specific element, which we refer to as a provenance store, the role of making per-
sistent, managing and providing controlled access to such provenance representation.
The choice of an explicit architectural element to embody this role in no way implies
any form of physical deployment; instead, it helps us identify the kind of functionality
that is necessary in order to offer support for provenance.

The provenance lifecycle is composed of four different phases. As execution pro-
ceeds, actors create p-assertions that are aimed at representing their involvement in a
computation. After their creation, p-assertions are stored in a provenance store, with
the intent they can be used to reconstitute the provenance of some data. The prove-
nance store therefore acts as storage of p-assertions. After a data item has been com-
puted, users (or applications) may need to obtain the provenance of this data item: they
can do so by querying the provenance store. At the most basic level, the result of the
query is the set of p-assertions pertaining to the process that produced the data. More
advanced query facilities may return a representation derived from p-assertions that is
of interest to the user. We will come back to this aspect in Section 2.7. Finally, as time
progresses, the provenance store and its contents may need to be managed to handle
distribution, change management, curation etc. In summary, the provenance lifecyle
is composed of four different phases: (i) creating, (ii) recording, (iii) querying and
(iv) managing. A provenance system should provide support for all these phases.

We previously discussed the two understandings of provenance that Definitions 2.1
and 2.2 imply: conceptual and representational (in a computer system). In light of the
provenance lifecycle, we can refine this view and distinguish three understandings of
provenance. (i) As before, provenance can be seen as a concept from which we
can explain how a result has been achieved. (ii) The recording phase of the prove-
nance lifecycle results in a set of p-assertions accumulated in the provenance store.
These p-assertions constitute a documentation of execution, which includes informa-
tion from which a representation of the provenance of the data we are interested in
can be derived. (iii) Alternatively, the lifecycle querying phase suggests that prove-
nance queries filter out p-assertions and make them available in some representation
(whether as a set of p-assertions or in some other form), which constitutes a query-time
representation of provenance.

When designing a generic provenance system, we cannot anticipate all forms of
queries that users may wish to issue. Hence, to be able to support complex querying
functionality, it is important to provide a complete and detailed set of p-assertions
about the aspect of execution we are permitted to document. This inevitably may
raise scalability concerns that have to be addressed by the architectural design for
the lifecycle recording phase. Symmetrically, the challenge for a query facility is to
identify a subset of useful p-assertions, by selecting, scoping and filtering p-assertions.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

20

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

(These aspects are discussed further in Section 2.7.)

2.6 Beyond Computer Data
We specifically restricted Definition 2.3 to the provenance of electronic data contained
in a computer system. Our rationale was that our primary focus is on service oriented
architectures, used in building open, large scale systems. However, objects in the real
world also have a provenance. The purpose of this section is to examine how the
approach we propose to track provenance of data can be extended to track provenance
of physical world entities.

Initially, we consider a restrictive deployment, as illustrated in Figure 2.2. On the
left hand side, we see a computer application, in a SOA style, composed of a set of
actors and producing some result. With the approach presented in this chapter, p-
assertions describing execution are stored in a provenance store. The actors however
are not traditional processing actors that take inputs and produce outputs as result of
their internal behaviour. Instead, such actors are directly wired to “actuator/sensor”
pairs that operate on objects in the physical world and sense their environment, all
represented on the right hand of the picture. (The actual “wiring” is represented by
dashed lines.) Such actuators can be robots, taking objects as input and assembling
them, painting them, wrapping them, or even shipping them. Sensors perceive events
in the physical world, such as movement sensors, cameras, radar. Information can
transit from an actor to an actuator: it can be seen as control order for the actuator;
vice versa, sensors can feed back information to the computer system. We assume
here that the mapping is one to one, i.e., for one actor there exists one and only one
actuator/sensor, that an actuator is directly driven by an actor, and that an actor reacts
to information provided by a sensor. The outcome of the chain of actuators/sensors is
a physical artifact. We note that either the actuator or the sensor functionality in an
actuator/sensor pair may be void.

Given this mapping assumption, the computer system’s workflow mirrors a physi-
cal process in the physical world. The ultimate electronic data produced by the com-
puter system is thus an electronic proxy for the physical world artifact. By querying the
provenance of the electronic data, we can therefore obtain an accurate representation
of the provenance of the physical artifact, due to the one to one mapping assumption.
This requires some explicit actor state p-assertions to be recorded by actors in the
computer application, which describe the activated actuators and the sensed data they
return.

In practise, the one to one assumption may not necessarily hold, which means that
the physical process may not directly be mirrored in the computer system. Specifically,
we consider the case in which there may be actuators or sensors that are not directly
under the control of the computer application, e.g. in a system where machines are
controlled by humans. In such circumstances, the provenance of the electronic data
only helps us to derive a partial representation of the provenance of the physical arti-

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

21

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Data
Physical
artefact

Application

Actors

Actuators/sensors

Figure 2.2: Mapping to the Physical World

fact. Such a limitation may be alleviated if an actor is capable of recording p-assertions
about the part of the physical process that is not directly mirrored in the computer sys-
tem, as if a one-to-one mapping existed. (We note that this also applies to any process
where actors are not able to record documentation of process themselves.)

The discussion in this section has focused on physical artifacts. However, the
principles just exposed remain applicable to other “things” in the real world, such
as choices made by users, outcomes of a decision making process, or events observed
by sensors or users. What the provenance system requires is either a user interface or
sensor to act as an actor, recording p-assertions about the actions that occurred in the
physical world, or another actor to relate such actions on behalf of the physical process
that is not observed by sensors or users.

Consequently, we can now extend our definition of provenance to encompass the
physical world.

Definition 2.9 (Provenance of an entity) The provenance of an entity (whether com-
puter based or in the physical world) at a given point in execution is the process that
led to that entity at that point. 2

In the rest of the document, we continue to refer to the provenance of “data items”
unless we specifically wish to refer to the provenance of physical world entities.

Additionally, we note that earlier we used the term actor to denote either a client
or a service in a SOA. As the physical world is not so clearly describable in terms of
clients and services, we broaden the definition of actor to mean any entity that acts.

2.7 The Nature of Queries
The purpose of a provenance query about a given data item is to identify a set of
p-assertions that were submitted to the provenance store during some execution that

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

22

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

resulted in the data item. The intent of such a query is that the selected p-assertions,
which we refer to as the query result, provide a description of the process that led to the
data, i.e., the provenance of the data, expressed at a level of abstraction that is suitable
for the requester.

Hence, given a query, the purpose of a query engine is to decide which p-assertions
belong to a query result. Several factors can be taken into account in order to decide
if a p-assertion belongs to a query result. It is the purpose of the query to specify such
factors. In the rest of the section, we discuss some of the factors that a provenance
system needs to support.

Open systems may introduce an understanding of a process’s scope that differs
from one in closed systems. Indeed, in a traditional batch system, the beginning of a
process is marked by its submission to the batch system (or by its scheduling) and its
end is defined by the termination of execution and deallocation of resources. While
such a clearly defined beginning and end of process can still be achieved in a well-
structured and controlled closed computation performed in an open environment, it
no longer applies when previous results are opportunistically and serendipitously dis-
covered and reused to produce some data. As an illustration, consider a process p1

producing a result r1, which is itself later discovered and used by a distinct process p2

producing r2. In this example, the end of process p1 is marked by the production of re-
sult r1, while process p2 begins after the production and discovery of r1 and terminates
with result r2. Another design could have conceived a process p3 producing a similar
final result r′2, where p3 is the composition of p1 and p2. If we are not interested in tem-
poral details, and the fact that intermediary result r1 was stored and discovered, both
results r2 and r′2 have similar provenance, but were produced by apparently different
processes, p2 and p3, respectively. The reason for this difference is that p3 is conceived
as a closed experiment, producing r′2, whereas p2 opportunistically reused an existing
result. There is no right or wrong interpretation in this example: whether p2 or p3 is
the process of interest is to be decided at query time, by the querier.

Let us now assume that the provenance representation we discuss here is made
available for all data or objects. Given that the state of our universe, including all elec-
tronic data, is derived from the “Big Bang”, we do not expect provenance queries to
return all p-assertions back to such a point. Hence, we need mechanisms to specify
how far back in the execution we include p-assertions in the query result. Such mech-
anisms can be varied: we introduce them briefly here and discuss them later in Section
7.2. (i) A limit can be set on the length of the relationship chains. (ii) Relationship
chains can be traversed until the data being transferred satisfies some property, such
as being of a given type. (iii) Given that actors can describe themselves by the func-
tionality they perform on their inputs, functionalities of interest identify p-assertions
that belong to the query result or that are to be rejected. (iv) Actors may record
p-assertions describing their state and messages they exchange; a query may identify
that an actor should be seen as private, as if itself and the other actors it invoked did
not record any p-assertions.

This discussion on provenance queries lead us to enumerate some properties of the

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

23

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

computer representation of provenance.

Definition 2.10 (Computer Representation of Provenance) The computer represen-
tation of the provenance of a data item has the following properties:

1. it is the result of a query;

2. it describes the process that led to the data item;

3. it constitutes a DAG.

2

2.8 Conclusion
In this chapter, we have introduced our definition of provenance of a data item and
how it can be extended to physical world entities. We have shown how provenance
can be represented in a computer system, and have identified a provenance lifecycle
composed of four phases: creating, recording, querying and managing. In the next
chapter, we introduce an architecture that provides support for these four lifecycle
phases.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

24

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 3

Logical Architecture

3.1 Architecture vs System
In the context of this document, a provenance system is defined as a computer sys-
tem that deals with all issues pertaining to the recording, maintaining, visualising,
reasoning and analysis of the documentation of process that underpins the notion of
provenance. Such a system is a software implementation of a provenance architecture,
which identifies the different roles in such a system, their interactions and the kind of
provenance representation they are expected to support.

The provenance lifecycle is composed of four phases concerned with creating,
recording, querying and managing p-assertions. We now describe the roles of the
actors involved in each phase of the lifecycle and then present a logical architecture
that supports these actors in performing the activities of the lifecycle.

3.2 Role Definition
We can classify the actors involved in the provenance lifecycle according to their role
in a provenance system. Briefly, the responsibilities of each role are as follows.

• An application actor is responsible for carrying out the application’s business
logic.

• A provenance store is responsible for making persistent, managing and provid-
ing controlled access to recorded p-assertions.

• An asserting actor is an actor that creates p-assertions about an execution.

• A recording actor is an actor that submits p-assertions to a provenance store for
recording.

• A querying actor is an actor that issues provenance queries to a provenance
store.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

25

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

• A managing actor is an actor that interacts with the provenance store for man-
agement purposes.

3.3 Logical Architecture
In order to support capturing, recording, querying and managing the categories of
p-assertions introduced in the previous chapter, we have specified a provenance ar-
chitecture that takes into account a broad range of use cases [MGBM05, And05a].
The architecture is summarised in Figure 3.1 (†), which we discuss in the rest of this [GR-EHCR.6, p. 128]
section. Central to the architecture is the notion of a provenance store, which is a
service designed to store and maintain provenance representation beyond the lifetime
of a Grid or other application. Such a service may encapsulate at its core the func-
tionality of a physical database, but also provides additional functionality pertinent to
the requirements of the provenance architecture. In particular, the provenance store’s
responsibility is to offer long-term persistence of p-assertions.

In a given application, one or more provenance stores may be used in order to
act as storage for p-assertions: multiple provenance stores may be required for scal-
ability reasons or for dealing with the physical deployment of a given application,
possibly involving firewalls (†). The logical architecture does not prescribe the num- [GR-OTM.3, p. 126]
ber of provenance stores, nor their use for a given application, for a given domain,
or other. Scalability concerns, network topology, legal and sociological application
requirements may all influence the specific deployment to be adopted by application
designers.

In order to accumulate p-assertions, a provenance store provides a recording inter-
face (†) that allows recording actors to submit p-assertions related to their interactions [SR-1-1, p. 112]
and internal states, for recording purposes. The recording interface supports the sec-
ond phase of the provenance lifecycle (storing) and is further specified in Section 7.1.
A provenance store is not just a sink for p-assertions: it must also support some query
facility that allows, in its simplest form, browsing of its contents and, in its more com-
plex form, search, analysis and reasoning over process documentation so as to support
use cases. To this end, we introduce query interfaces (†) that offer multiple levels of [SR-1-1, p. 112]
query capability; the query interfaces support the third phase of the provenance life-
cycle (querying) and are specified in Sections 7.2 and 7.3. Finally, since provenance
stores need to be configured and managed, an appropriate management interface is in-
troduced, which supports the fourth phase of the provenance lifecycle. (A description
of its functionality is found in Section 7.4.)

Some actor-side libraries (†) facilitate the tasks of recording p-assertions in a se- [SR-1-9, p. 114]
cure, scalable and coherent manner and of querying and managing provenance stores.
They are also designed to ease integration with legacy applications. We also expect
actor-side libraries to provide some support to create common forms of p-assertions
(the first phase of the provenance lifecycle); further details can be found in Section
8.7.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

26

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Application
Services

Workflow
Enactment

Engine

Domain-
Specific
Services

Actor-Side
Recording

Library

User

Auditor
Service
Quality

Analyser

Trace
Comparator

Trace
to Workflow
Converter

Re-enactor

Semantic
Validity

Analyser

Publication
Generator

Trace
Visualiser /

Browser

Trace
Difference
Visualiser

Trace
Validity

Visualiser

Service
Quality

Visualiser

Workflow
Constructer

Presentation
UIs

Provenance
Stores

Query Interface

Recording
Interface

M
an

ag
em

en
t

In
te

rfa
ce

Actor-Side
Query
Library

Actor-Side
Management

Library

Policy-Based
Matchmaking

Discovery
Negotiation

Service
Requirement &

Capability
Policy

Provenance
Store Policy

User
Requirement

Policy

Processing
Services

Management
UIs

Application
UI

Examples of
presentation UIs

Examples of
processing services

Examples of
application services

Figure 3.1: Architecture of a Provenance-Aware Application

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

27

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

The interfaces and libraries shown in Figure 3.1 have different purposes: the inter-
faces specify the messages accepted and returned by provenance stores, and will be the
focus of a standardisation proposal to ensure that applications, written in multiple pro-
gramming languages, can inter-operate with different implementations of provenance
stores; the libraries are convenient mechanisms for offering bindings to the interfaces
for specific programming languages. During an application’s execution, all applica- (9)
tion services are expected to submit p-assertions to a provenance store; this not only
applies to domain-specific services, but also to generic middleware, such as workflow
enactment engines, registries and application user interfaces. (10)

Once p-assertions have been recorded in a provenance store, process documenta-
tion can be used by processing services (†) and presentation user interfaces(†). The [SR-1-4, p. 113]

[SR-4-2, p. 119]former provide added-value to the query interfaces by further searching, analysing and
reasoning over recorded p-assertions, whereas the latter essentially visualise query re-
sults and processing services’ outputs.

Figure 3.1 provides examples of such processing services and presentation UIs of-
fering functionality; details of such services are discussed in [MGBM05, WMF+05a].
They typically are application specific and therefore cannot be characterised in a generic
provenance architecture. For instance, processing services can offer auditing facili-
ties (†), can analyse quality of service based on previous execution, can compare the [SR-1-7, p. 114]
processes used to produce several data items, can verify that a given execution was
semantically valid [WMF+05a], can identify points in the execution where results are
no longer up-to-date in order to resume execution from these points, can re-construct
a workflow from an execution trace, or can generate a textual description of an ex-
ecution. Presentation user interfaces can, for instance, offer browsing facilities over
provenance stores, visualise differences in different executions, illustrate execution
from a more user-oriented viewpoint, visualise the performance of execution, and be
used to construct provenance-based workflows.

We note that such a list of processing services and presentation UIs is illustrative
and not exhaustive; furthermore, it does not represent a commitment by the EU Prove-
nance project to deliver these services specifically. The services that are provided by
the project are defined and designed in a separate document [Ran05].

Another kind of user interface to the provenance store is also identified in the ar-
chitecture. This is the management user interface, which allows users to manage the
contents of the provenance store.

To be generic, a provenance architecture must be deployable in many different
contexts and must support user preferences. To adapt the behaviour of the architec-
ture to the prevailing circumstances and preferences, several policies are introduced
to help configure the system in its different aspects. Specifically, (i) policies state
user requirements about recording, e.g., to identify the provenance stores to use, the
level of documentation required by the user, desired security aspects; (ii) policies
specify capabilities of recording process documentation that services may wish to ad-
vertise (such as their ability to provide some type of actor states p-assertions), and
any requirements they have on other services they rely upon in order to perform this

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

28

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

documenting (such as their need for high throughput or highly persistent provenance
stores); (iii) policies define configurations of provenance stores, from a deployment
and security viewpoint (e.g., resources they use, their access control list, or registry
where they should be advertised). Policies are further specified in Section 7.5. By
making explicit all these policies, it becomes possible to discover services that match
user or other service needs. When requested policies conflict with discovered policies,
negotiation can be initiated to find a compromise between the offer and demand.

Figure 3.1 displays how applications can integrate with the provenance system. It
is however important to clarify the scope of the architecture that we are addressing
in this document. This is precisely the purpose of Figure 3.2, which introduces a
circle around the architectural elements that are discussed in this document. Other
components are excluded from further discussion because their behaviours are entirely
application-dependent, apart from that specified in provenance-specific policies.

3.4 The P-Header
In Section 3.2, we introduced the roles of actors involved in the provenance life-cycle
and their general responsibilities. Roles place more specific obligations on actors with
respect to supporting actors in other roles. Largely, this is a matter of providing ad-
equate information in the correct format: for example, an asserting actor must create
p-assertions in a format that a provenance store can make persistent and a provenance
store must provide p-assertions in a format that querying actors can interpret. We spec-
ify how p-assertions and other data should be modelled to provide such consistency in
Chapter 6.

In order for p-assertions to be created, asserting actors need to identify which pro-
cess they are making an assertion about, which requires some shared context between
asserting actors. As it is application actors that make assertions, we place a further obli-
gation on them to pass context information between each other regarding the process
being executed. As this would often be achieved by putting the context information
in the header of an application message (it could be exchanged by other, application-
specific means), we call this information the p-header , defined as follows.

Definition 3.1 (p-header) The p-header of an interaction is provenance-related con-
textual information, sent along with the interaction’s message. 2

In practise, the p-header can contain an identifier for the interaction to which the
context information applies and the locations of provenance stores where p-assertions
documenting the same process are stored. Additionally, the p-header can contain a set
of tracers, which are used to demarcate where one process starts and ends. A tracer
is a token added to a p-header by an application actor, where the same tracer is added
to the p-headers of all interactions in the same process by the same application actor.
Additionally, where a tracer is included in the p-header of a message received by an

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

29

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Application

Services

Client-Side

Recording

Library

User

Presentation

UIs

Query Interface

Recording

Interface

M
a
n
a
g
e
m
e
n
t

In
te
rf
a
c
e

Actor-Side

Query

Library

Client-Side

Management

Library

Processing

Services

Management

UIs

Scope of a

standardised

Provenance

system

Provenance

Store

Figure 3.2: Provenance Logical Architecture and its Scope

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

30

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

application actor, that actor is obliged to copy the tracer into the p-header of all inter-
actions within the same process. Using tracers, a querying actor can determine which
interactions were part of a single process, because their p-headers will all contain the
same tracer, and whether one process is contained within another, because the tracers
of the former’s interactions will be a subset of the tracers of the latter’s interactions.
The structure of p-headers and tracers is discussed in more detail in Chapter 6.

3.5 Conclusion
In this chapter, we have presented the logical architecture that underlies our prove-
nance system and the roles of the actors that interact within that architecture. During
the provenance lifecycle, the actors perform several roles: application actors execute
processes; asserting actors create p-assertions about these processes; and recording
actors record p-assertions in provenance stores, which allow querying actors to re-
trieve p-assertions and managing actors to maintain them. The recording, query and
management functions of the provenance stores are made available through fixed, pre-
specified interfaces, making it possible to program an application to take advantage of
the architecture. Policies control the run-time behaviour of architectural components
deployed in different contexts, and each role places obligations on the actors playing
them.

The remaining chapters of this document examine the issues that affect the funda-
mental parts of the architecture or that cut across a provenance system as a whole.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

31

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 4

Security Architecture

One of the key features for a provenance architecture within the context of this project
is security. Many of the application domains in which a provenance architecture could
potentially be deployed in have stringent requirements on access to data manipulated
within the system. Correspondingly, p-assertions that incorporate or are derived from
these data are likely to have similar security restrictions on them as well. Although
security is a non-functional requirement, software engineering methodology strongly
recommends that security considerations be integrated into the development life-cycle
as early as possible. With this as a motivating factor, we proceed in this chapter to
outline a security architecture for the logical architecture that we described in Chapter
3. In addition, the remaining chapters of this document will contain a security section
(if relevant) that may make reference to the material presented in this chapter.

In Section 4.1, we briefly define some of the common security concepts that we
use in this document. In Section 4.2, we survey the security issues relevant to the
conception of provenance. Following that, we present the security architecture for the
provenance store and describe the functionality and interaction between its constituent
components in 4.3. In Section 4.4, we discuss the security issues pertaining to other
components in the logical architecture. We then outline the security issues that remain
unaddressed in Section 4.5, and conclude in Section 4.6.

4.1 Background
This section provides a brief narrative that encompasses some of the more common
terminologies encountered in the field of electronic security. It is not intended to be
a comprehensive treatise of the area, and merely seeks to provide a conceptual back-
ground for the security discussion in the remaining sections of this document.

We consider a system that offers some functionality through a set of resources that
can be accessed and manipulated. It is usually the case that these resources can only
be accessible or manipulated in specific ways in order to ensure that the functionality
offered by the entire system is unaffected. The integrity of a resource is a property of

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

32

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

that resource that is preserved as long as the resource is accessed or manipulated in
the prescribed manner. It is assumed that these restrictions on resource manipulation
necessary to preserve its integrity are known to the entity responsible for the system
resources, which we shall term as the system administrator . Hence for the trivial
case where a system administrator accesses or manipulates a system resource, there is
no risk of intentional resource integrity violation. The role of a system administrator
would be roughly analogous to that of a managing actor within the context of the
provenance architecture.

However, systems are generally useful only where their functionality (as provided
by their internal resources) is accessible to external entities. In situations such as this,
the system administrator may not have direct control over these external entities and
cannot ensure that their behaviour is compliant with preservation of resource integrity.
There is therefore the need to perform access control to these resources, and this is
typically achieved by restricting access (out of the overall group of entities that are
capable of accessing the system resources) to a specific group of entities that are trusted
by the system administrator . We do not consider in our discussion the context of trust
and how it is established in the first instance between the system administrator and a
group of external entities.

A preliminary and necessary requirement for access control is authentication, which
is the process of producing an identity based on some credentials submitted by the en-
tity to the security infrastructure. An identity produced from a successful authentica-
tion process can subsequently be used in access control to ascertain whether an entity’s
accompanying request to access some resource in a specific manner is permitted or not.
An entity that is allowed to access a given resource in a specific manner is said to be
authorised to perform that access on the specific resource, and such an authorisation
can be expressed in different ways.

For example, in a mandatory access control system, entities are authorised to ac-
cess resources on the basis of the relationship between different security labels or clear-
ance levels assigned to the various resources and entities. In a discretionary access
control system, authorisations are generally expressed in the form of a direct relation-
ship between a given identity and the resources accessible to it. In a role based access
control (RBAC) system, entities are classified into different roles or groups; each role
or group corresponds to differing levels of access clearance to different resources in
the system. The roles are generally structured, with higher level roles subsuming the
clearance rights of lower level roles beneath them in the hierarchy. Entities can assume
several roles, and can move between different roles during the lifetime of the system.

The set of authorisations in a system is typically predetermined by the system ad-
ministrator according to some existing security policies, and the scope of enforcement
of this policy is generally known as a security domain. It should be noted that the
identity produced from an authentication process is only meaningful to the system
performing the authentication; it is entirely possible that a single entity may be rep-
resented in different systems with different internal system identities. Authentication
and access control are often tightly interlinked components in a security architecture.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

33

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Situations may arise when a data resource (or a copy of it) has to be transported
across an open medium, such as a network connection, where it is no longer protected
by the security infrastructure of the system. Privacy is a property of this data that is
achieved in this context by transforming the data into a form (typically via the use of
symmetric cryptographic mechanisms) that is unintelligible to entities that were not
originally authorised to access it. Integrity of this data is achieved in this context
by ensuring that any processing or modification of the data while in transit becomes
detectable. This generally involves the use of asymmetric cryptographic mechanisms
such as digital signatures.

Signatures are generated by using the private portion of a public/private key pair
to generate a message digest on a piece of data. Only the owner of the private key
is capable of generating a digest on that data that can subsequently be verified suc-
cessfully by any entity possessing the public portion of the key pair. This ensures that
any modification of the data by any entity other than the owner would be detectable
via an unsuccessful verification attempt. In addition, the uniqueness of the private key
enables the establishment of a direct link between the key owner and a piece of data
signed with that key. This is sometimes useful in attempting to guarantee the property
of non-repudiation, which seeks to ensure that an individual is held accountable for
an action in the system and cannot deny having undertaken this action post hoc. If
such an action is expressible in the form of a data item, then a signature on this item
undisputedly establishes corresponding responsibility for the action on the key owner.

Certificates are electronic documents used to link a public key with an identity
of an entity possessing the corresponding private key. The reliability of this link is
established by a signature on the certificate by a party trusted by all entities that use
the certificates. This trusted party is usually a certificate authority (CA), who is the
primary entity responsible for the life cycle management of these certificates within a
Public Key Infrastructure (PKI).

Interactions across different security domains can sometimes occur, particularly in
large scale, distributed systems exemplified by the Grid or the Web Services environ-
ment. For example, a workflow initiated by an individual may interact with resources
from several systems, each with separately administered access control schemes. Here,
the individual would need to authenticate to the relevant security components of each
of these systems, since the individual would very likely have distinct internal identities
in the different security domains. Federation of identity is a method which seeks to
simplify the security procedure, and hence the overall workflow process, by requiring
the individual to authenticate only once (usually known as single sign-on) in order to
access resources across several security domains. In order to accomplish this while
still retaining the original level of security, the infrastructure of each of these secu-
rity domains needs to be structured to communicate relevant information, particularly
pertaining to actor identities, between themselves.

Another requirement that arises within a distributed environment is the need for
delegation of access control rights . For example, during the process of workflow exe-
cution by an enactment engine, a service invoked by the workflow engine might need

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

34

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

to invoke another service in order to fulfil the requested functionality. If these services
exist in different security domains, then the individual responsible for initiating the
workflow would need to authenticate twice: once to each of them. Once again, a sin-
gle sign-on capability can be provided if a mechanism is implemented in the security
infrastructure that empowers the first service to invoke the second service based on the
access control rights transferred to it from the individual concerned. Note here that
while the conception of single sign-on is the same as is the case in identity federation,
the motivating situations are slightly different. Delegation of access control generally
also carries the implication that the delegated access rights are only qualified within a
certain context: for example, during the duration of a workflow or to access specific
resources only. There must be a way to ensure that a service that has been delegated
some rights from an individual does not maintain the ability to use these rights indef-
initely outside of the given context, nor to delegate it further onwards to other entities
unless permitted to do so.

It needs to be borne in mind that delegation of access control and federation of iden-
tity are not novel security methodologies nor do they enhance the security capabilities
of a system. They merely provide a way to maintain the existing level of security in in-
dividual security domains while attempting to simplify the security requirements that
arise when complex interactions between these different domains occur.

4.2 Provenance Related Security Issues
In this section, we outline the security issues that we believe are relevant pertaining
to our notion of provenance. We note however that not all of these issues are relevant
in the context of the software requirements (see Chapter 9), and the eventual security
architecture will only address those that are.

1. Access control to the provenance store. This is the primary security issue as the
provenance store is considered to be central to the logical architecture. While
the access control mechanisms utilised are situated in the context of the specific
requirements of the project, this notion of security here is conceptually identical
to the general case of securing a database with multiple users.

2. Integrity and non-repudiation of p-assertions. Recording actors store p-assertions
created by asserting actors in the provenance store. In the event that the asserting
actor is not the recording actor, there is a need to ensure that information within
the p-assertion is not altered unintentionally or maliciously by either the record-
ing actor or provenance store. This can be achieved by having the asserting actor
sign the p-assertion it creates. The signature also serves the additional purpose of
ensuring that the asserting actor cannot deny responsibility for the creation of the
p-assertion in question. This can be necessary when legal or other requirements
mandate establishment of liability for the consequences arising from utilising
the information in a p-assertion. This issue is discussed further in Section 6.9.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

35

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

3. Ascertaining asserter identity in a p-assertion. The structure for holding p-
assertions created by an asserting actor will also hold the identity of this actor
(Figure 6.10). By implication of the previous point we discussed, the asserter
identity should correlate with the identity associated with the signature on the
p-assertion, since only the asserting actor should sign the p-assertion. A check
can be done to ascertain whether this is true, and can be undertaken by either
the provenance store to which the p-assertion is recorded to, or by the querying
actor retrieving the p-assertion in question.

4. Derivation of authorisation information relating to p-assertions. It is likely that
p-assertions will contain or be derived in some fashion from an existing piece of
data in the system. For example, an application actor with access to a database
may send a message containing an item from that database to another actor. This
item is likely to have certain access control restrictions enforced upon it within
the security domain of the database in question. When a p-assertion is created
for the transmitted message and recorded to the provenance store, appropriate
access control restrictions (or authorisations) must now be established for this
new entry to ensure that any future access to it is in accordance with the security
policies of the provenance store.

In some situations, it may be useful to relate the authorisation for the newly
recorded p-assertion in some way to the access control restrictions on the orig-
inal database item that the p-assertion is based upon. This effectively allows
for a more flexible specification of authorisations on p-assertions by taking into
account information other than that found in statically predefined security poli-
cies on the provenance store. A possible approach towards this end is for the
recording actor to submit additional information along with the p-assertion to be
stored. This additional information would be created by the asserting actor and
can then be utilised in an automated manner by the provenance store to generate
appropriate authorisations for the new p-assertion.

5. Context-based authorisation specifications. As we have seen in Chapter 3, pro-
cessing services provide added-value to the query interfaces by further search-
ing, analysing and reasoning over recorded p-assertions. Some of the operations
that can be performed by a processing service have a well defined functionality;
for example, comparing processes used to produce several data items. In order
to perform this operation, a certain set of p-assertions identified by certain crite-
ria will need to be retrieved from the provenance store. Another operation, for
example, verifying that a given execution was semantically valid, will require
the retrieval of another set of different p-assertions. Situations may arise where
it is useful to ensure that certain actors are authorised to access only the relevant
p-assertion subset necessary for a specific operation (or more generally, any type
of context in which provenance representations can be used in). This would re-
quire an ability to express authorisations at this level, as well as some way to

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

36

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

translate these context-based authorisations into finer grained authorisations at
the p-assertion level.

4.3 Provenance Store Security Architecture
In this section, we present the logical design for a security architecture for the prove-
nance store, having identified it as being the central component in the provenance
architecture. Security issues pertaining to the other components in the logical archi-
tecture are addressed in the following section. An overview of this architecture is
illustrated in Fig. 4.1 (†); components enclosed in ovals indicate that they potentially [OTM-17, p. 128]
(although not necessarily) exist in security domains separate from the domain of the
provenance store. We first describe the functionality of each of these components and
then proceed to outline the possible interactions between them. Finally, we discuss
some of the broader security issues that are not considered in this architecture.

4.3.1 Components of Security Architecture
The provenance store exposes three different interfaces (recording, management, query)
for different purposes. All of these interfaces can be enhanced with additional secu-
rity relevant operations or parameters. The identity validator (†) accepts all incom- [SR-6-5, p. 120]
ing requests and accompanying credentials (such as certificates) over a secure link
supporting either transport or message level encryption. It is also important that the
validator and actor interacting with it mutually authenticate each other during this se-
cure transmission. This is necessary from the viewpoint of the provenance store as
the identity of the actor is the first step towards enforcing appropriate access control.
However, it is equally relevant as well for the actor who needs to circumvent potential
impersonations of a valid provenance store by malicious parties that would then gain
unauthorised access to the p-assertions.

The identity validator then performs four functions:

1. Verifies that the submitted credentials are valid within the context of the domain.
This may require interaction with the trust mediator (†) in the event where fed- [OTM-19, p. 129]
erated identity validation is required. It also needs to take into account that the
submitted credentials may imply some form of delegation.

2. Maps these credentials to an internal representation (IR). This could assume a
combination of various forms (an identity, a role, a list of attributes, a list of
privileges, etc). This should include basic role information to support an RBAC
implementation. A common way of doing this is to map the identity to a role
which has a predefined set of authorisations or privileges.

3. Ensures that the asserter identity on the submitted p-assertion tallies with the
identity associated with the signature, if any, on the p-assertion. This operation

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

37

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Database
backend

Identity
validator

Authorisation
engine

Credential server

Trust mediator

Provenance store
interfaces

b.

Actor

Authorisation /
access control
component of
host system

Derivation engine

Indicates a
different security

domain

Internal
representation

list

a.

c.

e.

d.

f.

g.

h.
i.

j.
k.

Access
control policy

Authorisation
policy

l.

o.

p.

q.

r.

s.

t.

m.

Remote interactor

n.

Interaction with another
security domain

u.

v.

Figure 4.1: Provenance store security architecture

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

38

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

is optional, and correlates with the third security issue in Section 4.2. If the
asserter identity is to be utilised in the access control decision, then it needs to
be mapped to a corresponding IR as well.

4. Formats the request into an appropriate representation for access control pur-
poses.

The first two functions are performed with help from an internal representation list
that specifies the appropriate mapping relationships, including roles.

The credential server(†) fulfils the role of being a trusted third party holding identity- [GR-OTM.5, p. 126]
related information for all potential users of the provenance system within a given se-
curity domain, as well as providing them with suitable credentials and other related
security tokens for authentication purposes . The authorisation engine (†) essentially [SR-6-1, p. 119]
performs the access control functionality in two main ways based on the authorisa-
tions specified in the authorisation policy (†) and the IR produced from the identity [SR-6-1, p. 119]
validator:

• The request is granted or denied solely on the basis of the information from the
authorisation policy and the IR related to the identity of the requesting actor.
It is also possible that the IR of the asserting actor is taken into account in the
access control decision as well; we assume that this possibility exists, but use
the term IR to refer to the IR of the recording actor for the sake of brevity in the
remaining discussion. If granted, the requested operation is performed and the
appropriate acknowledgement or data item is returned directly to the requestor
without further intervention from the authorisation engine.

• The granting of the request may additionally be dependent on information con-
tained within the data item that the request is related to (such a condition would
be specified accordingly in the authorisation policy). For example, a read oper-
ation associated with an IR on a given p-assertion might be permitted only if the
p-assertion contained relevant information pertaining to that IR. In this case, the
p-assertion in question would have to be retrieved first and assessed accordingly
by the authorisation engine before a final decision can be made on granting or
denying the request.

Depending on the nature of the authorisation engine, it may be necessary that the
assignment of a role to an IR for the case of a RBAC should be achieved by the au-
thorisation engine instead of the identity validator. In addition, it is possible to employ
either one or both of these two approaches to specifying authorisation:

• an identity / role is assumed to have no authorisations in the initial case, and
explicit authorisations have to be granted;

• an identity / role is assumed to have complete authorisation in the initial case,
and explicit restrictions have to be placed.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

39

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

The semantics and the granularity of the authorisation assertions within the autho-
risation policy will determine how fine grained and flexible access control can be in
the infrastructure. Ideally, authorisations should be specifiable at the level of individual
p-assertions, and could be refined to individual elements within a p-assertion if such
need arises. Current authorisation systems in use provide differing levels of seman-
tic expressibility and granularity for the authorisation policies they employ. In terms
of semantic expressibility, a possible example could be authorisation systems that al-
low restriction on access based on additional characteristics such as user attributes,
time of day or processing time of job, in contract to simpler systems that only permit
user identity in the authorisation expression. If an existing system is to be used as a
building block for the provenance store security infrastructure, it should therefore in-
corporate sufficient expressibility and granularity to satisfy the security requirements
of the project (Section 9.1.6).

Additionally, we note that the content-based authorisation described in Section 4.2
would require a higher level policy language to describe, that would then subsequently
require translation into the lower level assertions of the authorisation policy (as access
control can only be meaningfully performed at this level). This feature is not spec-
ified in the software requirements (Section 9.1.6), and merely represents an optional
enhancement to the actual security architecture to be implemented.

The access control policy (†) is a higher level security policy that specifies the ways [SR-6-1, p. 119]
in which the authorisation policy and/or internal representation list can be modified
by the components which access them. It also describes in a high level manner the
configuration of the provenance store from a security viewpoint and the protocols that
external entities (such as actors or other provenance stores) need to adhere to in order
to communicate with it. The access control policy, authorisation policy and internal
representation list would constitute the security policy of the provenance store as a
whole (Section 7.6). The database backend provides actual physical storage for the
p-assertions.

The trust mediator is used to support federation of authentication and/or authori-
sation for the case where distributed provenance stores (Section 5.2) exist in different
security domains. Its role is to obtain security assertions or credentials from other rele-
vant entities in order to support the specific federation methodology employed. Further
details on the need for federation, particularly with regards to distributed provenance
stores can be found in (Section 5.7).

These entities could be a trusted third party (such as the credential server) in the
local or remote security domain, or the trust mediator of another provenance store.
The gathered assertions or credentials can then be used locally (for example, to verify
other credentials received by the identity validator) or can be passed on to the remote
interactor. Like the trust mediator, the remote interactor is intended to interact with
external entities, but within a more general context rather than a security specific one.
The remote interactor uses the credentials provided by the trust mediator for secure
communication towards this end. The operational parameters for both the trust medi-
ator and remote interactor can be configured via the access control policy.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

40

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

The derivation engine (†) provides the following functionality: [SR-6-2, p. 120]

1. Derives new authorisations from existing authorisation information. For the case
of the third security issue for provenance as identified in Section 4.2, the autho-
risation information would originate with the p-assertion as part of submitted
request from the actor. Alternatively, there may be a need to correlate the autho-
risations as specified in the access control policy with the authorisations in the
host systems security architecture, in the event that a tighter integration between
both architectures is required.

2. Creates a set of appropriate authorisations corresponding to a higher level context-
based authorisation specification. This corresponds to the fourth security issue
for provenance, and can be considered to be optional functionality.

The derivation engine may additionally need to interact with other external systems
in order to perform specific tasks related to the storage and retrieval of p-assertions. It
will perform these via the remote interactor.

4.3.2 Interaction Between Components
We illustrate the interaction between these components using some simple scenarios
in a technology independent manner. The flows of information are denoted by labelled
arrows in Fig. 4.1 and our description makes reference to them accordingly in brackets.

Scenario 1: Submission of a p-assertion to be stored by a recording actor

1. The p-assertion along with other relevant information is submitted as a an in-
vocation message (b.) in accordance to the schema of the recording interface.
The submission link is secured using appropriate actor side library functionality
(Section 8.7), which may involve encryption or signing of the invocation mes-
sage. The required credentials can be obtained (if necessary) from the credential
server prior to the invocation process. (a.).

2. The identity validator intercepts the message and attempts to verify the submitted
credentials; again this may involve another interaction with the credential server
(c.). An attempt is made to resolve the supplied credential information with the
internal representation list (f.) If the credentials cannot be verified, but there is
additional information present to indicate the manner in which they might be
verified, an appropriate request is sent off to the trust mediator (d.).

3. Depending on the methodology used for federation purposes (see Section 5.7),
the trust mediator may opt to contact a trusted third party (the credential server
or another entity) within the current or remote security domain (u.) to obtain the
necessary credentials to communicate with the party that is capable of verifying
the actor’s credentials.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

41

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

4. The external communication with the designated party is handled by the remote
interactor using the credentials obtained by the trust mediator. If the result of
this interaction is the verification of the actor’s credentials, there may arise a
need to add new updates to the local IR or authorisation policy. Such a decision
(if required), is made by the derivation engine (h.), which will in turn make the
appropriate additions to the internal representation list (s.) and the authorisation
policy (j.). The entire operation is mediated using the guidelines specified in the
access control policy (q.)

5. If the credentials fail to be verified successfully, an appropriate security excep-
tion is returned via a fault (g.). Otherwise, the validator converts the store request
into an appropriate format and sends it off to the authorisation engine (e) along
with the role and accompanying security attributes.

6. The authorisation engine first needs to ascertain whether the store request is
valid for the specified role based on the authorisations specified in the access
control policy (k.). If it is not, an appropriate security exception is again returned
via a fault (t.). Otherwise, new authorisation information for the p-assertion
to be stored needs to be determined. The authorisation engine formulates an
appropriate statement which is then sent off to the derivation engine (i.). For
the case of the third security issue mentioned in Section 4.2, the submitted p-
assertion will also contain accompanying authorisation information; this will
be also be taken into account in the formulated statement of the authorisation
engine.

7. The derivation engine subsequently creates new authorisation information from
the formulated statement based on the rules prescribed in the access control pol-
icy (q). For purposes of maximising performance, this new authorisation infor-
mation could have been created by the recording actor doing the submission so
that the derivation engine uses it directly without any further processing. The
new authorisation for the p-assertion to be stored is added to the authorisation
policy (j). The p-assertion is now sent onwards to the database backend, along
with relevant authorisation information or metadata that it is meant to be stored
with (l.).

8. An acknowledgement (as well as other pertinent information) is returned to the
derivation engine (m.), which is processed accordingly and another acknowl-
edgement returned to the recording actor (o).

Scenario 2 : Retrieval of a p-assertion by a querying actor

The sequence of interactions is nearly identical to that for the case of storage. The
primary difference arises from the fact that there is no need for the derivation engine
to generate new authorisation information as there is no new p-assertion to be stored.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

42

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

However, when the requested p-assertion is returned (m.), further transformations may
be performed on it, in accordance to the initial authorisation information associated
with the request as well as any additional authorisation information stored and asso-
ciated with the p-assertion itself. The transformations which are undertaken by the
derivation engine, may take the form of filtering out portions of the p-assertion or
transforming the information in the p-assertion in some specific manner.

Depending on various factors such as the particular deployment of provenance
stores, the p-assertions returned and the nature of the request made by the querying
actor, there may arise a need for the provenance store to engage in remote interactions
with other systems (potentially located in different security domains as well) in order
to return a satisfactory result set to the querying actor. This activity is undertaken by
the remote interactor (n.), which will procure the necessary security credentials for
its interaction from the trust mediator. Again, this operation is coordinated under the
guidelines specified in the access control policy (p., q., v.).

Scenario 3: Management of the provenance store by a managing actor

Management operations on the stored p-assertions are achieved in an identical
manner to that for scenario 1 and 2. Submission of a management operation request
is treated like the submission of a p-assertion to be stored, with the difference that the
management request is not stored but rather processed by the derivation engine and the
appropriate functionality then enacted. This may require retrieval of p-assertions, if so,
these are then returned to the managing actor in a similar manner to that in Scenario
2. There may also be modifications of internal representation list/authorisation policy
which may include deletion, modification and addition of entries. All of these oper-
ations are consequent on the identity validator first recognising that the authenticated
managing actor has the role or capability to perform these management type activities
(see Section 7.6).

Scenario 4 : Integrating authorisations of the provenance store and the host system

This can be accomplished by providing a link / interface between the access control
/authorisation components of the host system and the derivation engine. If the prove-
nance store architecture is tightly integrated with its host system, this link may not
need to be secured as all communications between the architectures are internal within
the operating system, rather than through an exposed network medium. Changes that
need to be made to the authorisation policy / internal representation list can then be
propagated through the derivation engine (r).

An implementation of the provenance architecture may require distributed prove-
nance stores for reasons such as scalability, as will be discussed in Chapter 5. In such
an instance, p-assertions related to a specific workflow or sequence of execution may
be stored in multiple provenance stores by the responsible recording actors. Conse-

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

43

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

quently, a query to retrieve a group of related p-assertions may potentially require a
series of queries to the various provenance stores holding the desired p-assertions. We
discuss the security implications of this requirement in Section 5.7.

4.4 Security in Other Architecture Components
In the previous subsection, we presented and described the functioning of a security
architecture to protect the provenance store, a key component of the logical archi-
tecture. Here, we study the security considerations underlying interactions involving
other components of the logical architecture.

4.4.1 Between other components and the provenance store
The other components in the logical architecture that interact directly with the prove-
nance store will now require corresponding security functionality as well in order to
ensure their interactions are secured properly. We describe the nature of the required
functionality below for application services, management UIs and processing services.

1. A facility is required for accessing credentials that are to be submitted to the
identity validator in the provenance store. This can be provided as additional
libraries in the corresponding actor side libraries (Section 8.7) or as interfaces
that permit interoperation with external third party applications that provide cre-
dential generating functionality. A straightforward example would be a keystore
manager application that generates, archives keys and certificates and obtains
approval for these certificates from a CA.

2. If a keystore or some other facility for storing cryptographically generated ma-
terial is to be used by the actor side libraries, it has to be secured appropriately
(e.g. located in a secure account, encrypted and contents accessible only by the
provision of a username/password combination).

3. A facility is required for accessing specific security mechanisms such as signing
or time stamping. This is necessary, for example, when the asserting actor needs
to sign the p-assertion it created (see related security issue 2).

4. For the case where authorisation information is desired to be submitted along-
side p-assertions, an interface must be provided as part of the domain specific
services that allows the retrieval of this information from the appropriate loca-
tions (such as a local database). This interface should be congruent with the
specific format in which the authorisation information can be expressed in.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

44

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

4.4.2 Intermediate components
By intermediate components, we refer to components that are not directly accessible
by the user. Such components may themselves be invoked or accessed by other com-
ponents rather than by the user, and may interact directly with the provenance store.
For example, a user may use a presentation UI to access a presentation service which
in turn accesses the provenance store. In the application domain, a user may access an
application UI that in turn invokes a chain of other application services before a final
invocation is made to the provenance store. In such cases, the intermediate component
may require authentication of incoming requests to it. It is possible to reuse the secu-
rity architecture developed for the provenance store for this particular component as
well. The primary differences would be, with reference to Fig. 4.1, are:

1. As the incoming request is to the intermediate component, it is unlikely to be a p-
assertion, rather a generic data item (which may contain a p-assertion) submitted
in accordance with the schema of the interface to this intermediate component.

2. The derivation engine will not be used to create new authorisation information
as the submitted data item is not intended to be stored. However it may be used
in performing some security-related functionality on the data item, for example
encrypting or filtering out a certain portion of it. This will be accomplished
in conjunction with security policy dictating the operation of this intermediate
component.

3. Once the request is approved by the authorisation engine, it is sent off (l) to
some internal function of the intermediate component for further processing,
rather than to a database backend (as is the case for the provenance store). Once
this processing is complete, a result is returned to the invoking actor (m) and /
or a further invocation is made to another component.

4.4.3 Delegation of identity or access control
The need to delegate access control may arise if the intermediate component described
previously exists in a separate security domain from both the user and the provenance
store. Consider again the logical architecture in Fig. 4.1 and assume that a user is
performing a query on the provenance store through the presentation UI and a pro-
cessing service. Assume now three separate security domains: one containing the user
and the presentation UI, another the processing service, and the third encapsulating the
provenance store.

When the presentation UI under the users control sends a request to the presenta-
tion service, an appropriate credential is submitted by the user for purposes of authen-
tication. If the request is authorised, the presentation service will then decide the type
and number of provenance store queries that need to be made in order to satisfy the
request. When making these queries, the presentation service needs to present suitable

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

45

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

authentication credentials to the provenance store. There are essentially two ways to
proceed here:

• Authenticate to the provenance store using the credentials of the presentation ser-
vice, whereupon subsequent authorisation decisions will be based on the identity
or associated role of the presentation service. This approach requires the presen-
tation service to be trusted and known to the provenance store security admin-
istrators, and that it has the appropriate authorisation to access a wide enough
pool of p-assertions to satisfy requests from all potential users (or at least users
that are known within the security domain of the presentation service).

• Authenticate to the provenance store on behalf of the original user. This ap-
proach requires that a form of delegated identity or access control credential be
created by the presentation service, possibly in negotiation with the presentation
UI. The identity validator of the provenance store must then be able to recognise
and process this delegated credential accordingly, and infer the identity or asso-
ciated role of the original user. Subsequent authorisation decisions are then on
the basis of the users identity, and may also need to take into account additional
constraints specified in the delegated credential itself.

The first approach is suitable if all potential users making queries can ever only do
so through the medium of a presentation service. Here, the responsibility of checking
authorisations for the actual users is effectively offloaded from the provenance store to
the various presentation services in the system. If the number of presentation services
known within the provenance store security domain is significantly smaller than the
potential number of users, then the overhead of authorisation is equivalently reduced
as there is now only a need to check on these presentation services.

There are some drawbacks however with this approach however. Firstly, authori-
sation policies are likely to be duplicated between many presentation services, as it
is unlikely that authorisation for a specific user will differ between different services.
Accordingly, changes or additions to these authorisation policies must then also be
propagated between the different copies on all services. Lastly, application services
storing p-assertions through the recording interface must now provide authorisation
information pertaining to presentation services rather than specific users. This may
necessitate additional overhead in communication between application services and
presentation services.

The second approach therefore appears to be a more feasible one. There will how-
ever be an overhead associated with communication between the presentation UI and
the presentation service in order to create an appropriate delegation credential. De-
pending on the delegation act itself, there may be a need also for further communica-
tion between the security architecture of the provenance store and the user / presenta-
tion UI during the authentication or authorisation process in the security architecture of
the provenance store. This might happen, for example, when delegating access control

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

46

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

is expressed through the modification of the authorisation policy in the provenance
store to reflect the delegation of authorisations between the security domains of the
user and the provenance store.

Even when credential delegation is used, the presentation service may also have
an installed security policy that dictates the nature of the results to be returned to the
user / presentation UI. For example, assume that a request from the user to the pre-
sentation service results in several corresponding query requests being sent in turn to
the provenance store along with a delegated credential. P-assertions pertaining to the
authorisation associated with this credential are then returned to the presentation ser-
vice. At this point, the security policy of the presentation service as pertaining to the
user in question may dictate further processing of the results (such as transforming or
filtering it in some way) before finally returning it to the user. In this case, filtering or
transforming of the returned results based on authorisation considerations happens at
two stages: once at the provenance store, and then subsequently at the presentation ser-
vice. In both stages, it is performed by the derivation engine of the respective security
architecture. There may also be need to communicate between the authorisation en-
gines of both the presentation service and provenance store via their respective remote
interactors and trust mediators, if complex authorisation decisions are to be affected.

The description in this subsection is equally applicable to intermediate components
in other places in the logical architecture, for example with an application service that
is located in a different security domain from the actual application service that makes
the final submission of p-assertions to the provenance store. Similarly, delegation of
identity or access control can also occur multiple times if there is an invocation of a
chain of application services (such as that might occur in a workflow), with all these
services located in different security domains. In cases like this, it is necessary to
ensure that the delegation mechanism being used (for example, proxy certificates) can
support multiple acts of delegation.

4.5 Additional security issues
While this chapter discusses security considerations for all components of the logical
architecture, the primary focus is on the security architecture for the provenance store
as we have established it as the core component in the logical architecture. The con-
struction and implementation of this architecture will therefore take precedence over
security considerations for other components. In particular, if the provenance system
is to be integrated into an independent application domain of which the developers of
the provenance system have no control over, then it is assumed that some, if not all,
of the security issues relating to the application services have already been addressed
adequately. Such issues include the need for delegation of access control, which was
already discussed at the end of the previous section. In this section, we describe a few
more of these types of security issues. We state where we do not consider an issue to be
under the purview of the security work to be achieved for the provenance architecture.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

47

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

1. Mutual authentication and secure transport of p-assertions between two appli-
cation actors. Both activities have to be handled or negotiated between the two
actors involved in the production of interaction p-assertions. This issue is en-
tirely within the responsibility of the application domain.

2. Anonymisation of data. Some applications (for example Medical applications
using sensitive patient data) require the exchange of patient-related information
during the interaction of services. Legal restrictions mandate that data of this
nature is anonymised (patient identity is removed) and depersonalised (i.e. the
identity of the patient cannot be traced based on other information in the record).
This requirement is also outside the context of the security architecture.

3. Support for multiple authentication schemes. To enhance security in some ap-
plication scenarios, authentication requires a combination of security credentials
in order to be successful. The identity validator of the component in question
must then be able to support the use of multiple security credentials. There is no
explicit requirement for multiple authentication to be handled by the provenance
store, although this could be employed in the application domain itself for which
it assumes full responsibility for.

4. Specifying policies in an RBAC fashion. It may be useful for authorisation to
be performed in a RBAC fashion in the provenance store; the authorisation en-
gine, policy and internal representation list would thereby need to incorporate
the necessary semantics to express RBAC-type assertions.

5. Long term storage of process documentation. If a third party database provider
is used, then process documentation may need to be encrypted or signed by
the remote interactor prior to sending it off for storage. In the event that this
documentation is intended to be stored for a relatively long period (e.g. 100
years), a situation likely to arise is one where the original cryptographic keys
and / or algorithms become outdated or expire. Such issues must be catered
for in some way, for example, by having a key archival facility and re-signing
/ re-encrypting provenance information periodically over the intended storage
duration.

6. Expiry of certificates. For workflows that run over a relatively long period, it is
possible that certificates could expire in the middle of a workflow run. If an actor
uses a certificate as part of the authentication process to the provenance store,
then expiry of this certificate would mean that submission invocations that were
once accepted within the context of this workflow have now become invalid. To
avoid situations like this, proper management of certificates and keys at the actor
end is called for (i.e. workflow duration is estimated against certificate life time
prior to commencing a workflow). Alternatively, the provenance store security
policy could be articulated appropriately to avoid this situation. For example,

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

48

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

the authorisation component could keep track of all invocations from a given
actor within the context of a specific activity and allow remaining invocations to
proceed in that activity as long as the initial invocations were signed with a valid
certificate.

4.6 Conclusion
In this chapter, we discussed security issues that were relevant in the context of prove-
nance. The security architecture for the provenance store is then presented along with
an explanation of the functionality of its constituent components. This is followed
by an illustration of the interaction of these various components in for some standard
interactions with the provenance store. We then discuss security issues pertaining to
other components of the architecture. Finally, we outline several peripheral security
issues, of which some may need to be addressed in the development of the security
architecture. In the following chapters, we will again discuss security issues (where
relevant) with appropriate references to this chapter.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

49

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 5

Scalability Architecture

After introducing a logical architecture for provenance systems in Chapter 3, this chap-
ter now discusses scalability in the architecture. Architectural scalability addresses
how architectural components can be organised and used by implementations to cater
for increasingly large loads in terms of such measures as computation, bandwidth and
storage. The chapter first presents a set of recording patterns that identify communi-
cations between key architecture roles. Second, it explains how the data organisation
adopted by the provenance store allows for data that is geographically distributed. It
then goes on to explain how the staging of data, references and templates can be in-
tegrated into the provenance architecture to address scalability. Finally, it discusses
the security implications of these architectural concepts. The design presented in this
chapter is inspired by previous scalability analyses and use cases [IGM05].

5.1 Recording Patterns
To be able to cope with the documentation of a single execution, provenance stores
may have to be distributed since there can be a large quantity of data, in a large amount
of assertions, recorded by a high number of actors deployed in many organisations,
each with their own security domain, privacy requirements, etc. The requirement for
recording process documentation in distributed provenance stores, such that all doc-
umentation related to an execution can be retrieved again, presents a developer with
several deployment problems. These include where to store process documentation,
how many provenance stores to deploy, where in the network topology to deploy
provenance stores, and how application actors can associate process documentation
stored across provenance stores. Therefore, one aim of the distribution architecture is
to present a set of deployment patterns (†) that address these problems. [SR-2-4, p. 117]

A pattern [AIS77, Ale79, GHJV95] describes a solution to a common design prob-
lem; the solution described must strike a balance between being concrete enough to be
applicable and abstract enough so that it can be applied to a range of similar problem
situations. In the context of a provenance architecture, patterns allow us to present

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

50

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

a solution that any developer can use to integrate p-assertion recording into their ap-
plication. We now describe a set of patterns for p-assertion recording adopted from
[Gro05b]. The format is as follows:

Each section title is a short name of the pattern that reflects the solution.

Diagram A diagram that shows the pattern visually. Diagrams have a common vi-
sual appearance. Provenance Stores are labelled and denoted by a 3D cylinder. Actors
are denoted by boxes. A single message exchange is denoted by a line with an ar-
row head. The arrow denotes the direction of the message flow. Dotted lines follow
the same convention but denote multiple message exchanges. A circle above a line
denotes information inside the message.

Context The situation in which the pattern applies and why this pattern exists.

Problem Describes the problem that the pattern solves providing more detail as to
when the pattern should be applied.

Solution A description of how to apply the pattern including the interactions be-
tween actors and any properties an actor is expected to have in order to function in the
pattern.

5.1.1 SeparateStore Pattern
Diagram See Figure 5.1.

Context Application actors want to make available information about their interac-
tions and associated state. This pattern exists because querying actors want to know
how application actors have interacted in the past in order to produce a piece of data.
To know how application actors performed, these application actors must make avail-
able information about their actions.

Problem An application actor, A, may be involved in a large number of interac-
tions over its lifetime and cannot retain all the process documentation itself. Like-
wise, querying actors would like to access information about A’s previous message
exchanges and states, even when A is not available. For example, A may have been
shut down, moved or be under repair.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

51

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Actor

Provenance
Store

Record
P-Assertions

Figure 5.1: SeparateStore Pattern Diagram

Solution A separately deployed store is introduced to retain information about an
application actor’s interactions and states, which we referred to as provenance store
in Chapter 2. An actor records p-assertions in a provenance store so that it does not
have to retain this information itself. A provenance store should have the following
properties:

1. It should be available in a long-term manner in comparison to the application
actors that submit p-assertions to it. This property allows p-assertions recorded
by an application actor to be accessed after the application actor has become
unavailable.

2. It should provide a well-defined interface for the recording of p-assertions by an
application actor.

3. It should provide a query capability to retrieve p-assertions, which makes the
p-assertions available to querying actors.

4. It should provide a management mechanism to manage the stored p-assertions.

5.1.2 ContextPassing Pattern
Diagram See Figure 5.2.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

52

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Client Service

Provenance
Store

Provenance
Store

Record
P-Assertions Record

P-Assertions

Context

Figure 5.2: ContextPassing Pattern Diagram

Context Two application actors, A and B, exchange a message. A and B record
p-assertions about this interaction in two provenance stores (see the pattern Separate-
Store). Both actors record these interaction p-assertions because they want their view
of that interaction to be documented. This allows other actors to determine if A’s and
B’s views of the interaction concur. Likewise, A and B may want to record actor state
p-assertions and relationship p-assertions with respect to a particular interaction.

Problem The p-assertions that A and B record need to be identified as being the
documentation for the same interaction. Otherwise, the actors’ views of the interaction
cannot be associated with one another; it then becomes difficult to determine if the
recorded p-assertions are documenting the same interaction.

Solution The sender in the interaction must obtain the appropriate identifiers (IDs)
to identify the interaction. It must then pass a context containing those IDs to the re-
ceiving actor. Both actors use these IDs to record their p-assertions in their respective
provenance stores. The p-assertions for the interaction can be matched by the IDs gen-
erated by the client actor (cf. matching p-assertions in Chapter 2). A method of passing
this context is by attaching it to the application message exchanged by the client and
service actors. (Application actors may use any other appropriate method to pass such
context information.) Beyond passing IDs, application actors may use a context to
pass other information relevant to provenance. The context used in this architecture is
the p-header, which was defined in Section 6.3. The use of ContextPassing is core to
the architecture as discussed in Section 3.4; Chapter 8 discusses further the expected

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

53

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

behaviour of actors regarding such contexts. Identifiers and contexts are also discussed
in Sections 6.1 and 6.3.

5.1.3 SharedStore Pattern
Diagram See Figure 5.3.

Client Service

Provenance
Store

Record
P-Assertions

Record
P-Assertions

Figure 5.3: SharedStore Pattern Diagram

Context Actors record p-assertions in provenance stores following the SeparateStore
and ContextPassing patterns.

Problem The SeparateStore and ContextPassing patterns may lead developers to be-
lieve that for every application actor, there is a corresponding provenance store. How-
ever, developers may not want to deploy a provenance store for every application actor,
especially when the number of application actors is large. Also, in order to retrieve the
provenance of a result each provenance store must be contacted resulting in slower
query performance.

Solution Application actors are allowed to record p-assertions in a shared prove-
nance store.

The SharedStore pattern clarifies the way in which SeparateStore and ContextPass-
ing can be applied. Both SeparateStore and ContextPassing are agnostic as to what
provenance store an actor may use to record its p-assertions. SharedStore emphasises

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

54

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

that actors can record their p-assertions in any store they choose and provenance stores
may hold p-assertions from multiple actors. It does not prescribe how many stores
there should be and which provenance stores should be shared. It is left to the devel-
oper applying the pattern. SharedStore allows developers to determine the distribution
of provenance stores that fits their application.

5.1.4 Pattern Application
The patterns that we have introduced show how p-assertions can be recorded in prove-
nance stores by actors. The documentation of process can be recorded for an entire
system by applying a selection of these patterns to every actor and every interaction in
a system. Hence, a given actor may use different provenance stores for recording p-
assertions pertaining to different interactions. For example, Figure 5.4 shows a system
with a client initiator, a workflow enactor and a service all recording p-assertions about
their request and response interactions. SeparateStore, ContextPassing and Shared-
Store have all been applied multiple times in this case.

Client
Initiator

Workflow
Enactment

Engine

Service 1

Provenance
Store 1

Provenance
Store 2

Provenance
Store 3

Context
1

Context
2

Context
3

Context
4

Figure 5.4: A system in which SeparateStore, ContextPassing and SharedStore have
been applied multiple times

These recording patterns allow for the flexible deployment of provenance stores to
aid scalability. The patterns can be applied to any number of interacting actors using
any number of provenance stores in order to record p-assertions. These distribution
patterns however do not mandate the number of provenance stores that must be used
in a given application, nor the way they must be shared; this is left to the application
designer to make those decisions.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

55

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

5.2 Linking
By the definition of the p-assertion recording patterns, an actor is allowed to record its
p-assertions in any provenance store. This means that the documentation of process
that led to a result can exist across any number of provenance stores. There are several
benefits in allowing documentation to be recorded across multiple stores: the elimi-
nation of a central point of failure, the spreading of demand across multiple services
and the ability for provenance stores to exist in different network areas (for example,
one provenance store may be behind a firewall whereas another is not). In general,
allowing p-assertions to be recorded across multiple stores increases the flexibility and
scalability of systems recording p-assertions. The scalability and flexibility are key to
allowing these patterns to be applied to the large scale, open, distributed systems that
we consider.

Given that the p-assertions documenting a given execution may be spread across
multiple stores, there must be some mechanism to retrieve these p-assertions in order
to validate, visualise or replay the represented process. To facilitate such a retrieval
mechanism, we introduce the notion of a link, which intuitively is a pointer to a prove-
nance store.

Definition 5.1 (Link) A link is a reference to a provenance store. 2

We note that links are necessarily unidirectional: a link always points to a remote
provenance store location. Links are used in two instances, which we now describe.

5.2.1 View Links
The first use of a link deals with the situation where a client’s view of an interaction
and a service’s view of the same interaction as identified by a shared interaction ID
are stored in two different provenance stores. It is necessary for each actor to record a
link, which we refer to as a View Link(†), that points to the provenance store where the [GR-OTM.5, p. 126]
opposite party recorded their p-assertions. Hence, the client in an interaction records a
link to the provenance store that the service used to record p-assertions for the given in-
teraction, and vice-versa. This allows querying actors to navigate from one provenance
store to the other in order to retrieve both views of an interaction. We note that View
Links point to provenance stores only, not to particular pieces of data in a provenance
store; the actual data of interest can be found by the ID identifying the interactions
uniquely.

If an actor A interacting with actor B has to assert, in provenance store PA, that B
is recording its view of the interaction in another provenance store, then actor A has to
become aware that the store used by B is PB. Either such knowledge is built into A,
or it is communicated to A in the course of execution. If it is built into A, then such
knowledge is part of A’s state, and can be asserted by A as an actor state p-assertion.
Alternatively, if it is to be communicated to A, then such knowledge can be passed as
part of a context, as formalised by the ContextPassing pattern (for instance, when B

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

56

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

returns a result to A). Hence, A can assert the link as part of an interaction p-assertion.
It is the responsibility of the provenance store to extract View Links from actor state
or interaction p-assertions and make them readily available to the querier.

5.2.2 Object Links
Relationship p-assertions allow relationships between both messages and data to be
expressed. We model relationship p-assertions as one-to-many triples between data
or messages. (Details about the modelling can be found in Chapter 6.) Each triple
consists of a subject, a relation and several objects. A relationship p-assertion made by
an actor is a directional relation with the subject of the relation referring to the local
current interaction p-assertion (or data contained in it).

The object of a relation p-assertion may be local or remote. Hence, we introduce
a second usage of links to cater for the situation in which an application actor records
a relationship p-assertion between a local p-assertion and a remote p-assertion. In
this case, the application actor needs to record which provenance store the remote p-
assertion being related to is stored in; such a link is referred to as an Object Link(†). [GR-OTM.5, p. 126]
Again, an Object Link only points to the provenance store and not to a particular piece
of data in the store.

5.2.3 Linking Summary
Figure 5.5 shows an example of how both Object and View Links are recorded. Actor
A sends a message (M2) to actor B as a consequence of message M1. This interaction
is identified by the key 2. In the context (shown by the circle) of the message, A puts
a link to the provenance store, PA, that it uses for the interaction with B. Actor B
then extracts the link from the context and records it as an interaction p-assertion in
the provenance store PB. As a result, a View Link from PB to PA is created (shown
by the arch VL 1). Likewise, A knows from its configuration that B always stores its
p-assertions in PB. Hence, A records a link to PB as an actor state p-assertion in PA,
which creates a corresponding View Link shown by the arc VL 2. Finally, A makes
a relationship p-assertion between its interaction with B and a previous interaction
identified by the key 2 containing M2. As part of the p-assertion, it adds a link to
the provenance store, PR, where the p-assertions related to the other interaction were
stored. It then records the relationship p-assertion in PA, which creates an Object Link
from PA to PR shown by the arc OL. Figure 5.6 shows the contents of the provenance
stores PA and PB after all p-assertions have been recorded.

Both View Links and Object Links allow data and p-assertions stored across prove-
nance stores to be retrieved by querying actors. View and Object Links can be con-
trasted as follows. A View Link points to another store that contains a piece of data
written by another actor (which is providing a different view on a same interaction).
An Object Link points to another store containing a piece of data asserted by the same
actor (which is making assertions about another interaction).

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

57

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

A B

PA PBPR

PA

Actor state
p-assertion
containing a
view link to
PB

Relationship
p-assertion
relating M2
and M1 with
a object link
to PR

Interaction p-
assertion
containing
M2 and a
View link to
PA

VL 1

VL 2
OL

M1 M2

Figure 5.5: An example of linking

Contents of PA

interaction key p-assertion type p-assertion content
1 interaction M1
2 interaction M2
2 actor state View Link to PB

2 relationship 2 is related to 1, Object Link to PR

Contents of PB

interaction key p-assertion type p-assertion content
2 interaction M2, with View Link to PA

Figure 5.6: Contents of provenance stores

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

58

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Links provide a scalable solution to the problem of connecting distributed process
documentation. Similar to the Web, the unidirectional nature of links prevents the
problem of having to synchronise between provenance stores when recording a link.
Instead, each recording actor is responsible for recording a link just as each web page
author is responsible for adding links to other pages as appropriate. Recording of links
is lightweight as the information needed to establish a link is minimal. Furthermore,
the link structure provides a structured simple mechanism for querying actors to tra-
verse provenance stores in order to perform queries.

5.3 Data Staging
A provenance store that manages p-assertions over an extended lifecycle requires ex-
tensive management and data storage features (see Implementation Recommendations
IR-PS-9, p 132 and IR-PS-8, p 131). These features are typically provided within an or-
ganisation on managed servers administered centrally. In many cases, such provenance
stores may not be close enough (in terms of network topology) for actors to record p-
assertions with acceptable performance. An example of this might be where process
documentation is being recorded for a workflow running on a computing cluster with
high speed networking support between the clustered processors. Slower speed net-
works connect the cluster to other servers which include a managed provenance store.
Communicating directly with the managed provenance store would impact the perfor-
mance of the clustered workflow. Hence, systems designers may choose to include
data staging in their design. Data staging is the buffering of data at temporary storage
sites until that data can be moved to a final storage site.

Data staging can be done via the creation of local temporary provenance stores (i.e.
stores that are deployed close to the recording actor with good connectivity and that
exist solely for the purpose of data staging). Such a temporary store could be deployed
on the same host as the recording actor itself. Creation of temporary provenance stores
should be done through a factory mechanism and configured in such a way that once all
recording is finished by the actor/actors using it, the documentation is then transferred
to the next provenance store. We note that data may be staged several times as it is
transferred to the final set of managed provenance stores. The transfer of data may
be accomplished either by a push from one provenance store to the next or pulled by
the latter from the former. This is a flexible approach that supports multiple firewall
and network topologies. Finally, if the provenance store is temporary, a shutdown
mechanism is required that safely archives or discards the staged documentation. The
use of temporary stores allows for efficient use of network bandwidth by actors as
well as ensuring that staged data can be both protected with appropriate access control
mechanisms and queried over.

Whether a provenance store is temporary or permanent, its behaviour as a data
staging provenance store is determined by a policy. A provenance store can act as
both a regular and data staging store for different actors depending on the associated

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

59

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

policies. Furthermore, policies are necessary to determine whether provenance stores
should push or pull staged data. Policies for data staging are defined in Definition 7.9,
page 99.

Data staging implies the need to copy or move data between various provenance
stores. A provenance store can copy data to a target provenance store by first query-
ing itself (using the query interface) for the particular p-assertions to be copied and
then recording those p-assertions in the target provenance store (using the recording
interface). The provenance store is acting as a recording actor in this case and not an
asserting actor. The provenance store may use implementation specific functionality
for deleting p-assertions if movement of data is necessary. Likewise, implementation
specific functionality may be implemented to update linking information (see Sec-
tion 7.4.2).

The copying and deletion of p-assertions between provenance stores have an ef-
fect on querying those p-assertions: they are available for search and retrieval from a
different set of stores. For a querying actor expecting to find process documentation
in a store from which it has been deleted, there should be a mechanism by which it
can find the new location of that documentation. This is a data management issue out
of scope of this architecture (we assume that, in general, p-assertions are not deleted
from stores), but suggested mechanisms are given in Section 7.4, such as the sending
of notifications when p-assertions are moved to another store.

The querying over staged data is challenging. For example, data may be in transit
when a query is issued to a provenance store. If the data necessary to answer a query
is in transit to another provenance store, is not readily available and the query cannot
be answered. One solution to the problem is to inform querying actors when data is
finished being transferred and where that data now resides through the use of notifica-
tions (Section 7.4). The remote interactor of the security architecture (Section 4.3.1)
can be used in the sending of these notifications, as well as supporting any security
requirements implicit with such notifications.

5.4 References
In many applications, the size of the messages being transferred between actors may be
so large or bandwidth costs so high that the actor cannot record a copy of the message
in the provenance store. In other instances, actors may wish to record multiple p-
assertions that contain the same data but only record that data one time. Both these
problems can be solved through the use of references. References differ from links.
Links point to provenance stores whereas references point to data.

5.4.1 By-Value versus By-Reference recording
To address the situation where an actor does not wish to record data by-value in a p-
assertion, we introduce the notion of recording a reference to a message outside the

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

60

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

provenance system. An actor may store its application data on some persistent storage
outside a provenance store, such as a shared file system. If the persistent storage
provides some unique identifier for the data (for example, a path), the identifier can
be placed inside a p-assertion that is submitted to the provenance store. A querier
then must resolve the path in order to obtain the corresponding data. In this case, the
lifetime of the application data in the persistent storage must be equivalent to that of
the provenance store.

Another solution is for the provenance store to periodically resolve the references
downloading the data into a separate logical repository in the provenance store. The
provenance store can then inform querying actors that it has a copy of the referenced
data that it can provide. However, this solution implies that the provenance store can
understand the reference scheme used. Policies identify how provenance stores deal
with referenced data. See Definition 7.8, page 98, for a discussion of such a policy.

5.4.2 Record-Once versus Record-Many
Applications, especially those which iterate heavily, may record the same p-assertion
content multiple times leading to potentially large amounts of redundant information
within the provenance store. To address this we allow references to data items within
provenance stores.

A p-assertion has a unique key (cf. Figure 6.2, page 68). If an actor records a subse-
quent p-assertion that has the same content as a previously recorded p-assertion, it may
choose to replace the contents of the new p-assertion with the previous p-assertion’s
key thereby reducing the new p-assertion’s size. If there are multiple p-assertions to be
recorded, an actor may repeatedly replace the p-assertion content with the appropriate
p-assertion key. Querying the p-assertion can then include a lookup stage that replaces
the recorded identifier with the contents of the message that matches the identifier.

Both referencing mechanisms are explained in terms of replacing the whole content
of p-assertions or messages. However, if a subpart of a message or p-assertion can be
identified that subpart may also be replaced by references. For a further discussion of
modelling references, see documentation styles 6.13, page 72 and 6.15, page 73.

5.5 P-Assertion Templates
P-Assertions may often follow the same pattern. They may contain the same structure
or data with minor changes in between. For example, during an iterative workflow,
p-assertions may be generated that have roughly the same data where one or two pa-
rameters in the data may be changed (for instance the state of the loop counter for
that iteration). The p-assertions generated by the actors in the workflow follow a tem-
plate: for every iteration, put Y in position X of the p-assertion content. P-Assertion
Templates, then, are algorithms that actors use to generate p-assertions.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

61

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Typically, such templates are defined locally and used to create p-assertions, which
are then recorded in a provenance store. However, it may be the case that the structure
of a p-assertion is large or the computation required for its generation is so complex
that creation of the actual p-assertion may negatively affect the performance of the
actor. Therefore, a provenance store may allow actors to upload templates to it. The
actor can then record a p-assertion by sending a template identifier and its parameters
to the provenance store. The provenance store can then either generate the p-assertion
and place it in its own repository or dynamically generate the p-assertion as and when
a query needs it. This reduces the amount of data and processing an actor must record
to provide process documentation, thereby, increasing the scalability of the system.
P-Assertion Templates must be expressed in a language that both asserting actors and
provenance stores understand. The choice of such a language is implementation de-
pendent and can be specified through policies that govern templates (see Definition
7.10, page 99).

Templates are derived from work in mobile code [ACV97]. Extensive literature is
available about mobile code/agents. Implementers should consult this literature when
implementing this portion of the architecture.

5.6 Large Query Results
Process documentation stored across multiple provenance stores is likely to be mas-
sive. Query interfaces such as those defined in Section 7.2 allow querying actors to
obtain the process documentation that most precisely fits their provenance questions.
However, even with precise queries, the number and size of p-assertions returned to
the querying actors may be large. Therefore, we outline the following techniques for
dealing with large query results. Each of which allows querying actors to obtain infor-
mation as needed from the provenance store.

To handle large numbers of p-assertions, provenance stores should allow for the
buffering of p-assertions. A querier can then retrieve iteratively the p-assertions as
needed instead of in one large message. A specification of such an interface can be
found in Section 7.2. Furthermore, to support p-assertions that contain large data
items (images for example), query interfaces should allow the sending of keys for
those p-assertions instead of the p-assertions themselves. In some cases, the content
of a p-assertion may also be large. Provenance stores may also wish to support the
iterative retrieval of p-assertion content. This notion is supported through the Pro-
cess Documentation Query interface defined in Section 7.2 as well as Implementation
Recommendation IR-PS-7, p 131.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

62

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

5.7 Security
As discussed earlier, linking provides a mechanism to discover related p-assertions in
multiple stores. A potential security issue arises if the querying actor is not recognised
or does not have the necessary authorisation to retrieve the relevant p-assertions in the
security domains of all these stores. Consider a querying actor submitting a complex
query to the provenance store, whereupon the querying functionality determines the
necessary p-assertions required to satisfy the query and attempts to retrieve them from
the provenance store. In the event that not all of the required p-assertions can be found
locally, there are two possible ways to proceed:

• The querying functionality itself can use the links in the available p-assertions to
locate other distributed provenance stores which it subsequently needs to query.
Thus, the querying functionality queries the distributed provenance stores on
behalf of the querying actor.

• The querying functionality can return the available p-assertions to the querying
actor, which then itself has to navigate the links and make queries to the relevant
distributed provenance stores.

In the first approach, the provenance store to which the original query is directed
needs to interact with other provenance stores, possibly in other security domains. This
interaction will be handled by the remote interactor using credentials (if necessary) ac-
quired by the trust mediator in the manner previously detailed in Scenario 2 in Section
4.3.2. The remote interactor may also choose to use the delegated credentials of the
querying actor in its interaction with the remote provenance store, if so desired.

In the second approach, the querying actor will need to obtain the necessary cre-
dentials in order to communicate with the remote provenance stores, possibly through
a credential server. Alternatively, depending on the federation methodology employed,
the querying actor could attempt to authenticate directly using its own credentials and
the remote provenance store would attempt to verify its credentials in the manner out-
lined in Scenario 1 in Section 4.3.2.

Another security concern revolves around the need to establish liability for erro-
neous context information. In Section 5.1.2, we discussed the use of a context con-
taining IDs to identify an interaction between two actors. Since p-assertions in the
provenance store are matched on the basis of these IDs, it may be useful to provide
non-repudiation on such generated IDs in application domains where the need to iden-
tify matching p-assertions correctly is critical. As an example, if a client records X for
its ID in its own p-assertion and sends a service Y as an ID instead, the client’s sig-
nature on Y would establish its liability for the subsequent inability to obtain a match
between both IDs. The signature permits us to rule out other possible mitigating fac-
tors for the discrepancy, such as transmission errors or an error on the part of the ser-
vice actor. Signatures are supported by following Implementation Recommendation
IR-ASL-5, p 132.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

63

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

The security policy in such an instance should therefore dictate that the client actor
sign the IDs it generates (or the context containing such IDs) to the service actor (see
Rule 8.11). This signature activity could be encompassed within the mandate of the
protocol governing a secure interaction between both the client and service actors. On
a similar note, we observe that since the view link is crucial in locating a related p-
assertion for a given interaction, its non-repudiation can also be achieved by ensuring
that the recorded link is signed as well. If the recorded link is part of the contents of a
recorded p-assertion, then a signature on the entire content will suffice. Signatures on
p-assertions are discussed in Section 6.9.

Furthermore, if p-assertions are copied or moved between stores that are located
in different security domains (i.e. for the staging of data), the access control restric-
tions on them in their new destinations needs to be defined. In the simplest case, the
newly moved or copied p-assertions retain the same access control restrictions that
were associated with them in their original domain. These restrictions can be provided
as authorisation information along with the p-assertions as they are recorded to their
new destinations, where they can be processed by the derivation engine in the manner
described in Section 4.3.1.

If the authorisation information involves identities from the originating domain that
are currently unknown in the destination domain, then this identity information needs
to be communicated between the trust mediators of both domains. The communication
can be performed when the p-assertions are initially recorded, or at a later time when
a request is made to the provenance store from an entity that is not recognisable in the
new provenance store domain. The process of moving p-assertions between different
stores also needs to ensure that the transfer medium is secure (if such a requirement
is present), and that both stores are properly authenticated to each other prior to the
movement.

Security considerations can also arise in the use of references, where a p-assertion
contains a unique identifier for data stored elsewhere rather than the actual data itself.
In this case, both the asserting and querying actor may require some sort of assur-
ance that any data eventually retrieved by resolving the identifier in the p-assertion
is actually the same piece of data that was referred to by the identifier at the time of
p-assertion creation by the asserting actor. This can be accomplished by having the
querying actor include a digest of the data being referred to along with the identifier
of that data in the p-assertion. The signature on the p-assertion assures that the digest
and the identifier will not be changed. Subsequently, if the referenced data is retrieved
later, its digest can be computed and compared against the digest within the p-assertion
as a check of its integrity. Digests can be provided through the reference-digest docu-
mentation style (Definition 6.14 page 73, Section 6.5).

When references are being used, it may also be possible for the provenance store
to resolve the references itself (Section 5.4). Retrieval of the remotely stored data will
be achieved by the remote interactor of the security architecture, with the required
credentials being obtained by the trust mediator (Section 4.3.1).

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

64

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

5.8 Conclusion
This chapter presented the architecture facets that addresses problems of scalability in
provenance systems. The chapter presented three deployment patterns, which identify
communication between key architecture roles and that can be applied by developers
to deploy their provenance system in a distributed manner to promote scalability. It
then discussed how provenance retrieval could be enabled across a set of distributed
provenance stores via linking, which supports the deployment of multiple distributed
provenance stores. Data staging was presented as a mechanism for minimising the use
of network bandwidth and for allowing p-assertions to be recorded in a timely manner
by recording actors. The chapter then presented two notions of recording by reference
either by referring to p-assertions already recorded or by referring to data stored at
some other location from within a p-assertion. References support scalability by not
duplicating data and allowing data to be kept in a single location. P-Assertion Tem-
plates were then described as a mechanism to offload the generation of p-assertions
to provenance stores reducing the computational load on asserting actors. We then
discussed how large query results could be handled. Finally, we addressed relevant
security issues that pertain to these scalability solutions.

This chapter has presented architectural solutions to scalability for provenance sys-
tems. However, implementations of the architecture can also address the above is-
sues in technology specific ways. For example, provenance stores can use clustering
[IGM05] and database management technologies to handle large loads. Likewise, in
Web Service implementations, where XML is the common format, binary/compressed
data representation should also be supported. These implementation specific scalabil-
ity solutions are supported by the flexibility and design decisions prescribed in this
architecture.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

65

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 6

Provenance Modelling

In Section 2.4, we discussed the representation of provenance and introduced the con-
cept of a p-assertion as an assertion by an actor about a process. We identified three
types of p-assertion: interaction, relationship and actor state p-assertions. In this sec-
tion, we identify how each type of p-assertion can be modelled, i.e. we define the
data structure used to represent each type of p-assertion. Based on these models, we
introduce a common structure according to which p-assertions are structured in the
provenance store.

We note that the p-assertion models presented could be instantiated in different
languages, such as XML, RDF or even application-specific binary formats. The choice
is specific to the application that will make use of the process documentation and
the infrastructure on which it is run. To depict the models in the sections below, we
adopt a graphical representation of XML Schema, but this should not be interpreted as
prescribing the method of encoding. A description of the graphical representation can
be found in Appendix C.

6.1 Identifying Interactions
Every p-assertion is made in the context of an interaction: an interaction p-assertion
asserts the content of a message sent or received in an interaction, an actor state p-
assertion asserts the state of an actor at a specific instant during an interaction and a
relationship p-assertion relates an interaction to other interactions. Therefore, in order
to model p-assertions, we must provide a way to identify an interaction.

Definition 6.1 (Interaction Key) An interaction key is a globally unique identifier for
an interaction. 2

In Figure 6.1, we specify our model for referring to a single interaction: the inter-
action key. This key is made up of three parts: the address from which the message
came, the messageSource, the address to which the message was sent, the messageSink
and an identifier that specifies a particular interaction between these two addresses, the

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

66

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

interactionId. An instance of this data structure must be sent along with every p-
assertion when the p-assertion is recorded in a provenance store, so that the store is
aware to which interaction the p-assertion pertains.

Definition 6.2 (Message Source) A message source is the address from which a mes-
sage was sent. 2

Definition 6.3 (Message Sink) A message sink is the address to which a message was
sent. 2

Definition 6.4 (Interaction Identifier) An interaction identifier is a value that is unique
for a given message sent from one message source to one message sink. 2

Figure 6.1: Model for identifying an interaction

6.2 Identifying P-Assertions and Data
In addition to identifying the interaction about which an assertion is being made,
every p-assertion has its own identifier: the local p-assertion identifier. Each p-
assertion made by one asserting actor about one interaction must have a different local
p-assertion identifier. With both interaction identifiers and local p-assertion identifiers,
we can construct a global p-assertion key (GPAK) as shown in Figure 6.2. A GPAK
consists of an interaction key, whether the sender or receiver in the interaction made the
assertion (the view kind) and the local p-assertion id. A GPAK (†) uniquely identifies [AER-6, p. 130]
a p-assertion whether that p-assertion is stored in a provenance store or not.

Definition 6.5 (Local P-Assertion Identifier) A local p-assertion identifier is a value
that is unique for each p-assertion made by one asserting actor about one interaction.
2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

67

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Definition 6.6 (View Kind) A view kind denotes, for a p-assertion, whether the actor
making that p-assertion was the sender or the receiver in the interaction to which the
p-assertion refers. 2

Figure 6.2: Global P-Assertion Key

A p-assertion data item is part, or all, of a p-assertion, and can be identified by a p-
assertion data key. A p-assertion data key optionally extends a global p-assertion key,
identifying the p-assertion containing the data item, with a data accessor, identifying
the location of the data item within the p-assertion. The model for a p-assertion data
key is shown in Figure 6.3.

Definition 6.7 (P-Assertion Data Item) A p-assertion data item is part, or all, of a
p-assertion. 2

Definition 6.8 (P-Assertion Data Key) A p-assertion data key is a globally unique
identifier for a p-assertion data item. 2

6.3 Interaction Contexts and the P-Header
As described in Chapter 3, application actors must exchange provenance-specific con-
text information related to particular interactions for the process documentation to be
usable by query actors. For example, both sender and receiver must use the same in-
teraction key for the same interaction so that their assertions can be matched. Context
information can be passed as independently in messages specifically for the purpose
or as extra data in existing messages.

In the former case, the context information conforms to the interaction context
structure shown in Figure 6.4. An interaction context contains an interaction key and
any number of items of interaction metadata, which are contextual information re-
garding the identified interaction. Examples of interaction metadata include tracers
and addresses of provenance stores, which are used to create View Links discussed

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

68

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 6.3: P-Assertion Data Key

in Section 5.2. The view kind (sender or receiver) to which an interaction’s metadata
refers is not explicit in the interaction context, but can be determined by examining
whether the actor sending the context was the sender or receiver in that interaction.

Definition 6.9 (Interaction Metadata) Interaction metadata is provenance-related data
about an interaction. 2

Definition 6.10 (Interaction Context) An interaction context is a set of interaction
metadata about the same, identified, interaction. 2

Figure 6.4: Model of an Interaction Context.

If information contexts are exchanged via the header of an application message, ac-
cording to the ContextPassing pattern, then the p-header structure, shown in Figure 6.5

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

69

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

is used. Apart from potentially including a set of interaction contexts about other in-
teractions, the p-header provides context information about the message to which it is
attached. It includes an interaction key that the message sender is stating should be
used to denote the interaction to which the p-header is attached. This can be used, for
example, for a sender to inform a receiver of the interaction key for a given interaction.
Additionally, a set of interaction metadata can be provided about the message to which
the p-header is attached.

Figure 6.5: Model of the PHeader.

6.4 Interaction P-Assertion Modelling
Interaction p-assertions, as defined in Definition 2.6, state the content of a message re-
ceived or sent by the asserting actor. There may be different ways according to which
the content of a message may be asserted: for instance, the message content may be
asserted verbatim as the asserting actor received/sent it, or an altered description may
be asserted in which, for example, sensitive or large data items within the message are
replaced with references to those copies of the data items stored elsewhere, or are re-
placed with references and a digest of the data. Therefore, in modelling an interaction
p-assertion, we need a data structure in which asserting actors can declare not only the
content of the message but also the documentation style (†) that has been applied to [GR-OTM.1, p. 125]
it. If no change has been made between the message content sent/received and that
asserted in the p-assertion, a ‘verbatim’ documentation style is asserted. A taxonomy
of documentation styles is given in Section 6.5.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

70

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

We define a data type InteractionPAssertion to represent any interaction p-assertion
and depict its structure in Figure 6.6. A p-assertion consists of three pieces of informa-
tion: local p-assertion identifier, localPAssertionId; an identifier specifying the docu-
mentation style applied to the message content, documentation style; and the message
content itself, shown as ‘any’ as it is entirely application-dependent and so no generic
data structure can be specified for it. For example, the message content may be a SOAP

or a CORBA message.

Figure 6.6: Model for an interaction p-assertion

We remind the reader that the purpose of an interaction p-assertion is to describe
an interaction that took place in a process; ultimately, that p-assertion may be returned
by a provenance query about the result produced by that process. The act of construct-
ing a documentation item, i.e. a p-assertion, is itself a computation. Our rationale
for introducing the concept of documentation style is that such a computation is so
small or trivial (e.g. verbatim copy of a message) that it simply can be described by
documentation style. If an application needs to perform a complex computation in-
volving multiple actors in order to produce a p-assertion, we expect such a complex
computation to be documented fully by using the p-assertion model of documentation
introduced in this chapter. It is up to the application designer to decide the level of
documentation that is required for a given computation: if the process of creating p-
assertions needs to be documented by p-assertions itself, we must have a base case
according to which we agree not to document a computation further: this is precisely
the role of documentation style.

6.5 Documentation Style Modelling
When an actor documents an interaction, it constructs an interaction p-assertion (spec-
ified in Section 6.4), which states the content of a message received or sent by the
asserting actor. We regard the activity of constructing a p-assertion from a message
as an atomic transformation, which needs to be qualified by the asserting actor so that

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

71

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

querying actors can understand the nature of the transformation that was applied to an
application message. This is exactly the purpose of Documentation Style, which we
now define.

Definition 6.11 (Documentation Style) Documentation style is a representation of
the transformation according to which the content of a message or actor’s state is
asserted in a p-assertion. 2

Given such an explicit representation of a message transformation, documentation
style can be used for different purposes:

1. A documentation style is an explicit representation of the transformations that
happened to a message, which enables a querying actor to navigate the contents
of an assertion, through the use of corresponding schemas, and determine how
the original message was transformed.

2. Once an application designer has identified the type of transformation that needs
to be applied to a message, documentation style can be used by the asserting
actor in order to construct a p-assertion from a message; such an operation is
typically facilitated by an actor-side library (Implementation Recommendation
IR-ASL-7, p 132.).

For some particular documentation styles, it is also possible to reverse the ap-
plied transformation to determine the original message, in which the documentation
style of a p-assertion also represents the reverse transformation that can be applied
to it. While we do not limit the set of permitted documentation styles, since many
will be application-specific, some are essential across applications and worth defining
explicitly for interoperability, e.g. tools can be developed to interpret these standard
styles. There are several types of documentation style that the provenance architecture
standardises upon, each of which have different motivations. These are verbatim, ref-
erence, anonymous, security-signing and security-encryption, which we now describe.

Definition 6.12 (Verbatim Documentation Style) The verbatim documentation style
denotes a null transformation applied to the contents of a message.2

Such a style is the simplest documentation style as no transformation actually hap-
pens and the data is copied to the p-assertion in a “verbatim” way.

Section 5.4 introduces the notion of reference in order to provide scalable handling
of large p-assertions. Such references are handled by the reference documentation
style, which we now define.

Definition 6.13 (Reference Documentation Style) The reference documentation style
denotes a transformation of a message by which a part of (or the whole of) its contents
has been replaced by a reference to the location where the actual contents can be
found.2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

72

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Section 5.7 discussed security implications of Reference Documentation Style; in
order to ensure that the querier of a p-assertion who dereferences a reference accesses
the same data as intended by the recorder of the p-assertion, a digest may be associated
with the reference.

Definition 6.14 (Reference-Digest Documentation Style) The reference-digest doc-
umentation style denotes a transformation of a message by which a part of (or the
whole of) its contents has been replaced by a reference to the actual location where it
can be found and a digest of the substituted data.2

Section 5.4.2 introduced the notion of allowing actors to record references to p-
assertions that have already been recorded in a provenance store. This allows actors to
avoid recording multiple duplicate p-assertions. To support these references that point
internally to a provenance store, we introduce the following documentation style.

Definition 6.15 (Internal Reference Documentation Style) The internal reference doc-
umentation style denotes a transformation of a message by which a part of (or the
whole of) its contents has been replaced by a global p-assertion key, which refers to
another p-assertion that contains the actual data.2

This documentation style allows actors to avoid duplicating data unnecessarily.
The style is a special case of the reference documentation style.

Section 9.4 introduces the requirement for anonymisation of patient identifiers
from the OTM/EHCR application (GR-OTM.1, GR-EHCR.4). These application re-
quirements are handled by anonymous documentation style, which we now define.

Definition 6.16 (Anonymous Documentation Style) The anonymous documentation
style denotes a transformation of a message by which a part of (or the whole of) its
contents has been replaced by an “anonymous” identifier. This identifier hides the
actual data without losing the link to them. 2

Consider the case of medical data for example, where information for each patient
is kept. It may be necessary to hide the patient name from the provenance store due
to medical data privacy policies. In order to support this requirement, the anonymous
documentation style is used to replace the actual data (patient name in this case) with
an ID that in future, and with the appropriate access rights, can be used to access the
original data. So the transformation that takes place is the substitution of the actual
data with an anonymised ID.

There may sometimes be a need to indicate that certain parts of the message that is
about to be transformed into a p-assertion is attributable or linked in some way to cer-
tain parties. This goal can be accomplished by attaching the signatures of these parties
to the relevant parts of the message. In the simplest case, the required signatures are
already present in the original message. For example, two actors may sign parts of the
messages that they exchange with each other. In that case, the verbatim documenta-
tion style will ensure that they are retained in the created p-assertion (see Rule 8.13,

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

73

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

page 107). However, there may be instances where the asserting actor creating the
p-assertion may be in possession of delegated credentials of other actors that it may
wish to use to sign relevant parts of the message in accordance with some application-
dependent protocol. The security-signing documentation style is thus used towards
this end.

Definition 6.17 (Security-signing Documentation Style) The security-signing doc-
umentation style denotes a transformation of a message by which a part of (or the
whole of) its contents has been signed.2

Note that the notion of security-signing here differs from that of signing the entire
p-assertion (described in Section 6.9), which is what the asserting actor will do with its
own private key in order to establish its responsibility and corresponding liability for
the contents of the p-assertion. Security-signing however involves the asserting actor
using proxy certificates from other entities or actors to sign parts of only the content
of the p-assertion. Regardless of whether any security-signing is done, the asserter
should always sign the entire p-assertion it creates.

There may be situations where the asserting actor may want to ensure that certain
parts of the p-assertion it creates are only accessible to certain parties. In the simplest
case, this can be achieved by instituting appropriate access controls on the provenance
store through the authorisation policy described in Section 4.3.1. However, once a
p-assertion is retrieved from the provenance store, it is very difficult to control which
parties it is subsequently propagated to. If the asserting actor shares a secret key with
certain parties, it can elect to encrypt parts of the p-assertion so that only those parties
are able to view it. This is then the purpose of the security-encryption documentation
style, which we now define.

Definition 6.18 (Security-encryption Documentation Style) The security-encryption
documentation style denotes a transformation of a message by which a part of (or the
whole of) its contents has been encrypted.2

In applying the encryption documentation style, the data is replaced with the en-
crypted data and a set of encryption-related information, such as the name of the en-
cryption algorithm used. This information can later be used to decrypt the data. Note
that this encryption documentation style is unrelated to the encryption discussed in
4.3.2. For that case, encryption is applied for the purposes of securing the communi-
cation channel between the recording actor and the provenance store.

All previous documentation styles denote an atomic transformation (which is not
described in terms of internal steps). We now define the means by which several
transformations can be applied to a single message.

Definition 6.19 (Composite Documentation Style) A composite documentation style
denotes that more than one atomic documentation style has been applied to a message.2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

74

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

The atomic documentation styles described above can be used in any combination
for the same message. This means that several transformations may happen either
at different parts of the message or at the same part of it. The resulting message
consists of the composition of all the transformations. A composite documentation
style denotes that a set of atomic transformations has been applied to a message.

Documentation styles allow actors to express transformations they have performed
on messages when asserting interaction p-assertions for those messages. Documenta-
tion styles are mandatory for interaction p-assertions because querying actors need to
be able to determine whether two interaction p-assertions are matching (see 2.6). Us-
ing the documentation styles of the two interaction p-assertions, a querier can generate
the original message from both p-assertions and determine whether they are matching,
irrespective of how the message was transformed when being asserted. In the case of
actor state p-assertions, there is no application-independent notion of “matching” actor
state p-assertions. However, we allow the documentation style that has been applied in
asserting an actor state p-assertion to be declared along with the state (see below). Re-
lationship p-assertions do not have documentation styles: all the fields in a relationship
p-assertion are necessary so that the provenance query functionality can be performed
in an application independent manner.

6.6 Actor State P-Assertion Modelling
Actor state p-assertions, as defined in Definition 2.8, are assertions made by an actor
about its internal state in the context of a specific interaction. Each actor in an in-
teraction sends or receives a message, so an actor state p-assertion asserts something
about the state of the actor just before or just after it sent or received the message. For
example, a service with an incoming message buffer may assert the state of its buffer
just before and after receiving a message. Often, after an actor receives a message, it
performs an execution that the message has triggered and, similarly, before sending a
message, it performs an execution that resulted in that message. Therefore, a common
subset of actor state p-assertions give details of the execution that took place just af-
ter receiving or just before sending a message. For example, a service may assert the
computational resources allocated to an execution. For example, the actor state may
name the workflow that the interaction occurred as part of.

We define a data type ActorStatePAssertion to represent any actor state p-assertion
and depict its structure in Figure 6.7. The p-assertion consists of three pieces of in-
formation: a local p-assertion identifier, localPAssertionId, an optional documenta-
tion style, and the actor state document content itself, shown as ‘any’ as it is entirely
application-dependent and so no generic data structure can be specified for it.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

75

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 6.7: Model for an actor state p-assertion

6.7 Relationship P-Assertion Modelling
Relationship p-assertions allow uni-directional relationships between both messages
and data to be expressed. We model relationship p-assertions as one-to-many triples
between data or messages, where the domain of a relationship is called the subject and
the range is the set of objects. The triple consists of a subject identifier (subjectId),
a relation, and several object identifiers (objectIds). The model for relationship p-
assertions is shown in Figure 6.8.

Typically, a relationship p-assertion is expressing a causal relationships, where the
subject of the relationship is a data item in a sent message, i.e. an output, and the
objects are entities in messages received by the same actor, i.e. inputs, where the inputs
had a caused the output to be as it is. A subjectId identifies a data item or message
within the asserting actor’s view of an interaction. Therefore, we limit the subjectId to
identifying one message or data item within the context of the particular interaction.
An objectId identifies any data item or message. It accomplishes this by referring to the
interaction, the view in that interaction, the local p-assertion identifier, and if referring
to a data item, an additional data accessor. An objectId also contains a parameter name,
which specifies which particular input the object was used as in the operation that
transformed the objects of the relation into the subject, e.g. in a ‘division’ operation
the parameter name may a ‘dividend’ or a ‘divisor’ concept. Similarly, the subjectId
can have a parameter name specifying which output of the operation the subject refers
to. Finally, the objectId optionally contains an object link giving the address of the
provenance store in which the p-assertion is kept.

Definition 6.20 (Data Accessor) A data accessor is a reference to the location of a
p-assertion data item within a p-assertion’s content. 2

Definition 6.21 (Parameter Name) A parameter name is an identifier for an entity’s
role in a relationship, where that entity is documented by a p-assertion data item. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

76

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 6.8: Relationship p-assertion model

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

77

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

There is no bound on the relationships that can be asserted between entities in p-
assertions. However, to aid interoperability, we provide a core set of terms essential
to find the provenance of entities. The causal relationships ontology aims to define
causal relations between properties of the system at different instants. We define “C
caused E according to A” as A’s belief/assertion that E would not have become true if
C had not been true, all else being equal. The full ontology, and the namespace used
for the terms, is given in [Rel06].

The ontology includes a property, wasCausedBy, which is a relation between an ef-
fect and its cause, and two classes, Cause and Effect that can be used to classify causes
and effects. Using the causal relationships ontology, we can specify causal relations
between the contents of interaction p-assertions (and actor state p-assertions). In par-
ticular, wasCausedBy can be used as the relation term in a relationship p-assertion,
while Cause and Effect can be used as parameter names. More generally, application-
specific relations may sub-class wasCausedBy to indicate that they are causal relations
(as opposed to structural, temporal or other relations between entities).

6.8 The P-Structure
Up to this point the architecture has assumed that a provenance store contains a col-
lection of p-assertions. However, if this collection has no structure several problems
may arise: the inability to identify one p-assertion from another, the inability to tell the
interaction context of an actor state p-assertion, the inability to causally relate one p-
assertion to another, and therefore the inability for a querier to retrieve the provenance
of a piece of data. To solve these problems, we introduce the notion of a p-structure(†). [SR-2-1, p. 117]

Definition 6.22 (p-structure) The p-structure is a common logical structure of the
provenance store shared by all actors including asserting, recording, querying and
managing actors. 2

The p-structure is designed specifically for organising p-assertions in a manner that
allows the provenance of a piece of data to be retrieved. We now detail the p-structure
itself and then show how parts of the p-structure, including p-assertions, can be iden-
tified. Figure 6.9 shows the p-structure. It reflects the models discussed above.

The p-structure is organised as a hierarchy. At the top level of the hierarchy are
InteractionRecords. Each record encapsulates all the p-assertions and identifiers re-
lated to one interaction. The choice of interaction records as the chief items in the
p-structure comes from the idea that interactions are the core actions of a process.
Each InteractionRecord is identified by an interaction key, as shown in Figure 6.1. The
interaction key distinguishes one InteractionRecord from all others and is provided
by the asserting actor and not the provenance store. Therefore, no contact with the
provenance is required in order to create p-assertions.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

78

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 6.9: The P-Structure

Figure 6.10: A View in the P-Structure

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

79

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

In the p-structure hierarchy, we find two Views under the InteractionRecord. One
View contains the p-assertions from the sender in the interaction, while the other View
contains those from the receiver. A View has the following structure as shown in Fig-
ure 6.10: every view has an asserter (†), which is the identity of the actor asserting [GR-OTM.9, p. 127]
a set of p-assertions, it can contain several interaction p-assertions (where there are
more than one, we would expect different document styles to be used for the same
message), several actor state p-assertions, several relationship p-assertions, the num-
ber of p-assertions that the store should expect to receive in this view (which can be
asserted by the recording actor as part of the recording protocol) and a View Link (as
described in Chapter 5). All of these are optional. Each p-assertion is defined by an
associated model described above.

Definition 6.23 (View) A view is the set of p-assertions by one actor about one inter-
action. 2

Definition 6.24 (Asserter Identity) An asserter identity is an identifier for an assert-
ing actor. 2

We note that the definition of p-structure does not dictate its internal implemen-
tation. Instead, the p-structure facilitates the asserting, recording, querying and man-
agement of p-assertions by allowing actors to address and create p-assertions with a
common knowledge about how p-assertions are logically associated with one another.

6.9 Security
As discussed in Section 4.2, integrity and non-repudiation of p-assertions as well as
the need to verify asserter identity in a p-assertion are important security require-
ments. Both these requirements can be fulfilled by having an asserting actor sign (†) [SR-6-6, p. 120]
the created p-assertion. A subsequent check can then be done to determine whether the
identity associated with the signature corresponds with the identity of the asserter as
recorded in the p-assertion. This can be accomplished either by the provenance store
prior to storing a submitted p-assertion (Definition 7.13), or if it is not done here, by a
querying actor prior to processing the p-assertion in some manner.

To provide for this, the model should state where in the p-structure the signatures
as well as the certificates necessary to verify them are to be found. Therefore, we aug-
ment the three p-assertion models to include an optional fourth element: the signature
applied to that p-assertion in recording. These models, with the additional signature
element, are shown in Figures 6.11, 6.12 and 6.13. The signature is shown as ‘any’ as
it is entirely application-dependent and so no generic data structure can be specified
for it.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

80

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 6.11: Model for a secured interaction p-assertion

Figure 6.12: Model for a secured actor state p-assertion

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

81

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 6.13: Model for a secured relationship p-assertion

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

82

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

6.10 Conclusion
In this chapter, we discussed how p-assertions may be modelled within an application.
We presented a model for how interactions, p-assertions and the data contained in
p-assertions can be identified, as well as a model of an interaction context and the
p-header in which this context information can be passed between actors. We then
provided more detailed models for interaction p-assertions, actor state p-assertions,
and relationship p-assertions. The p-assertion models were designed to be extensible
and uniquely identifiable. Combining the above models, we defined the p-structure
as a common logical structure of the provenance store shared by all actors. In the
next chapter, we describe the functionality of the provenance store, which utilises the
p-structure to accomplish its task.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

83

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 7

Functionality

This chapter discusses the functionality of the provenance store: for each of the record-
ing, querying and management interfaces, it provides an informal description, in En-
glish, of the functionality that is supported by the provenance store. Such informal
presentation will serve at the derivation of a more detailed specification and service
interface specifications, which will be part of a separate document.

7.1 Recording Interface
Provenance stores provide a recording interface based on the P-assertion Recording
Protocol (PReP) , which defines the messages that actors can exchange with the prove-
nance store in order to record p-assertions [GLM04a, GLM04b, Gro05a, GMM05].
The protocol is designed to be asynchronous so that p-assertions can be recorded at
any time to the selected provenance store. The protocol is also designed to have the
following properties:

1. A protocol is stateless when an actor can understand a message without relying
on any previous or subsequent messages. By supporting this property, the prove-
nance store can record any p-assertion with only the information in the protocol
messages it receives. This allows for out-of-order message delivery and for un-
finished interaction records to be present in the provenance store.

2. Idempotence (†) is the quality of something that has the same effect if used mul- [SR-2-3, p. 117]
tiple times as it does if used only once. With this property, once a p-assertion has
been submitted to a provenance store then that p-assertion cannot be overwritten
or modified. In other words, an actor cannot retract its assertion.

3. The protocol terminates. This means that an actor will not be indefinitely record-
ing p-assertions for one interaction.

These properties are discussed in greater detail in other documents [GLM04b,
Gro05a]. PReP assumes a model in which application actors send application mes-

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

84

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

sages to one another. To record p-assertions, we augment the standard application
message with an additional parameter, the P-Header, as described in Sections 3.4 and
6.3.

We now discuss the messages that are exchanged by actors with the provenance
store to record p-assertions. The messages are shown in Figure 7.1 (†) and consti- [GR-OTM.9, p. 127]
tute the recording functionality of the provenance store. Each message in Figure 7.1
contains an interaction key, which is the same as the interaction key transferred in
the P-Header (see Figure 6.5). Because every message in the protocol contains an
interaction key, all the messages are self-contained and can be understood without ref-
erence to any other messages. Therefore, the protocol is stateless. The protocol is
asynchronous. This allows actors to record p-assertions about an interaction when it
is most convenient to them. We now discuss how actors use these messages to record
p-assertions.

Both senders and receivers record their view (†) of an interaction in the provenance [SR-1-12, p. 115]
store. Both actors record their interaction p-assertions using the record message. Be-
yond interaction p-assertions, an actor can record multiple actor state p-assertions us-
ing the same record message. Actors record assertions about their state in the context
of an interaction. We note that any number of these p-assertions may be recorded. Re-
lationship p-assertions can also be recorded. Again, there is no bound on the number
of relationship p-assertions an actor can record. We note that if an actor attempts to
record a p-assertion and uses a local p-assertion identifier that is already assigned to
a previously recorded p-assertion in that interaction context then the p-assertion will
not be recorded. This means that actors cannot overwrite their previously recorded
p-assertions, which preserves the idempotence of the protocol. Likewise, each record
message must contain an identifier for the asserter of the p-assertion being recorded.
This allows querying actors to know what actor is responsible for the particular p-
assertion.

The second message specified in Figure 7.1 is the submission finished message.
This informs the provenance store of the total number of p-assertions the store can
expect from a recording actor in the context of a given interaction. In this manner, a
store can determine when an actor has finished submitting p-assertions for a particular
interaction identified by an interaction key.

The final message defined by PReP is the acknowledgement message. This mes-
sage is sent by the provenance store when it has received either a record or submission
finished message. The acknowledgement message contains an interaction key, view
kind, and local p-assertion id. This allows an actor to determine if all the messages it
sent pertaining to a particular interaction were received by the provenance store. In a
binding of PReP to a message layer that supports request-response message patterns,
the binding may choose not to include the interaction key, view kind, local p-assertion
id tuple in the acknowledgement message because the message layer can identify what
request a response relates to.

The recording functionality of the provenance store lets actors record p-assertions
about their interactions, state and relationships between them. These p-assertions are

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

85

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 7.1: Protocol messages

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

86

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

uniquely identifiable.

7.2 Provenance Query Interface
The provenance store supports two query interfaces: a provenance query interface
which allows querying actors to retrieve the provenance of application entities, and a
process documentation query interface, by which the content of identified p-assertions
can be retrieved. In this section, we specify the functional requirements of the prove-
nance query interface, while the process documentation query interface is specified in
the next section.

The provenance query interface (†) accepts a provenance query request and re- [SR-1-2, p. 112]
sponds with provenance query results. A provenance query request defines a search
for the provenance of an entity at a given instant, and provenance query results rep-
resent the provenance of that entity at that instant. The reason that the provenance of
an entity must begin at a specified instant in time is that the entity may be different at
different instants in its lifetime, and so the processes by which it came to be in those
states (its provenance) are also different. Because p-assertions may be recorded any
time after the interaction that the assertion is about, there is no realistic way to define
the instant “now”: a provenance store or stores can never know whether it has docu-
mentation on the latest version of an entity, nor does it necessarily know what what the
latest version of an entity is.

A provenance query request is made up of a query data handle and a relationship
target filter, defined below and depicted in Figure 7.2.

Definition 7.1 (Query Data Handle) A query data handle is a search over the con-
tents of a provenance store in order to find the record of an entity at a given instant
that the querying actor wishes to find the provenance of. 2

Definition 7.2 (Relationship Target Filter) A relationship target filter is a set of cri-
teria by which the querying actor specifies whether any given entity in the process
documentation should be included in the query results. By this mechanism, the query-
ing actor can scope the provenance query results. 2

7.2.1 Query Data Handles
In order for a querying actor to ask provenance stores the question “What is the prove-
nance of entity E at instant T?”, the actor must identify the entity in a way that the
provenance stores can interpret. The identification used is called a query data handle.
From the application perspective, a query data handle identifies an application entity at
a given instant. From the provenance store perspective, a query data handle identifies
a search for p-assertion data items within the process documentation.

A query data handle is made up of the following two parts:

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

87

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 7.2: Provenance Query Request model

• A search over the p-structure for instants at which the entity may occur.

• A search over the contents of interaction or actor state p-assertions to retrieve
the data items which are documentation of the entity.

Because interaction and actor state p-assertions are also part of the p-structure,
these parts can be combined into a single search over the contents of a provenance
store, represented by a p-structure. We will look at how the querying actor specifies
each part of the search below.

Identifying Instants

Following the formulation of a system as being a collection of distributed interacting
actors, described in Chapter 2, there are three ways in which to identify a documented
instant in the past:

• The instant at which an actor sent a message.

• The instant at which an actor received a message.

• The instant at which an actor accessed an asserted part of its state, i.e. the instant
to which an actor state refers.

These are apparent in the p-structure as the following.

• An interaction p-assertion in the sender’s view of an interaction.

• An interaction p-assertion in the receiver’s view of an interaction.

• An actor state p-assertion whose content specifies to which instant it applies, e.g.
just before or just after sending or receiving a message.

The identities of the actors involved in an interaction are apparent in the message
source, message sink and asserter elements of the p-structure.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

88

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Identifying Data Items

The entity of which the querying actor wishes to find the provenance must be apparent
in the interaction or actor state p-assertions in order for the provenance store to find
it. The entity may not always be present as an exact copy of data: it may appear by a
reference in a p-assertion or otherwise implied by application-specific structures. For
instance, application messages may refer to a data item by the name of the file in which
it is contained, but the querying actor wishes to find the provenance of the data, rather
than the file.

The query data handle includes a search over the contents of p-assertions to re-
trieve data items which are documentation of the entity. This search is expressed in a
particular search language, and the range of search languages supported by any one
provenance store may vary.

A search language must assume some format and structure of the documents over
which it searches, which we call the document language, e.g. the XPath search lan-
guage assumes the XML document language. However, a provenance store is agnostic
to and unaware of the structure of application messages and assertions of state it con-
tains. In fact, application messages may have used different formats, so p-assertions
within one provenance store may use different document languages. Therefore, a query
data handle may also specify document language mappings [ZDF+05] between the
document language used for a p-assertion and the document language required for the
search.

Definition 7.3 (Document Language Mapping) A document language mapping is a
definition of how to transform documents formatted in one document language into
another document language. 2

Composition of Provenance Queries

A query data handle is a search for an entity at an instant within a p-structure. Primar-
ily, this p-structure will be the full contents of a provenance store. However, in some
cases a query data handle may be better expressed as a composition of provenance
queries, i.e. one provenance query is performed and the results are searched over by
another provenance query. For example, to find the provenance of the second item
added to a set, we can first determine the provenance of the set, and then identify from
that the item added second, so the provenance of the item can then be found. In this
case, the search that the query data handle specifies is over a p-structure formed from
the results of another provenance query.

In general terms, we divide the query data handle into the search to be performed
and the p-structure over which it will search. That p-structure, referred to by a p-
structure reference, can be one of three possibilities (also depicted in Figure 7.3).

• The contents of the provenance store.

• The results of another provenance query, in the form of a p-structure.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

89

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

• A p-structure given by another p-structure reference but, in addition, includ-
ing the transitive closure of relationships with a given relation name in that p-
structure, i.e. wherever there is a relationship of the specified type from A to
B and one from B to C, the transitive closure will also contain a relationship
p-assertion from A to C.

Definition 7.4 (P-Structure Reference) A p-structure reference is a declaration of
the p-structure over which a provenance query’s entity search will be executed. 2

Figure 7.3: P-Structure Reference model

Model

A model of the query data handle is shown in Figure 7.4. The search element specifies
a search, in the chosen search language, over the p-structure for data items within p-
assertions asserted about sending or receiving messages at given instants. The pStruc-
tureReference refers to the set of p-assertions that the search will be conducted over,
and is one of the options discussed in the section above. The documentLanguageMap-
pings specify how p-assertion contents are mapped to the document language required
by the search.

7.2.2 Relationship Target Filters
The set of process documentation about entities that ultimately have some causal in-
fluence on the entity identified by a query data handle could be vast, and most of it
irrelevant to a querying actor for any one purpose. Therefore, we need to allow the
querying actor to specify the scope of the provenance query, i.e. a definition of what
documentation is relevant enough to be part of the results. This is the purpose of the
relationship target filter.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

90

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 7.4: Query Data Handle model

More concretely, we can say that, given that one p-assertion data item has been
identified as part of a provenance query’s results, and that that data item is related to a
set of other data items (by relationship p-assertions), the relationship target filter spec-
ifies which of those related data items (and other entities related to them, iteratively)
should also be included in the results. A relationship target filter is specified as a func-
tion over a relationship target, defined below, returning a boolean value specifying
whether the data item that the relationship target represents is within scope.

Relationship Target

A relationship target is defined as follows.

Definition 7.5 (Relationship Target) A relationship target is the full set of informa-
tion about a p-assertion data item that is the subject or object of a relationship p-
assertion. 2

It includes the following (also depicted in Figure 7.5):

• The interaction key, including source and sink, of the interaction in which the
data item was exchanged or part of an actor’s state.

• Whether the actor that asserted the data item was the sender or receiver in the
interaction.

• The local p-assertion ID of the p-assertion in which the data item is contained.

• The parameter name of this data item in the relationship p-assertion.

• The address of the provenance store in which the p-assertion is documented.

• The location of the data item within the p-assertion, given by the data accessor.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

91

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

• The name of the relation of which this target is a subject or object.

• The identity of the actor that asserted the data item.

• The content of the interaction or actor state p-assertion containing the data item.

Checks on P-Assertion Content

In order to check whether a relationship target is in scope, a relationship target filter
must specify how to find the relevant data against which to compare criteria. As the
data must be about the relationship target, the properties that mark the target as being
in scope must be evident in the set of information described above. The relationship
target filter can be seen, then, as a search over the relationship target for the properties
that identify the target as being within scope: if those properties are found then the
target is accepted.

One of the pieces of data that makes up a relationship target is the content of the p-
assertion containing the data item, and scoping a p-assertion may depend on checking
those contents. For example, the relationship target filter may exclude interactions
of a particular operation type, and this operation type will be apparent only within
the content of an interaction p-assertion. As the content of the p-assertion may be in
any application-defined format, we have the problem of defining a search over data of
arbitrary structure: the same problem as faced in specifying the query data handle.

Therefore, as with the query data handle, the relationship target filter includes a
set of document language mappings, to translate p-assertions in different document
languages to the one required by the relationship target search.

Model

A model of the relationship target filter is shown in Figure 7.6. The check element
specifies a function, using a chosen search language, over relationship target returning
true or false. The documentLanguageMappings specify how p-assertion contents are
mapped to the document language required by the search.

7.2.3 Provenance Query Results
The response to a provenance query is a representation of the provenance of an entity
at a given instant, i.e. the one specified by the query data handle. Provenance query
results are comprised of start p-assertion data keys and a set of full relationships,
defined below and depicted in Figure 7.7:

Definition 7.6 (Provenance Query Result Start) A provenance query result start is
the p-assertion data key(s) to the process documentation of the entity for which the
provenance was found, i.e. the key(s) for the p-assertion data item(s) found by resolv-
ing the query data handle. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

92

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 7.5: Relationship Target model

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

93

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Figure 7.6: Relationship Target Filter model

Definition 7.7 (Provenance Query Result Full Relationships) A provenance query
result full relationship is a relationship between two p-assertion data items in the
provenance of entity found by the query. 2

Figure 7.7: Provenance Query Result model

Full relationships are adapted versions of relationship p-assertions in the process
documentation, differing in two regards. First, because a relationship p-assertion can
have multiple objects, and not every object may be within scope of the provenance
query results, a full relationship is between strictly one subject and one object, to
indicate that that exact relationship is within scope. If multiple objects of a relationship
p-assertion are within scope, there will be one full relationship for each object returned
in the provenance query results. The second difference is that a relationship p-assertion

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

94

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

is asserted within the context of an interaction, while a full relationship is designed to
be independent of any one interaction (as it documents the provenance of an entity, not
an interaction), so that the form in which each is specified may differ. In particular,
part of the global p-assertion key of the subject of a relationship p-assertion can be
determined from the identity of the interaction that the relationship p-assertion makes
an assertion about, while this must be made explicit in a full relationship.

The model for the subjects of full relationships is shown in Figure 7.8, and the
model for objects is identical.

Figure 7.8: Full Relationship Subject model

7.3 Process Documentation Query Interface
Provenance query results include a related p-assertion data keys. To retrieve the actual
process documentation that makes up the provenance of an entity at an instant, the
querying actor uses the process documentation query interface. This interface gives
direct access to the process documentation contents, by allowing the querying actor to
search over and retrieve parts of the p-structure (†). [TSR-1-4, p. 122]

At minimum, the process documentation query interface must allow the querying
actor to perform the following operations (†). [SR-1-2, p. 112]

• Retrieve the contents of a p-assertion with a given global p-assertion key.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

95

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

• Retrieve all p-assertions asserted about one interaction, identified by an interac-
tion key, by one actor, identified as the sender or receiver or by its identity.

• Retrieve all p-assertions asserted about one interaction, identified by an interac-
tion key.

The actual results of the query depend on the contents of the provenance store
to which the query is sent, because the query will only return data contained in that
provenance store, and the access control restrictions placed on the querying actor by
the store.

As the amount of data returned may be large in volume, the process documentation
query interface should allow for the iterative retrieval of query results. By this mech-
anism, a querying actor should be able to process the results in manageable chunks.
(†) [TSR-1-2, p. 122]

Ideally, the process documentation query interface should allow more than the
above minimum operations, so that queries can be used to search for and retrieve more
p-assertion data meeting different criteria, e.g. to retrieve all interaction p-assertions
of a particular type, and possibly to perform transformations on the results before re-
turning, so that the querying actor receives the results in the form they can most easily
process.

The process documentation query interface is not more fully specified here because
there are a range of query languages already available that can be used to query a set of
stored data, and the ideal one will depend on the structure of a particular application’s
p-assertion content.

7.4 Management Interface
Within a provenance architecture, a management interface is necessary in order to
facilitate the administration, reuse and maintenance of provenance stores. Such an
interface may provide generic data storage administration capabilities and will not,
in itself, be provenance specific. This being so, this section merely suggests some
useful functionality that a management interface might have, and we do not make any
commitments to a formal specification of the suggested functionality described below.

7.4.1 Notification of Provenance Store Use
Managing actors might like to be informed when operations are performed on a prove-
nance store. For example, they might like to know when a p-assertion has been
recorded. A management interface should provide the following functionality regard-
ing notification.

• Notification

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

96

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

A management interface should be able to notify subscribed managing actors of
record and query operations. (†) [SR-4-2, p. 119]

• Subscription management

A management interface should allow actors to manage their subscription infor-
mation e.g. where notifications are sent to.

7.4.2 Provenance Store Utility
• Link Modification

A management interface could provide functionality to update links. This is
useful when process documentation has been moved from one provenance store
to another and contains links.

• Deletion

Ideally, p-assertions are never deleted, but in some circumstances, such as data
staging, it may be necessary for an application to delete particular p-assertions
that have been moved to a new provenance store. A management interface may
provide this deletion capability.

• Setup and management of indexes

Provenance stores hold a large amount of p-assertions. No matter how these p-
assertions are organised, some storage structures may be suitable for some query
operations and not suitable for others. A management interface should provide a
mechanism to setup and manage indexes in terms of time, tracer or other criteria,
so that p-assertions can be organised into multiple views and structures, thus
facilitating querying.

7.5 Policies
Policies describe the capabilities, requirements and general characteristics of compo-
nents in service oriented systems. In the Provenance architecture, they are important
for providing interoperability, enabling users to identify services and provenance stores
that provide the required functionality. In Chapter 3, policies identified for the Prove-
nance architecture were clarified into the three distinct areas shown below.

• Service requirement and capability policies.

• Provenance store policies.

• User requirement policies.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

97

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Although we list service and user requirement policies, these are, in effect, sub-
sets of the policies describing service and provenance store capabilities. For example,
a service may require that a provenance store can cope with high levels of through-
put, which may be necessary in situations of data staging where large numbers of
p-assertions are being moved around from store to store. However, such policies can
be seen as a subset of the policies expressing the capabilities of provenance stores, and
as such we avoid repetition by only describing policies that specify capabilities.

7.5.1 Provenance Store Capability Policies
Policies describing the capabilities of provenance stores are necessary to enable ser-
vices that want to record p-assertions to find provenance stores that offer the required
capabilities. In this section, we provide a description of several policies that are nec-
essary to ensure provenance store interoperability. Note that policies for service capa-
bilities are described in Chapter 8, Section 8.6.

In certain situations, a recording service may need to store the data about which it
makes assertions in some persistent storage location external to the provenance store.
In these cases, the data is referenced in the associated p-assertions to enable querying
actors to dereference the data when the p-assertions are obtained from the provenance
store. An alternative method is for the provenance store itself to periodically resolve
the references contained in p-assertions, retrieve the data and store it locally (see Chap-
ter 5, Section 5.4 for a discussion of reference recording). Provenance stores may also
perform this functionality more or less frequently. To be useful, this capability of the
provenance store must be advertised by an appropriate policy so that querying services
can discover it.

A data upload policy therefore is defined as follows.

Definition 7.8 (Data Upload Policy) A data upload policy identifies if and how fre-
quently a provenance store has to resolve a reference contained in a p-assertion. 2

When applications are running with high throughput, and large amounts of p-
assertions are being recorded, it may sometimes be necessary to create a temporary
provenance store close to the application actors (in terms of network location) in order
to cut down on communication costs (this technique is called data staging and a more
detailed discussion can be found in Chapter 5, Section 5.3, and see Chapter 6, Section
6.5 for a discussion on the reference documentation style). When the process for which
p-assertions are being recorded finishes, the temporary provenance store can query it-
self to obtain all of its p-assertion content and transfer this to another provenance store.
In terms of policy, several criteria need to be specified.

• A temporary provenance store must indicate in its data staging policy the fact
that it is temporary.

• It must describe where (i.e. which other provenance stores) p-assertions can be
migrated to.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

98

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

• In some cases, a provenance store may act as a persistent store for one asserting
actor but perform data staging for another asserting actor. The different forms
of data storage performed by a provenance store for different asserting actors
should be specified.

• The above kinds of data staging represent cases where a data staging provenance
store ‘pushes’ the data over to another provenance store. However, there may be
cases where it is more desirable to have provenance stores ‘pull’ assertions from
other data staging stores. Both functionalities are catered for by a provenance
store’s ability to query and record p-assertions (see Section 7.2 and Section 7.1
respectively).

In summary, the definition for a data staging policy must capture these criteria and
we present such a definition below.

Definition 7.9 (Data Staging Policy) A data staging policy must specify whether or
not a provenance store is capable of data staging and, if so, to which other prove-
nance stores it can send its contents, its data staging capabilities for different classes
of recording actors, and whether it is capable of both recording p-assertions into other
provenance stores (push-based data staging) or querying other provenance stores
(pull-based staging), or both. 2

When an asserting actor is recording many p-assertions iteratively, templates can be
used to cut down on computational costs (see Chapter 5, Section 5.5 for a discussion).
In essence, templates can generate p-assertions given a correct set of parameters by
an asserting service. In some cases, the provenance store may allow a recording actor
to submit a template which can subsequently be sent parameters by a recording actor
leading the template to generate the appropriate p-assertions. For this to be practical,
both recording actors and provenance stores must share the same template language
for producing p-assertions.

A p-assertion template policy is defined in the following manner.

Definition 7.10 (P-Assertion Template Policy) A provenance store template policy
must indicate the ability of the store to accept templates from asserting actors, what
languages for producing p-assertions the store supports and from which recording
actors it can accept templates from. 2

When querying a provenance store, a querying service must know what search
language is supported by the provenance store for queries (Section 7.2 describes the
approach taken in the architecture for provenance store querying). Several search lan-
guages may be supported by any given store (such as XPath in the case of an XML

document language), and the query languages supported should be advertised by a
policy.

The definition of a search language policy is given below.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

99

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Definition 7.11 (Search Language Policy) A search language policy states the kinds
of search languages the provenance store supports. 2

A provenance store can potentially hold very large amounts of p-assertions, and
to manage these it may be necessary to perform indexing of the contents of prove-
nance stores to facilitate search and retrieval (see section 7.4.2). The different index-
ing schemes offered by a provenance store (e.g. by time, trace etc.) should be made
available to querying services by appropriate policies.

The index management policy definition is as follows.

Definition 7.12 (Index Management Policy) The index management policy must state
that a provenance store can or cannot perform indexing and, if it can, the different
kinds of indexing offered by the store must be enumerated. 2

As noted in Section 6.9, the asserting actor signs the p-assertion it creates; this sig-
nature can then be subsequently verified by either the provenance store or the querying
actor that retrieves this p-assertion at a later stage. If the provenance store is responsi-
ble for the verification process, then this occurs at the time the p-assertion is submitted
for storage by the recording actor. If the signature does not verify, an appropriate error
message should be generated. To indicate that a given provenance store can indeed val-
idate the signature on a p-assertion and determine its corresponding asserter identity,
we require a suitable policy to state such capability, which we define below.

Definition 7.13 (Security Signature Checking Policy) A security signature checking
policy states whether or not a provenance store has the capability to examine and val-
idate the signatures placed in a p-assertion by an asserting actor, as well stating what
action is to be taken if a conflict is detected (e.g. sending an error message). 2

It is important to note that the validity of the signature on a submitted p-assertion is
independent of whether the recording actor has the appropriate access rights to record
that p-assertion to the provenance store in the first instance. For example, a recording
actor may have access rights to store p-assertions in a provenance store, but may be
refused if the p-assertions it submits do not have valid signatures. Conversely, a record-
ing actor may possess correctly signed p-assertions, but not have the authorisations to
record them to a specific provenance store.

Given such policies, services can understand the behaviour of a given provenance
store. By allowing services without prior knowledge of a provenance store to discover
its policies, they can thus understand how to interact with and what to expect from it,
and this ensures interoperability.

7.6 Security
The security policy of the provenance store essentially encompasses the internal repre-
sentation list, authorisation policy and access control policy components of the prove-
nance store security architecture as discussed in Section 4.3. The information in all

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

100

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

these components are provided by the system administrator of the provenance store
prior to its deployment; for example, the potential users of the store may interact with
the administrator who subsequently classifies them into roles and assigns authorisa-
tions accordingly in the authorisation policy.

The access control policy also defines the manner or protocols used by the remote
interactor in any secure interaction with other entities, for example other actors, prove-
nance stores or trusted third parties. Advertisement of this portion of the policy to other
entities interested in interacting with the provenance store supports interoperability as
far as secure communication is concerned.

During the operation of the provenance store, changes may need to be made to the
security policy. This could entail, for example, adding or removing identities from the
internal representation list and creating or modifying existing authorisations in the au-
thorisation policy. These changes can be achieved through a security specific section
in the management interface. Correspondingly, the security policy should be initially
set to ensure that only trusted managing actors are authorised to make changes of this
nature. The same comment is equally applicable to other non-security functionality
exposed by the management interface that we have already described, such as prove-
nance store utility (see Section 7.4).

Moving p-assertions between different provenance stores has implications on the
authorisations associated with these p-assertions; this issue has already been discussed
in Section 5.7.

7.7 Conclusion
This chapter presented a more detailed, informal description of functionality to be
supported by the provenance store. Ultimately, it will lead to separate specification
documents that will define how the interfaces are instantiated in specific infrastruc-
tures.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

101

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 8

Actor Behaviour

8.1 Introduction
So far, we have defined an architecture and a data model for provenance systems.
The architecture identifies different roles and functional interfaces that characterise
the behaviour of actors to some extent. However, the architectural framework does
not (and cannot!) enforce allowed actor behaviours, because p-assertion recording
is a voluntary activity by applications and because enforcing very specific behaviour
would make the system excessively inefficient.

Instead, this chapter describes the behavioural constraints that actors must follow
so that process documentation can correctly be recorded; if such behaviour is followed,
querying actors can have the expectation that their provenance questions will be use-
fully answered. These constraints provide bounds for actor behaviour in provenance-
aware systems.

To be systematic, behavioural constraints are expressed as named architectural
rules , which express a behaviour that an actor must follow. These behavioural rules
are aimed at designers of provenance-aware applications: the reference semantics of
the provenance architecture is only defined in the case where behavioural rules are fol-
lowed. In this chapter, we use the words ’should’ and ’must’ to indicate requirements
levels as specified in [Bra97].

8.2 Architectural Rules
This section introduces rules that actors playing a particular role must follow in order
for process documentation to be recorded, managed and queried correctly.

Fundamental to the provenance architecture is the ability to distinguish interactions
from one another. To ensure that interactions are uniquely identified, we introduce the
unique interaction key rule.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

102

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Rule 8.1 (Unique Interaction Key Rule) A sender asserting actor (i.e. a sender in
the role of an asserting actor) must assign a unique interaction key to an interaction.2

There are many ways actors can obtain interaction keys. For example, an actor
could generate an interaction key itself or obtain an interaction key from a naming
service. The interaction key assigned to an interaction by a sender must be passed to
the receiver in an interaction so that the receiver may also record p-assertions about
the same interaction. Therefore, we introduce the interaction key transmission rule.

Rule 8.2 (Interaction Key Transmission Rule) A sender asserting actor must trans-
mit the interaction key it assigns to an interaction to the receiver in that interaction.2

In order for the provenance of a piece of data to be retrieved, p-assertions must be
associated with a particular interaction. The appropriate interaction rule governs how
p-assertions should be associated with a particular interaction.

Rule 8.3 (Appropriate Interaction Rule) An asserting actor must use the interaction
key associated with an interaction, I , when asserting p-assertions about I .2

Given that an actor can record p-assertions in multiple provenance store, we intro-
duce the following recording consistency rule.

Rule 8.4 (Recording Consistency Rule) All p-assertions pertaining to one interac-
tion from a particular actor must be recorded in the same provenance store. 2

The recording consistency rule implies that the documentation of an interaction from
a given actor’s viewpoint is kept in a single place, which allows for efficient storage,
fast query processing and easy consistency checks.

Furthermore, if p-assertions are recorded across multiple provenance store, actors
need to record links between provenance stores so that the provenance of a data item
can be found. Therefore, we introduce the link recording rule.

Rule 8.5 (Link Recording Rule) An actor must record a view link (see Section 5.2.1)
to the provenance store that contains the corresponding actors view of the interaction
if the view is in another provenance store. Moreover, if an actor makes a relationship
p-assertion where objects of the relationship are in other provenance stores, actors
must create object links (see Section 5.2.2) for them. 2

As we can see from these rule definitions, it is difficult to conceive a protocol
that would enforce their execution. Should such a protocol be designed, it would
require multiple extra message exchanges between actors, which would impact on
application performance. Instead, the rules are aimed at designers, who we expect will
implement them in their provenance-aware applications. To help them, the actor side
library discussed in Section 8.7 provides some support to this end.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

103

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

8.3 Tracers
Section 3.4 introduced tracers as a mechanism for demarcating processes. Tracers (†) [AER-9, p. 130]
are tokens that are passed between actors based on the actor’s internal knowledge and
the semantics of each tracer. The semantics of a tracer are defined by the rules used by
actors to determine when to generate and/or propagate it. These rules are defined by
the tracer’s type. This section describes a particular type of tracer and its semantics. If
an actor follows the rules placed on it by a tracer’s semantics, more detailed process
documentation can be recorded.

We begin by defining the notion of a computational activity. This definition is
derived from the definition of an activity in WS-Context [LNP04]. A computational
activity is a conceptual grouping of actors cooperating to perform some work. It rep-
resents the execution of a series of related interactions between a set of actors; these
interactions are explicitly related via a tracer. This notion can be used to scope pro-
cesses.

For the purpose of this discussion, we assume a pure client-server model, in which
messages are categorised into requests and responses, and in which all requests to an
actor are followed by a response from that actor to the originator of the request.

Given this assumption, an actor, A, is said to be inferior to another actor, B, when
A received a request from B and A returned a response back to B. Likewise, an actor
B is said to be superior to an actor, A, when it sent a request to A and receives a
response back from A. Using these definitions, we can now present a particular type
of tracer.

Additionally, we define the notion of a task: a task is a independent computation
within an actor that has a defined start point and end point. A request-response pair
defines the start point and end point of a task, respectively.

Each tracer type has a generation rule and several propagation rules. A generation
rule defines when an actor should create a tracer. A propagation rule details when an
actor should propagate a tracer that it has received in a request.

8.3.1 Session Tracer
We now define a tracer type that is useful for grouping together interactions that belong
to the same workflow. It shows how interactions can be part of sub-workflows whose
results are used in a larger workflow. Tracers of this type are termed session tracers
and follow the subsequent three rules.

Rule 8.6 (Generation Rule) An actor must generate a new session tracer at the start
of each task and add the tracer to all requests within that task. 2

Rule 8.7 (Propagation Rule: to inferior) An actor must add any session tracers re-
ceived from a superior actor to all requests it makes to inferiors within the task started
by the superior’s request. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

104

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Rule 8.8 (Propagation Rule: to superior) An inferior actor must add the session trac-
ers supplied by its superior to its response to the superior. 2

Figure 8.1 shows an example of how session tracers are generated and propagated.
Each actor is a box. Tracers are labelled by a lower case letter. In this example, a GUI
invokes a workflow enactment engine with a tracer a. The enactment engine invokes
the actors C and D with the tracers a and b. The enactment engine passes along
the tracer according to propagation rule 8.7 and adds its own tracer to the request
according to the generation rule. Actor C invokes the actor E within the task started
by the request from the enactment engine. C passes the tracers it receives along with
its own tracer to E, which returns a response to C. The response contains the tracers
a, b, and c per propagation rule 8.8. Each actor responds to its superior until the GUI
receives a result from the enactment engine and finishes its task. In this example, a
computational activity (the execution of a workflow) is defined by the tracer a.

Workflow

Enactment

Engine

C

D

Ea b

a b

a b

a b

a b c

a b c

GUI

a

a

Figure 8.1: Diagram showing session tracers

8.3.2 Other Tracers
Other types of tracers are conceivable. They may be generic or application specific.
These tracer types may also use a messaging model other than the client-service model
presented here. For example, an application specific tracer in the medical domain could
be used to identify what interactions belong to a particular patient’s case.

8.4 Security
Here, we discuss the constraints on the behaviour of the actors as well the provenance
system as a whole in order that process documentation be recorded securely and in a
non-repudiatable fashion. For the case of actors, we can introduce two rules:

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

105

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Rule 8.9 (Signature Rule) Asserting actors must digitally sign the p-assertions they
create.2

The designated locations for the signatures are shown in Figure 6.11, 6.12 and 6.13.
This rule ensures that accountability for the information contained within a p-assertion
can be traced back to its creator.

Rule 8.10 (Mutual Authentication Rule) Recording actors must mutually authenti-
cate with the provenance store that they record their p-assertions to.2

This rule ensures that the identity of the recording actor can be extracted for access
control purposes as detailed in Chapter 4.3.1. Conversely, the recording actor needs to
ensure that it is submitting its p-assertion to the intended provenance store. In order to
allow these two constraints on actor behaviour to be enforced, an additional constraint
may be required on the provenance system as a whole. We describe this as a rule as
well:

Rule 8.11 (Secure Behaviour Rule) Actors should use the necessary security func-
tionality and credentials required to interact with each other or the provenance store
in a secure manner as dictated by the appropriate policies. This functionality and
credentials should ideally be provided by the environment in which the actors operate
in.2

An example of such security functionality could be a signature generating algo-
rithm, while credentials such as certificates could be provided through key stores.

Independently of the p-assertions they assert and record to provenance stores, ap-
plication actors may also choose to interact with each other in a secure manner as well.
The rules constraining their behaviour in this instance will be entirely dependent on the
requirements of the application domain they operate in, and so is outside the scope of
discussion of this document. However, the nature of the security-specific interactions
that they engage in may need to be reflected in the process documentation asserted
pertaining to their interaction as a whole. Below, we provide some constraining rules
on the types of p-assertions that need to be produced by the participating actors as a
result of a security-specific interaction.

Rule 8.12 (Error Message Rule) Security-specific error messages and exceptions ex-
changed between actors should be asserted as p-assertions in the same manner as
normal interactions. 2

As an example, a sender application actor invoking a receiver actor may not be au-
thenticated properly or does not have the appropriate access rights corresponding to
its request on that service. The service actor will return an appropriate error message
indicating the appropriate fault; this message should be documented as a p-assertion
in the normal manner by both sender and receiver.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

106

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Rule 8.13 (Tokens Rule) If actors utilise security tokens (such as signatures) in spe-
cific portions of messages exchanged between them, these tokens should also be in-
cluded with the messages when they are recorded as p-assertions.2

As an example, the protocol dictating interaction between two application actors
may dictate that certain parameters in the exchanged messages be signed for purposes
of non-repudiation. In that case, both actors must ensure that these tokens are recorded
appropriately in the message content portion of the interaction p-assertion if a verbatim
documentation style is employed (Definition 6.12).

8.5 Documentation Style Driven Message Transforma-
tion

As already defined in Definition 6.11, documentation style is a representation of the
transformation according to which the content of a message is asserted in an interaction
p-assertion. A number of constraints need to be satisfied in order for a documentation
style driven message transformation to be correct. The purpose of this section is to
specify the rules to be followed. First, we illustrate the relationship between the dif-
ferent entities involved in such a transformation in Figure 8.2.

We consider an original message (d1) as sent between actors in an application. At
runtime, the asserter actor applies to this message one or more documentation styles
transformations which result into a transformed message (d2). The message trans-
formation is an operation performed at execution time by the asserting actor. Such
a transformation can be described by a message transformation description; we are
expecting such a message transformation description to be declarative, so that it can
characterise both a tranformation and its reverse transformation (when the transforma-
tion is reversible).

Messages are always expected to be structured according to some schema. Hence,
the original message (d1) should satisfy its original schema (S1), whereas the trans-
formed message (d2) should satisfy a transformed schema (S2). In the most general
case, schemas S1 adn S2 may be different: for example, in the reference documen-
tation style (Definition 6.13), we replace an element with a reference, which means
that the corresponding schema should change accordingly to reflect that replacement.
Hence, the original schema S1 is also transformed to schema S2 according to a schema
transformation, itself described by schema transformation description. Both the mes-
sage transformation description and the schema transformation description have to be
related, in accordance to the documentation style.

It is recommended that both schemas, as well as their transformations, should be
predefined by the application designer at design time. We note that, is some cases,
the schema of the transformed message could only be defined at runtime, as a result
of a message transformation. This has some challenging implications not only from
a performance view point, but also from a manageability view point, because the new

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

107

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Original
Schema
(S1)

Transformed
Schema
(S2)

Transformed
Message
(d2)

Original
Message
(d1)

Schema
Transformation
description

Schema transformation

satisfies satisfies

Message transformation

Actor-Side
Library

Message
Transformation
description

is compliant with

Figure 8.2: Documentation Style Driven Message Transformation

schema has to be published and shared so that querying actors can make use of it. To
avoid such problems, we recommend that designers identify at design time the schema
S2 of the transformed message.

Such constraints on transformations can be formalised in the following behavioural
rules. When a documentation styles are used, transformations are applied in accor-
dance with the Rules 8.14, 8.15 and 8.16.

Rule 8.14 (Message Transformation Rule) A message must be transformed accord-
ing to a message transformation description as defined by the documentation style
being used. 2

Rule 8.15 (Schema Transformation Rule) The schema of a message being trans-
formed must also be transformed according to a schema transformation description
as defined by the documentation style being used. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

108

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Rule 8.16 (Transformation Description Compliance Rule) The message transforma-
tion description of a given documentation style must be compliant with the schema
transformation description of that documentation style. 2

The actor side library provides some support for the above mechanisms (see Sec-
tion 8.7). Specifically, the message transformation description that happens at runtime
is part of the actor side library implementation.

8.6 Actor Capability Policies
In order for users of a provenance system to be able to record p-assertions, they must
be able to discover services capable of asserting and recording process documenta-
tion. By advertising their capabilities in policies, such services allow potential users
to find them. In this section, we describe the various service capability policies that
ensure that services can be found and understood by users, and by doing so we ensure
interoperability.

The standard capabilities of a provenance-aware service include record and query.
For each, there are several policies that are necessary to specify.

8.6.1 Recording
Asserting actors should advertise the kinds of p-assertions that they can assert. Thus,
for example, an application service actor may be designed to document all, some, or
none of its internal state as actor state p-assertions; the different levels of documen-
tation detail available should be stated in a policy. Similarly, asserting actors may
have the ability to document certain relationships between interaction or actor state
p-assertions, which may be of interest to a user and, thus, must advertise such capa-
bilities in order that users can discover which asserting actors offer the right kinds of
documentation capabilities.

Definition 8.1 (Assertion Category policy) An assertion category policy should spec-
ify what categories of p-assertions a service can record. 2

Services may offer all, or only a subset of documentation styles (see Chapter 6,
Section 6.5 for a discussion of documentation styles). Users must be able to choose
services offering the desired documentation style and this capability should be ex-
pressed by an appropriate policy.

Definition 8.2 (Documentation Style Policy) A documentation style policy should de-
scribe the various different kinds of documentation style a recording service offers. 2

Different provenance stores may have different restrictions on access as dictated
by their respective access control and authorisation policies (Section 4.3.1); recording
services must specify which provenance stores they are able to record to and under
what restrictions.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

109

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Definition 8.3 (Recipient Store Policy) A recipient store policy should specify which
provenance stores a service can record to. 2

8.6.2 Querying
Just as in the case of recording, different provenance stores have different restrictions
on query operations as dictated by their respective access control and authorisation
policies (Section 4.3.1); querying services must specify which provenance stores they
are able to query and under what restrictions.

Definition 8.4 (Query Store Policy) A query store policy states the which provenance
stores a querying service has access to. 2

8.6.3 Service Requirement Policies
Service requirement policies describe any requirements that a service may have on the
provenance store such as, for example, that a store must have a high level of through-
put, which may be necessary in situations of data staging where large numbers of
p-assertions are being moved around from store to store, and will be specified by the
service administrator. However, such requirements policies can be seen as a subset
of the policies described elsewhere for provenance store capabilities (see Chapter 7,
Section 7.5). Services with requirements must match these to the capabilities of the
available provenance stores using the advertised policies.

8.7 Actor Side Library
In this section, we introduce the actor side library and its usage. The actor side li-
brary (ASL) is a collection of functions, which allow provenance-aware applications
to communicate with provenance store services. It also provides functionality to help
application developers enforce the above-mentioned rules.

Although the actor side library is an important part of functionality of a provenance
system, much of its detail is implementation specific. Many implementation recom-
mendations have been identified in Section 9.6.3. A separate document [JGM+06] has
also been provided referring to our specific implementation of actor side library. In
this section, however, we only give a brief account of the role of such a library.

An implementation of the actor side library should contain at least one of actor side
query library, actor side record library and actor side management library. It should
also contain a number of facilities, each of which enforces certain rule(s).

An application developer can use the actor side library to communicate with prove-
nance store services. He can also ensure actor behaviour rules are suitably enforced in
his provenance-aware applications by invoking these corresponding facilities. After in-
tegration with applications, the actor side library becomes a part of provenance-aware
applications and should be distributed with the applications.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

110

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

8.8 Conclusion
This chapter has defined a number of expectations on actor behaviour. These expec-
tations include a set of architectural rules that inform system developers about actor
behaviour with respect to the identification of interactions and the recording of links.
We also provide a description of tracers in terms of propagation rules. Security rules
are also introduced. These rules define actor behaviour for recording p-assertions in
a secure manner. Furthermore, we discuss how actors are expected to transform p-
assertions when using documentation styles. Policies are then defined for provenance-
aware actors. Finally, actor side libraries are introduced as the architectural component
that can be used by system developers to make sure their actors adhere to the rules and
expectations defined in the chapter. Actors must follow the expectations outlined here
in order for process documentation to be correctly recorded, managed, and queried.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

111

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 9

Justification

In this chapter, we study the impact of various requirements on the architecture and
how these are addressed (or otherwise) by features of the architecture. In some specific
cases, the requirements lead to implementation recommendations, which we enumer-
ate in Section 9.6. The requirements we study are those from the software require-
ments document [And05b], from the security [IHT05], scalability [IGM05] and tools
[Ran05] workpackages, and additional requirements from the two target application
domain areas (organ transplant management [VSWTV05] and aerospace engineering
[KS05]).

All requirements enumerated in this chapter are quoted verbatim from the original
documents.

9.1 Software Requirements Document
This section explains how the software requirements for provenance system are sat-
isfied by the functionality provided by the architecture described in this document.
These requirements are sourced from the software requirements document [And05b]
and are listed in the remaining sections of this chapter along with the corresponding
feature of the provenance architecture that addresses it.

9.1.1 Functional Requirements
SR-1-1 The provenance architecture should provide for the recording and querying of inter-
action and actor provenance. 2

Design Feature: The architecture includes recording and querying interfaces which
can be used respectively to store and retrieve p-assertions to/from the provenance store
(cf. section 3.3, p. 26 and section 3.3, p. 26)). 2

SR-1-2 The provenance architecture should allow the retrieval of a provenance trace from
the provenance store. Either a complete trace or a subset may be retrieved. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

112

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: The architecture provides a query interface (cf. section 3.3, p. 26)
with multiple levels of query capability that support the required granularity of trace
to be retrieved. The navigation capability allows p-assertions to be retrieved from
the provenance store (cf. section 7.3, p. 95), whereas the provenance-specific query
capability allows for more process-oriented results to be retrieved (cf. section 7.2,
p. 87). 2

SR-1-3 The provenance architecture should allow the back-up of a provenance store to be
taken. This will generally include an archiving facility that allows data within a provenance
store to be saved for future use. 2

Design Feature: Retrieval of data for purposes of archival is supported through ap-
propriate use of the querying interface (cf. section 7.3, p. 95); the specific functionality
of archival is outside the domain of the logical architecture, but would require the use
of a long-term persistent storage capability. 2

SR-1-4 The provenance architecture should allow comparisons to be made across Prove-
nance Records within a provenance store with reference to particular data attributes within a
Provenance Record. 2

Design Feature: The architecture provides a query interface with multiple levels of
query capability and granularity: for example, at the level of a single interaction or ac-
tor state p-assertion, or the specific items within each of these (cf. section 7.3, p. 95).
The queries can be generated in the appropriate format to allow accessibility at the
desired level. Comparisons are not performed by the querying interface, but are the
responsibility of processing services (cf. section 3.3, p. 28). (Implementation Recom-
mendation IR-P-1, p 132.) 2

SR-1-5 The provenance architecture should allow the results of a query to the provenance
store to be captured for future use. A query in this context must be specified with reference to
the structure of the provenance store. 2

Design Feature: The results of a query are returned by the query interface (cf. section
3.3, p. 26), and can be subsequently stored for future use. The provenance architecture
however does not manage any storage space (except in the internal implementation of
the provenance store itself); therefore, managing the storage of queries and results is
outside the scope of the architecture. 2

SR-1-6 The provenance architecture should allow a user to access a Provenance Record
based on the time and date (calendric information) at which the Record was stored. 2

Design Feature: The recording interface (cf. section 3.3, p. 26) does not mandate
when the provenance store actually stores p-assertions in persistent storage. This de-
sign decision allows implementers to choose efficient implementation techniques that
do not impact performance of the store, such as asynchronous storing. Thus, it is

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

113

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

unclear what the semantics of such a time information would actually be, given that
storing time is not specified by the architecture. Alternatively, we could request prove-
nance stores to add time information when an p-assertion is submitted through the
recording interface. Given the asynchronous nature of the recording protocol, this mo-
ment is not clearly specified either. Ultimately, other forms of time information may be
of use to some applications: time a p-assertion is backed up, time a p-assertion is repli-
cated, We see such information as a form of metadata relating to the lifecycle of
p-assertions within provenance stores. The provenance architecture however does not
specify such a lifecycle because it may constrain implementers of provenance stores
unduly. Instead, several alternate approaches are proposed to support this requirement.
First, asserters of p-assertions can use actor state p-assertions (cf. section 2.4, p. 19) to
assert the time at which interactions occur, or can define types of p-assertions that con-
tain suitable time information. Second, a generic metadata facility can be used to an-
notate (with time information or other) p-assertions recorded in the provenance store;
such metadata facility is generic and does not belong to the provenance architecture.
(Implementation Recommendation IR-PS-1, p 131.) Third, the principles described in
this architecture can also been applied for the interaction(s) between an asserter and
a provenance store. Both can document their execution in a provenance store, and in
particular the time at which they send and receive a record message, which can be ex-
pressed as actor state p-assertion. (Implementation Recommendation IR-PS-2, p 131.)
2

SR-1-7 The provenance architecture should allow a user to verify the contents of a prove-
nance store against a specified set of rules. Verification in this context means that the contents
of the provenance store meet the set of constraints expressed by the set of rules. 2

Design Feature: The trace comparison service or semantic validity analyser are ex-
amples (cf. section 3.3, p. 28) of the processing services group (cf. section 3.3, p. 28),
introduced by the logical architecture. Such services need to be implemented and have
to make use of the query interface (cf. section 3.3, p. 26) to retrieve information from
the provenance store. 2

SR-1-8 The provenance architecture should allow a user to specify a time period in the future
at which a provenance query may be submitted to a provenance store. A scheduler will be made
available that allows queries to be stored to disk, and dispatched to the store in the future. 2

Design Feature: The scheduling functionality can be achieved by a service that forms
part of the processing services group (cf. section 3.3, p. 28). 2

SR-1-9 The provenance architecture should allow capabilities provided by the tools to be
accessible as an API. This is to allow such capabilities to be embedded within an existing
application. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

114

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: It is the responsibility of tools developers to provide libraries similar
to actor-side libraries that expose the provenance store functionality (cf. section 3.3,
p. 26). 2

SR-1-10 As part of the initialisation of the provenance recording process, the provenance
architecture should allow a service or user to specify the identity of the provenance store to
which data should be recorded. 2

Design Feature: The provenance store to be used can be specified as part of a con-
figuration decision by the service or a user. The actor-side libraries (cf. section 3.3,
p. 26) should be configurable and allow the identity of provenance stores to be speci-
fied. (Implementation Recommendation IR-ASL-1, p 132.) 2

SR-1-11 The system should support the multiple storage of a provenance record, i.e. the
system should provide a way to store copies of a provenance record in more than one repository.
2

Design Feature: Copies of provenance records can be obtained via the query inter-
faces (cf. section 3.3, p. 26); however, storage and retrieval across multiple repositories
is a storage layer issue that is not addressed by the architecture, but is left to specific
implementations of provenance stores. (Implementation Recommendation IR-PS-3,
p 131.) 2

SR-1-12 The system should support the recording of different provenance information views
related to an event or an entity. 2

Design Feature: The recording protocol supports different views of interactions (senders
and receivers) (cf. section 7.1, p. 85) and allows different assertions to be made about
interactions, states and relationships (cf. section 2.4, p. 19). 2

SR-1-13 The provenance architecture should support the migration of provenance data among
provenance stores. 2

Design Feature: Migration of p-assertions is composed of querying of the source
provenance store, followed by recording into the target provenance store, and finally
deletion of the p-assertions in the source provenance store. The recording and querying
interfaces (cf. section 3.3, p. 26, section 3.3, p. 26) can be used to that end. On the
other hand, the provenance store does not provide any deletion or update capability in
its APIs so as to offer immutability. Such functionality may instead be offered by the
storage layer. The issue of migration of p-assertions is also discussed in Section 5.3.
(Implementation Recommendation IR-PS-5, p 131.) 2

SR-1-14 The system should support the storage of recorded provenance data for an indefinite
period of time. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

115

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: This is a non-functional requirement that cannot be enforced by the
logical architecture. This is essentially a quality of service element that has to be pro-
vided by the host of a provenance store. In addition, implementations of provenance
store should consider the expiry of cryptographic public keys. (Implementation Rec-
ommendation IR-PS-10, p 132.) 2

SR-1-15 The provenance architecture should support the storage of results of analysis and
reasoning operations performed on the provenance data by tools that are not part of the generic
architecture (3rd party tools on the application layer). 2

Design Feature: The architecture is open and allows for analysis and reasoning ser-
vices to be implemented as processing services (cf. section 3.3, p. 28) that interact with
the provenance through its query interface (cf. section 3.3, p. 26). As indicated in SR-
1-5, the actual storage functionality is beyond the remit of the provenance architecture.
2

SR-1-16 The provenance architecture should provide support for maximum automation of
the provenance recording mechanism. 2

Design Feature: The recording interface (cf. section 3.3, p. 26) provides for the
recording of one or more p-assertions, and as such offers no automation. Such a fea-
ture has to be offered by the actor-side libraries (cf. section 3.3, p. 26). Two different
approaches may be adopted by these: policies allow users to specify in a declarative
manner what information and when it should be recorded. (Implementation Recom-
mendation IR-ASL-2, p 132.) Alternatively, automation support may also be provided
with knowledge of the actor hosting environment, for instance to capture invoked mes-
sages, or to recover information from logs. (Implementation Recommendation IR-
ASL-3, p 132.) 2

SR-1-17 The provenance architecture should be deployable as an integrated part of a system,
as a service within the same administrative domain as the client system and as a 3rd (external)
party operated service, too. 2

Design Feature: The APIs of the query, submission and management libraries (cf.
section 3.3, p. 26) allow integration into the existing system, whilst the UIs, processing
(cf. section 3.3, p. 28) and presentation services allow the provenance architecture to
be used as an external third-party service. The derivation engine (cf. section 4.3.1,
p. 41) of the provenance security architecture allows policies of the client domain to
be reflected into the provenance access control functionality. 2

SR-1-18 Client side components of the provenance architecture should not block an execut-
ing workflow if any provenance services are unavailable. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

116

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: No requirements on synchronous or asynchronous behaviour should
be assumed. This is an implementation issue and hence not applicable within the
context of a logical architecture. Capability to handle errors as suggested by this re-
quirement (or others) may be offered by actor side libraries (cf. section 3.3, p. 26).
(Implementation Recommendation IR-ASL-4, p 132.) 2

9.1.2 Performance Requirements
SR-2-1 The additional execution overhead for an application recording provenance informa-
tion should be kept to a minimum. 2

Design Feature: Execution overhead is implementation-specific and cannot be en-
forced or specified at architectural level. The architecture however is designed in such
a way that it allows asynchronous recording and has ways of dealing with large data
structures allowing impact of p-assertion recording to be minimised. 2

SR-2-2 : Storage space requirements of the provenance architecture for provenance infor-
mation recording should be kept at a reasonably low level. 2

Design Feature: The p-structure (cf. section 6.8, p. 78) is a well-defined data struc-
ture whose space requirement can be predicted at design time. A trade-off exists be-
tween the amount of storage required to document execution and its level of detail.
Since storage requirements can be predicted, the designer of a provenance-aware ap-
plication may therefore take decisions to record (or not) aspects of execution that are
relevant (or not) to the provenance queries to be supported by the application. 2

SR-2-3 : The provenance architecture should guarantee reliable once-and-once-only deliv-
ery of provenance information to and from a provenance store. 2

Design Feature: The architecture is agnostic about the transport layer used to deliver
record messages to the provenance store. Protocols that offer the guarantee of once-
and-once-only delivery may be used in applications that have such a requirement. We
note that the provenance store has the idempotence property (cf. section 2, p. 84),
which allows a same message (with same local identified) to be submitted multiple
times, with the guarantee that it affects the provenance store at most once. 2

SR-2-4 The provenance architecture should be capable of handling large amounts of prove-
nance data submitted frequently by user applications. The provenance architecture should not
be the cause of any bottlenecks in the overall system due to the processing of provenance data.
2

Design Feature: The protocol used for submission in the architecture provides sev-
eral ways of dealing with large amounts of data. On the one hand, appropriate record-
ing patterns (cf. section 5.1, p. 50) allow for deployment of provenance stores that are
local to the asserter, and therefore avoid transfer of large amounts of data over long

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

117

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

distance network. On the other hand, assertions (or part of them) may be passed by
reference, and can be used to prevent the submission of large data sets; such a facility
is offered by documentation style (cf. section 6.4, p. 70). 2

9.1.3 Interface Requirements
SR-3-1-1 All of the functions of the provenance architecture should be accessible through
its API so it can be used as an embedded component in a system. 2

SR-3-1-2 The provenance architecture should support a rich set of published, generic ap-
plication programming interfaces (APIs) that allow application specific analysis and reasoning
tools to be built upon. 2

SR-3-1-3 The provenance architecture should provide a programmatic interface for the ad-
ministration of the system. 2

Design Feature: SR-3-1-1, SR-3-1-2 and SR-3-1-3 are all catered for via the man-
agement and provenance querying actor side libraries. The Provenance Architecture
should make no assumptions about the contents of this API, or the particular protocol
that is used to access services made available through this API. 2

SR-3-1-4 The provenance architecture should support an XML-based API format for prove-
nance data. 2

Design Feature: The architecture described in this document is format and technol-
ogy neutral. Its implementation by EU Provenance will be Web Services based, and
therefore, will be offering WSDL specifications to describe service interfaces. 2

SR-3-2-1 Export formats for provenance data should be non-proprietary to allow tools and
applications to be built without violating IPR rules. A format based on an existing data rep-
resentation standard (with special focus on XML defined by XML Schema) would be highly
preferred. 2

Design Feature: The architecture described in this document is format and technol-
ogy neutral. Its implementation by EU Provenance will be Web Services based, and
its query functionality will return XML representations of p-assertions. 2

9.1.4 Operational Requirements
SR-4-1 Provenance information displayed by the provenance architecture on a human com-
puter interface (HCI) should be updatable on user request. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

118

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: Once retrieved from the provenance store, any p-assertion or derived
data can be viewed or rendered by a user interface. Such data can be updated locally,
but by its immutability property, documentation of execution cannot be changed in the
provenance store. (Implementation Requirement IR-PS-5, p 131.) 2

SR-4-2 HCIs presented by the provenance architecture for displaying the contents of a
provenance store should support continuous monitoring, i.e. the displayed information should
be updated automatically on every change as soon as possible. 2

Design Feature: A processing service, such as the provenance store visualiser (cf.
section 3.3, p. 28) may poll the provenance store, by repeatedly issuing queries, or
alternatively can subscribe to notification of change (cf. section 7.4.1, p. 97) in the
provenance store. We note that the architecture does not guarantee any real-time con-
straint, and therefore the timeliness of such notifications is not specified. 2

SR-4-3 The update frequency of provenance information displayed by the system on a HCI
should be configurable based on policies. 2

Design Feature: Following requirement SR-4-3, such policies are specific to the
provenance store visualiser (cf. section 3.3, p. 28). 2

SR-4-4 Human-computer interfaces presented by the provenance tools should be designed
to allow multilingual support. 2

Design Feature: (Implementation Requirement IR-P-2, p 132.) 2

9.1.5 Documentation Requirements
SR-5-1 Detailed documentation of the provenance architecture public interfaces should be
produced both for APIs and HCIs. 2

Design Feature: This document provides concepts, definitions and abstract descrip-
tions, which should be referred to by the documentation of specific components. 2

SR-5-2 A detailed description of the administrative interface of the provenance architecture
should be produced. 2

Design Feature: This document provides concepts, definitions and abstract descrip-
tions, which should be referred to by the documentation of specific components. 2

9.1.6 Security Requirements
SR-6-1 The provenance architecture should have a configurable access control system over
the resources it provides, with a granularity that is sufficient to protect these resources. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

119

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: The authorisation engine (cf. section 4.3.1, p. 39) provides access
control functionality, which is configurable through the access control policies in the
security architecture (cf. section 4.3.1, p. 39, section 4.3.1, p. 40). The access control
functionality could be configured to reflect the functionality of other access control
systems. (Implementation Recommendation IR-PS-6, p 131.) 2

SR-6-2 The provenance architecture should allow both automated and manual determination
of access control rights. 2

Design Feature: The access control policies (cf. section 4.3.1, p. 40) in the security
architecture are manually determined by the system administrator . The derivation
engine (cf. section 4.3.1, p. 41) allows automated generation of access control rights
on the basis of access control statements accompanying provenance information that
is meant to be stored. 2

SR-6-3 The provenance architecture should allow a service or user to request the level of
security they wish to be associated with the recording process. The level of security can range
from no security through encrypted data transfer to more complex security mechanisms. 2

Design Feature: The user can determine the required level of security to be used in
the recording process from the access control policy (cf. section 4.3.1, p. 40) in the
security architecture of the provenance system. 2

SR-6-4 The provenance architecture should provide a way to map access rights information
of embedding systems into its security subsystem. 2

Design Feature: The derivation engine (cf. section 4.3.1, p. 41) of the provenance
security architecture allows policies / access control rights of the embedding system
to be reflected into the provenance access control functionality. (Implementation Rec-
ommendation IR-PS-6, p 131.) 2

SR-6-5 Security related procedures for accessing the provenance system should be sub-
sumed under the existing security related procedures for the embedding system if possible,
so that changes or additions to the existing procedures are minimised. 2

Design Feature: The derivation engine (cf. section 4.3.1, p. 41) of the provenance
security architecture allows policies / access control rights of the embedding system to
be reflected into the provenance access control functionality. In addition, the identity
validator (cf. section 4.3.1, p. 37) can accept a multiplicity of security credentials,
including the ones used for authenticating to the embedding system. 2

SR-6-6 The provenance architecture should provide a mechanism for recording provenance
data in an unmodifiable form and also ensuring that the party responsible for the recording
process cannot deny having recorded that provenance data. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

120

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: Process documentation will not be overwritten, modified or deleted
by any operation in the supplied APIs. (Implementation Requirement IR-PS-5, p 131.)
Non-repudiation can be accomplished using signatures, and the P-structure supports
the signing of a p-assertion by an asserting actor (cf. section 6.9, p. 80). Signing
functionality can be provided by actor side libraries. (Implementation recommendation
IR-ASL-5.) 2

SR-6-7 The provenance architecture should provide a mechanism for the authentic times-
tamping of provenance records. Authenticity should be guaranteed by the mechanism on a
level that is enough even for the use in legal procedures. 2

Design Feature: Asserters of p-assertions can use actor state p-assertions (cf. sec-
tion 2.4, p. 19) to assert the time at which interactions occur, or can define types of
p-assertions that contain suitable time information. Second, a generic metadata facil-
ity can be used to annotate (with time information or other) p-assertions recorded in
the provenance store. (Implementation Requirement IR-PS-1, p 131.) In either case,
access can be provided to a trusted third party time stamping service. (Implementation
Requirement IR-APP-4, p 134.) We also refer the reader to SR-1-6 for an analysis of
timestamping by the provenance store. 2

9.1.7 Other Requirements
SR-7-1 The provenance architecture should have the properties of cost efficiency and ro-
bustness versus an in-application hand-engineered logging system. 2

Design Feature: The Provenance system is not a logging system and therefore com-
parison is difficult. Cost efficiency and robustness are deployment and implementation
properties. 2

SR-7-2 The provenance architecture should be loosely coupled and independent from the
applications as much as possible. Integration costs for existing systems should be minimal,
ideally existing system components should remain unaffected. 2

Design Feature: Addressed by features for SR-1-16, SR-1-17, SR-6-4, SR-6-5. 2

9.2 Tools Requirements
In this section, we discuss some of the requirements of the tools workpackage (as
detailed in the tools workpackage deliverable D6.1.1 [Ran05]) and their impact on
the architecture. Note that some requirements marked TSR-* in the tools document
do not have corresponding requirements on the architecture (most after TSR-4-2 are
requirements on the tools rather than the provenance architecture), so are not included
here.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

121

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

TSR-1-1 Provenance Architecture should support a Query Interface and a Submission/Recording
Interface to the provenance store. Tools may make use of this interface to retrieve one or more
p-assertions from the provenance store. 2

Design Feature: See the Design Feature for SR-1-1. 2

TSR-1-2 Provenance Architecture should provide support for storing results generated from
a Query locally at the provenance store. These results can then be read from a temporary
storage area by the Tools. 2

Design Feature: The query interface temporarily stores results from a query, for it-
erative retrieval (cf. section 7.3, p. 96). 2

TSR-1-3 Provenance Architecture should not impose constraints on access to the store via
the Query or Management Interfaces. Tools may be able to read all or part of the PS directly.
2

Design Feature: The query interface (cf. section 3.3, p. 26) can provide clients with
direct access to all or part of the process documentation contained in a provenance
store, depending on access control policies. The provenance architecture cannot pre-
vent access to the back-end storage of process documentation by means other than the
prescribed interfaces. 2

TSR-1-4 The Query interface at the PS should allow search to be carried out on a data at-
tribute or value. For instance, the tools may generate an Xpath query that needs to be processed
by the PS, and this query would be defined with reference to one or more namespaces. 2

Design Feature: The navigation capability of the query interface (cf. section 7.3,
p. 95) is based on evaluating expressions against a hierarchical view of the documen-
tation in provenance stores. 2

TSR-1-6 The Recording interface at the PS may attach a timestamp with each p-assertion
recorded. This timestamp may be in addition to one generated by the application submitting
the p-assertion. Generally, no timestamp is produced by the tools. 2

Design Feature: See the Design Features for SR-1-6 and SR-6-7. According to the
SR-6-7, the tools may have to invoke the necessary timestamping functionality. 2

TSR-1-8 The Query interface at the PS should provide some indication to the Tools about
the list of queries that are waiting to be answered by the PS. Essentially, if a message queue
exists at the PS, the contents and size of this query should be accessible via the Management
interface at the PS. 2

Design Feature: See the Design Feature for SR-1-8. A processing service which
provides a scheduling/buffering facility can also provide a message queue for interro-
gation. The management interface of the provenance store provides functionality for
managing process documentation. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

122

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

TSR-1-9 The Provenance Architecture should support a registry service to enable the soft-
ware interfaces for all Tools to be visible. This is particularly true for any visualisation tools
that may be application specific. Information about new tools, or updated versions of existing
tools should be accessible through such a registry. This would be associated with ‘Processing
Services’ in the Logical Architecture. 2

Design Feature: The provenance architecture does not contain a registry, but one
may be deployed as part of an application and used to register provenance architecture
components. 2

TSR-1-10 The Management interface at the PS should enable the identity of the PS to be
queried. 2

Design Feature: The obtaining of certificates and public keys for services can be
achieved by many mechanisms, and is out of scope for the provenance architecture. 2

TSR-1-17 The Provenance Architecture should not assume the existence of a particular set
of services in the Tools Suite. 2

Design Feature: No particular set of processing services, UIs or other tools are as-
sumed or required in the provenance architecture. 2

TSR-1-18 The Provenance Architecture should not necessitate the submission of a p-assertion
from a particular type of client. No requirements on synchronous or asynchronous behaviour
should be assumed. 2

Design Feature: See the Design Feature for SR-1-18. 2

TSR-3-1-1 All of the functions of the provenance architecture should be accessible through
its API so it can be used as an embedded component in a system. 2

Design Feature: See the Design Feature for SR-3-1-1. 2

TSR-4-1 The Provenance Architecture should make no assumption about the types or modes
of user interfaces being supported. 2

Design Feature: The provenance architecture does not make any assumptions about
the types or modes of user interfaces being supported. 2

TSR-6-2 The Provenance Architecture should allow such access control to be supported
(and configured) through the Management interface of the PS, and a specialist Credentials
Management service (or similar). 2

Design Feature: See the Design Feature of SR-6-2 for the ways in which the archi-
tecture supports configuration of access control . 2

TSR-6-6 The Provenance Architecture should make no assumption about the recording for-
mat used. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

123

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: The provenance architecture is format and technology-independent.
2

9.3 Scalability Requirements
In this section, we discuss some of the requirements of the scalability workpackage (as
detailed in the scalability workpackage deliverable D5.1.1 [IGM05]) and their impact
on the logical architecture.

SL-1 The provenance query interface should support the retrieval of large result sets. 2

Design Feature: The query interface allows actors to iterate over query results (cf.
7.3). (Implementation Recommendation IR-PS-7, p 131.) 2

SL-2 The provenance recording interface should support references to data within a p-assertion.
2

Design Feature: The architecture supports storing data reference in the provenance
store instead of the actual data through the use of documentation style (cf. section 6.4,
p. 70). (Implementation Recommendation IR-APP-2, p 133.) 2

SL-3 The provenance recording interface should support the recording of repeated p-assertions.
2

Design Feature: An actor can make a p-assertion that refers to an already recorded
p-assertion by using the global p-assertion key of the previously recorded p-assertion.
(cf. 6.2 p. 60). 2

SL-4 The provenance architecture should support handling of large p-assertion messages. 2

Design Feature: This is addressed by the documentation style through reference as
well as the asynchronous nature of the recording protocol. An actor can record a
reference to a p-assertion instead of the entire message itself. Likewise, an actor could
split up the content of the large p-assertion into several smaller p-assertions and record
those separately (cf. section 6.4, p. 70). (Implementation Recommendation IR-APP-2,
p 133.) Also see Design Feature for SR-2-4. 2

SL-5 Provenance stores should be able to exchange their contents. 2

Design Feature: See the Design Feature for SR-1-13. 2

SL-6 The provenance store recording interface should support the SOAP MTOM recom-
mendations for non-XML data. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

124

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: The architecture is logical and does not specify specific transport
protocols. This is an implementation concern. 2

SL-7 The provenance store should support multiple actors recording, querying it simultane-
ously. 2

Design Feature: The recoding, querying interfaces place no limit on the number
of actors that can use these interfaces. (Implementation Recommendation IR-PS-9,
p 132.) 2

SL-8 The provenance store implementation should be able to manage large amount of p-
assertions. 2

Design Feature: The management interface places no limit on the number of p-
assertions that can be managed. (Implementation Recommendation IR-PS-8, p 131.)
2

SL-9 Provenance actors should have no affinity to a provenance store. 2

Design Feature: The logical architecture does not prescribe or enforce what prove-
nance store an actor can use. 2

9.4 Requirements from the OTM/EHCR Application
In this section, we discuss the requirements of the Organ Transplant Management ap-
plication on the provenance architecture. We make reference to the General Rules
(and sometimes section numbers) in deliverable D8.1.1 [VSWTV05]. Not all General
Rules listed in that document are included as requirements here: General Rules OTM
4 and 10–23 and EHCR 7–17 are design decisions regarding the intended use of the
provenance architecture (and compatible with it) rather than requirements.

GR-OTM.1 Anonymisation of patient identifiers must be carried out before any data is
stored in Provenance stores. A system wide anonymisation mechanism is required. 2

Design Feature: Asserting actors can replace patient identifiers with anonymous IDs
in interaction p-assertions. Documentation style (cf. section 6.4, p. 70) can then be
used to ensure that querying actors know this replacement has occurred. (Implemen-
tation Recommendation IR-APP-1, p 133.) 2

GR-OTM.2 Source medical data is never stored in Provenance stores but only referenced
therein. A system wide medical data referencing scheme is required. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

125

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: Asserting actors can replace sensitive data with references to other
data stores in interaction p-assertions. Documentation style (cf. section 6.4, p. 70)
can then be used to ensure that querying actors know this replacement has occurred.
(Implementation Recommendation IR-APP-2, p 133.) 2

GR-OTM.3 Each application component (actor/service) is shadowed by its own local Prove-
nance store. 2

Design Feature: Multiple provenance stores can be deployed within a single appli-
cation (cf. section 3.3, p. 26). 2

GR-OTM.5 Provenance stores are interlinked and communicate with one another, they are
considered to be in one single-sign-on domain for security purposes, even though the applica-
tion components will generally not be. 2

Design Feature: Provenance stores can contain view links (cf. section 5.2.1, p. 56)
and object links (cf. section 5.2.2, p. 57) which reference provenance stores containing
related documentation. Querying actors can then follow these links to obtain the full
provenance of an application entity. Single sign-on is possible with the security archi-
tecture because the credential server may be in an independent security domain from
of any provenance store or application actor (cf. section 4.3, p. 37). (Implementation
Recommendation IR-PS-4, p 131.) 2

GR-OTM.6 All decision, result and edit (and possibly consult) actions/events are recorded
in the system by the actor responsible for carrying them out. 2

Design Feature: This matches the requirements on actor behaviour and so is com-
patible with the architecture. (Implementation Recommendation IR-APP-3, p 134.)
2

GR-OTM.7 ...process documentation is expected to be available indefinitely, however the
underlying medical data may be removed over time due to the application of data retention
policies. 2

Design Feature: This matches the intended use of the provenance architecture. Pro-
cess documentation will not be overwritten, modified or deleted by any operation in the
supplied APIs. (Implementation Recommendation IR-PS-5, p 131.) Any subsequent
dangling links must be dealt with at the application level. 2

GR-OTM.8 Messages stored in the Provenance system MAY NOT be the complete mes-
sages originally sent, but a reduced form removing sensitive medical data. 2

Design Feature: Asserting actors can replace sensitive data with references to other
data stores in interaction p-assertions. Documentation style (cf. section 6.4, p. 70)
can then be used to ensure that querying actors know this replacement has occurred.
(Implementation Recommendation IR-APP-2, p 133.) 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

126

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

GR-OTM.9 All messages sent in the system are stored by BOTH the sender and the receiver.
2

Design Feature: It is possible to distinguish which actor in an interaction is asserting
documentation using the record data structure (cf. section 7.1, p. 85) and for a querying
actor to distinguish which actor asserted each p-assertion in a provenance store (cf.
section 6.8, p. 80). 2

GR-EHCR.1 In order to assembly the full EHCR of the patient, the EHCR application uses
the Provenance information returned from the Provenance store. 2

Design Feature: If the provenance of the patient contains all information to be in-
cluded in the EHCR, then the query interface supports this action (cf. section 3.3,
p. 26). 2

GR-EHCR.2 The EHCR application will use the one Provenance store per actor/service/data-
store approach to store p-assertions. 2

Design Feature: Multiple provenance stores can be deployed within a single appli-
cation (cf. section 3.3, p. 26). With this, deployers can associate one provenance store
to one application actor if they wish. 2

GR-EHCR.3 The Provenance system connects the distributed Provenance stores and an-
swers Provenance questions as if the distributed Provenance stores were logically a single
centralised Provenance store. 2

Design Feature: This functionality is an illustration of a processing service (cf. sec-
tion 3.3, p. 28), which can query multiple distributed stores and return combined re-
sults. 2

GR-EHCR.4 Patient information is stored in the Provenance system only through refer-
ences using the Global Medical Patient ID (GMPID). 2

Design Feature: Asserting actors can replace patient identifiers with anonymous IDs
in interaction p-assertions. Documentation style (cf. section 6.4, p. 70) can then be
used to ensure that querying actors know this replacement has occurred. (Implemen-
tation Recommendation IR-APP-1, p 133.) 2

GR-EHCR.5 Health care data are stored in the Provenance system only through references
using the system wide medical referencing scheme. 2

Design Feature: Asserting actors can replace sensitive data with references to other
data stores in interaction p-assertions. Documentation style (cf. section 6.4, p. 70)
can then be used to ensure that querying actors know this replacement has occurred.
(Implementation Recommendation IR-APP-2, p 133.) 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

127

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

GR-EHCR.6 Provenance activities related to the assembly of the full EHCR is in the control
of the EHCR store and is hidden from medical applications. 2

Design Feature: Processing services and querying actors can be totally independent
from application actors following the provenance architecture (cf. section 3.3, p. 26).
2

OTM-15 Provenance stores are... linked together to answer queries in a form of overlay
infrastructure spanning all relevant OTM/EHCR services” (Section 4.1, page 48 of D8.1.1). 2

Design Feature: Provenance stores can contain view links (cf. section 5.2.1, p. 56)
and object links (cf. section 5.2.2, p. 57) which reference provenance stores containing
related documentation. Querying actors can then follow these links to obtain the full
provenance of an application entity. 2

OTM-16 [By using the provenance architecture in the application, we aim to] provide a
coherent way of tracking/locating interim results related to a case across all records / documents
/ reports” (Section 4.1.1, page 48 of D8.1.1). 2

Design Feature: Interim results and metadata are communicated between application
actors or are part of their state, so will be apparent in interaction and actor state p-
assertions. Relationship p-assertions allow these to be associated with a particular
patient or outcome (cf. section 2.4, p. 19). 2

OTM-17 [By using the provenance architecture in the application, we aim to] provide (with-
out additional security clearance) a small amount of anonymised, low security risk meta-data
to characterise the result types, decisions and outcomes without being exposed to the details of
each decision.” (Section 4.1.1, page 48 of D8.1.1). 2

Design Feature: The provenance security architecture ensures secure access to pro-
cess documentation (cf. section 4.3, p. 37). 2

OTM-18 [By using the provenance architecture in the application, we aim to] provide a
skeleton / framework for a more detailed probe which is able to apply security clearance to
retrieve detailed records as needed in conjunction with Provenance meta-data.” (Section 4.1.1,
page 48 of D8.1.1). 2

Design Feature: Replacing data with references in interaction p-assertions, where
the references point to databases in other security domains, allows multiple steps of
security clearance. Querying actors can be aware of, and so follow, the references by
use of documentation style (cf. section 6.4, p. 70). (Implementation Recommendation
IR-APP-2, p 133.) 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

128

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

OTM-19 In general, access to Provenance stores will be available to persons across multiple
hospitals / entities whereas internal data stores, generally are not accessible to anybody but
local teams. If absolutely necessary however in certain cases, data could be included. Such
needs will be evaluated on a case-by-case basis.” (Section 4.1.1, page 49 of D8.1.1). 2

Design Feature: The provenance store security architecture makes provision for in-
teraction between different security domains through the trust mediator (cf. section 1,
p. 37). 2

9.5 Requirements from the Aerospace Engineering Ap-
plication

In this section, we discuss requirements of the Aerospace Engineering application (as
detailed in the workpackage deliverable D7.1.1 [KS05]) and their impact on the logical
architecture.

AER-1 The need for physical distribution is not expected to be necessary considering the
estimated amount of provenance data (Section 4.1 of D7.1.1). 2

Design Feature: The provenance store is designed to be standalone in the initial in-
stance; and is meant to accommodate distribution when circumstances require it (cf.
section 3.3, p. 26). 2

AER-2 Data sets are referenced from the provenance store using URIs to the data server or
similar pointers (Section 4.1 of D7.1.1). 2

Design Feature: Asserting actors can place references to data sets in the data server
p-assertions. Documentation style (cf. section 6.4, p. 70) can then be used to ensure
that querying actors know this. (Implementation Recommendation IR-APP-2, p 133.)
2

AER-3 For practical reasons, it should be possible to provide a matching (or similar) access
control list (ACL) in the provenance system to the ACL used for the data server (Section 4.2.1.
of D7.1.1). 2

Design Feature: The access control list (cf. section 4.3.1, p. 40) of the provenance
system should be able to express the same access control semantics and restrictions as
the access control list of the embedding system (the data server), using the derivation
engine (cf. section 4.3.1, p. 41) of the security architecture if necessary. 2

AER-4 The provenance data should be exportable into files and capable of being moved
along with the simulations data (Section 4.2.1. of D7.1.1). 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

129

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Design Feature: The provenance store provides a querying interface (cf. section 3.3,
p. 26) that allows (a subset of) p-assertions to be retrieved from the provenance store,
and a recording interface (cf. section 3.3, p. 26) that allows p-assertions to be recorded
(i.e., the provenance store offers both import and export facilities). 2

AER-5 Data integrity between the provenance store and the linked information on the data
server (Section 4.2.1. of D7.1.1). 2

Design Feature: It is the responsibility of the application to keep track of data move-
ments and make corresponding updates to the provenance store. 2

AER-6 All p-assertions need to be uniquely identifiable by an assertion ID (Section 5.1 of
D7.1.1). 2

Design Feature: Provenance modelling introduces the notion of a global p-assertion
key (GPAK), which uniquely identifies a p-assertion (cf. section 6.2, p. 67). 2

AER-7 It would be useful to provide a way to generate unique IDs in a provenance store
client-side library (Section 4.2.2.1 of D7.1.1). 2

Design Feature: Actor side libraries can provide functionality for generation of unique
IDs (Implementation recommendation IR-ASL-6, p 132.) 2

AER-8 It would be useful for a user to supply an intuitive name for all interactions between
particular actors in a given workflow execution. 2

Design Feature: This requirement can be modelled as metadata about interactions in
actor state p-assertions (cf. section 2.4, p. 19). 2

AER-9 The user interface needs to be intuitive and easy to use as the results may be very
large and quite complex during a targeted typical simulation of a weeks duration. 2

Design Feature: User interface functionality is to be provided appropriately by the
presentation UIs in the provenance architecture (cf. section 3.3, p. 28). 2

AER-10 All p-assertions need to be time stamped by the provenance store. 2

Design Feature: This requirement is analysed as SR-1-6. 2

AER-11 A distinction between process defining and run time p-assertions has to be made.
2

Design Feature: This can be supported by using different tracers for the two p-
assertions types (cf. section 8.3, p. 104). Another option would be to model the
distinction as metadata about interactions in the actor state p-assertions (cf. section
2.4, p. 19). 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

130

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

9.6 Implementation Recommendations
This section contains a series of implementation recommendations that follow our
analysis of technical requirements. Such recommendations suggest features that may
be implemented by specific components of the architecture, namely the provenance
store, processing and UI services, and actor-side libraries, and also by applications
making use of the provenance architecture.

9.6.1 Provenance Store
IR-PS-1 A provenance store implementation may use a metadata infrastructure such
as RDF to annotate p-assertions with metadata information about time at which p-
assertions are received through the recording interface or stored in persistent storage.
2

IR-PS-2 A provenance store implementation may document its interactions with as-
serters by storing p-assertions in some provenance store (itself or another one). This
allows the provenance to document back ups, replication, time, etc. 2

IR-PS-3 A provenance store implementation may use a storage layer that offers
replication of p-assertions in order to be fault-tolerant. 2

IR-PS-4 Provenance stores for an application can be deployed in security domains
to which all querying actors have credentials to access. Tools can provide single-sign
on by storing credentials and using as appropriate for each provenance store. 2

IR-PS-5 Process documentation cannot be removed from the data storage using the
provenance store APIs; instead, it may be removed, following data retention policies,
by making direct access to the storage layer, using curation methodology typical of
long term storage. 2

IR-PS-6 The access control functionality of the provenance store may provide a way
to model the expression of access control policies and rules so that they are functionally
and / or semantically equivalent to the access control policies of other data stores 2

IR-PS-7 Scalability of query results can be implemented by caching of the results
within the provenance store. A set of interface operations allows actors to iterate and
retrieve the cached results in response to a query request. 2

IR-PS-8 Management of large number of p-assertions can be addressed by imple-
menting the provenance store persistent store component using a proprietary or open
source database management system. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

131

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

IR-PS-9 Implementations of the provenance recording, query and management in-
terfaces should be clusterable. 2

IR-PS-10 Implementations of provenance store should consider long term storage
of p-assertions and the necessity to keep a long term copy of public keys (which may
expire) to verify signed assertions. 2

9.6.2 Processing and UI Services
IR-P-1 A processing service should allow for comparison of p-assertions. 2

IR-P-2 UI services presented by the provenance system should be designed to allow
multilingual support. 2

9.6.3 Actor-Side Libraries
IR-ASL-1 Actor side libraries should allow for identification of the provenance store
to be used. However, it should also ensure that all p-assertions pertaining to one in-
teraction from a particular actor must be recorded in the same provenance store, Rule
8.4. 2

IR-ASL-2 Actor side libraries may provide re-usable functionality to communicate
and interact with the assigned provenance store. 2

IR-ASL-3 Actor side libraries may provide functionality to mutually authenticate
with the assigned provenance store. This also helps actors in obeying Rule 8.10. 2

IR-ASL-4 An actor may provide functionality to record a view link to the provenance
store that contains the corresponding actors view of the interaction if the view is in
another provenance store. This also helps actors in obeying Rule 8.5. 2

IR-ASL-5 Actor side libraries may provide functionality for generation of unique
IDs. This helps actors in obeying Rule 8.1. 2

IR-ASL-6 Actor side libraries may provide functionality to add assigned Interaction
Key into its asserting message. This also helps actors in obeying Rule 8.2. 2

IR-ASL-7 Actor side libraries may provide functionality for generation of a new
session tracer and add it into task message. This helps actors in obeying Rule 8.6. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

132

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

IR-ASL-8 Actor side libraries may provide functionality to add any session tracers
received from a superior actor to all requests it makes to inferiors within the task started
by the superior’s request. This helps actors in obeying Rule 8.7. 2

IR-ASL-9 Actor side libraries may provide functionality to add the session tracers
supplied by its superior to its response to the superior. This helps actors in obeying
Rule 8.8. 2

IR-ASL-10 Actor side libraries may support declarative policy specification that
specify what information needs to be recorded and when. This helps actors in obeying
rules in Section 8.6. 2

IR-ASL-11 Actor side libraries may be customised for specific actor hosting envi-
ronment to capture information automatically from existing logs or from runtime envi-
ronment. It may also use security functionality and credentials provided by the hosting
environment. This helps actors in obeying Rule 8.11. 2

IR-ASL-12 Actor side libraries may provide a range of error handlers and other facil-
ities to desynchronise application execution from execution documentation recording.
This helps actors in obeying Rule 8.12. 2

IR-ASL-13 Actor side libraries may provide the necessary access to cryptographic
functionality and material (such as key stores) in order to accomplish functionality
such as signing or encrypting. This helps actors in obeying Rule 8.9. 2

IR-ASL-14 Actor side libraries may provide functionality to transform messages ac-
cording to particular documentation styles. This helps actors in obeying rules in Sec-
tion 8.5. 2

9.6.4 Application Use of Provenance Architecture
IR-APP-1 A documentation style can be created that marks a message as having
been anonymised. Patient IDs can then be anonymised in an application message be-
fore asserting its content in an interaction p-assertion, and the anonymised documen-
tation style used. 2

IR-APP-2 A documentation style can be created that marks data as having been re-
placed by a reference. Sensitive data or large data sets can then be replaced with
references in an application message before asserting its content in an interaction p-
assertion, and the reference documentation style used. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

133

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

IR-APP-3 Decisions and events are triggered by information being received and pro-
duce results (information being sent). Therefore, they can be modelled as relationships
between interactions. Additional information about an event can be supplied as actor
state relating to those interactions. 2

IR-APP-4 Support and access to a trusted third party time stamping facility can be
supported. 2

9.7 Conclusion
All requirements have been analysed from an architectural viewpoint. Either require-
ments were addressed by some specific design features of the architecture, which we
explicitly referred to in the analysis, or they were beyond the remit of the architecture,
and may have led to implementation recommendations for the different components
identified by the architecture.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

134

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 10

Related Work

At the beginning of this report, we defined provenance as the process that leads to a
result. Prior research has referred to this concept using several other terms including
audit trails, lineage [Lan91b], and dataset dependence [AH97]. We use these terms
interchangeably to refer to the process that leads to a result. Much of the literature
considers what we term a provenance system, i.e. a system that records the docu-
mentation of a process and allows a representation of the provenance of a result to be
retrieved. The literature can be divided into four categories: fine granularity prove-
nance systems, domain specific provenance systems, provenance in database systems,
and middleware provenance systems. This review gives a brief summary and analysis
of the literature pertaining to each of these categories.

10.1 Fine Granularity Provenance Systems
The following systems record the documentation of a script or program execution,
thereby allowing a representation of the provenance of a script/program’s result to be
retrieved. These systems differ from workflow centric systems because of the finer
granularity of process documentation they achieve, where granularity of documenta-
tion means how detailed the documentation of a process is. If a system records all the
instructions in a program, whereas another system records the name of the program
being run, the first system will record documentation at a finer granularity. With finer
granularity documentation, the corresponding representation of provenance for a result
can be more detailed.

One example is the Transparent Result Caching (TREC) prototype [VA98]. TREC
uses the Solaris UNIX proc system to intercept various UNIX system calls in order to
build a dependency map. Using this map, a trace of a program’s execution can be trans-
parently captured, which can be used to keep web page caches current, and to provide
an ‘unmake’ function. Although TREC has several limitations, including high over-
head, it is an interesting case for determining the bounds on process documentation
granularity.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

135

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Another technique for capturing fine granularity process documentation is the sub-
pushdown algorithm [Mar01]. However, this algorithm can only be used to record
documentation of array operations in the Array Manipulation Language and was im-
plemented in a prototype database system, ArrayDB, and allows the provenance of an
array in ArrayDB to be retrieved. A more comprehensive system is audit facilities
designed for the S language [BJMC88]. S is an interactive system for statistical anal-
ysis. The result of users commands are automatically recorded in an audit file. These
results include the modification or creation of data objects as well as the commands
themselves. The AUDIT utility can then be used to analyse the audit file to retrieve the
provenance of a statistical analysis. This utility can also create a script to re-execute a
series of commands from the audit file.

A similar fine granularity technique for recording the documentation of a process
has been used in security for mobile agent systems. Using a technique called interac-
tion tracing, a user sending a mobile agent can verify that it has correctly executed on
the host platform. Interaction tracing treats a mobile agent as a black box, recording
all its inputs/outputs [Tan04]. Although interaction tracing is not concerned with the
provenance of a result, it presents a novel notion for recording process documentation.

10.2 Domain Specific Provenance Systems
Much of the research into provenance has come in the context of domain specific ap-
plications. Some of the first research in provenance was in the area of geographic
information systems (GIS). Knowing the provenance of map products is critical in
GIS applications because it allows one to determine their quality. Lanter [Lan91b]
developed two systems for recording process documentation and retrieving the prove-
nance of map products in a GIS. The first system was a meta-database for recording
documentation of a GIS process, while the second was for tracking Arc/Info GIS op-
erations from a graphical user interface with a command line [Lan91a, LE91]. The
workflow centric user interface was integrated into a software product called Geo-
lineus, which is one of the few lineage systems to be incorporated into a commercial
software product [Bos02]. Another GIS system that includes process tracking is Geo-
Opera, which is based on non-domain specific software [AH97]. Many of the ideas
in Geo-Opera are extended from GOOSE, which uses data attributes to point to the
latest inputs/outputs of a data transformation. All inputs/outputs must be stored in
GOOSE, and data transformations are programs or scripts [AA93]. Both GOOSE and
Geo-Opera are workflow based systems.

Another domain where provenance is of interest is satellite image processing. The
Earth System Science Workbench (ESSW) is designed for processing satellite imagery
locally. It provides a lab notebook service for tracking processing steps and a No-
Duplicate-Write-Once Read-Many storage service for storing files. As a workflow is
run inside ESSW, the results of each metadata described step is stored in the lab note-
book service. ESSW is noteworthy because it emphasises the need to have immutable

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

136

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

process documentation.
In chemistry, the CMCS project has developed a system for managing metadata in

multi-scale chemistry collaborations [MPL+03]. The CMCS project is based on the
Scientific Application Middleware project [MCE+03], which we discuss in greater de-
tail later in this review. Another domain where provenance tools are being developed
is bioinformatics. The myGrid project has implemented a system for recording the
documentation of process in the context of in-silico experiments represented as work-
flows aggregating Web Services [GGS+03]. In myGrid, documentation is recorded
about workflow execution and stored in the user’s personal repository along with any
other metadata that might be of interest [ZGG+03]. Using this personal repository, the
provenance of bioinformatics results can be determined. The focus of myGrid is about
personalising the way provenance is presented to the user, and highlights the need for
provenance in the bioinformatics domain.

The needs of particular domains have led to the development of specific systems
for recording domain dependent process documentation, which allow the provenance
of results to be retrieved. The majority of the systems, however, are designed for
one particular domain and are not general in nature, but they do provide insight into
how a general provenance system might be designed to meet the needs of a variety of
domains. For example, the systems tend to use a workflow centric approach. Also, the
systems highlight the need to both record the set of transformations as well as the data
used in a process.

10.2.1 Current Practises of Document Management Systems
Provenance has been formally and explicitly defined document management systems
in museums, libraries and archival management.

In terms of this document, two of the most related works are as follows. First,
the International Standard for Archival Description [ISA00] is a descriptive standard
for archival records. It can be applied to units of description at any level from the
collection to the individual item, and includes the archival history of an item and the
immediate source of acquisition, i.e. from where the item was last obtained.

Second, the Encoded Archival Description DTD [EAD02] is a standard for encod-
ing archival finding aids using SGML or XML. It includes two pieces of information:
the provenance of the material being described, meaning the chain of ownership of the
materials, and information about the immediate source of acquisition.

As can be seen from the above provenance definitions, standards and use context,
provenance in these domains is mainly referred to the acquisition and creation infor-
mation, and the history of the ownership and custody of a resource (description or
data).

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

137

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

10.3 Provenance in Database Systems
Provenance in database systems has focused on the data lineage problem [CWW00],
which involves determining the set of source data used to produce a given item. In
[WS97] Woodruff et al. attempt to solve this problem using weak inversion, which is a
technique that, given some output data and a weak inversion function f−w, attempts to
lazily recreate the input data used to generate the output. Unfortunately, this requires
the user who creates a new database view to also define an inversion function for that
view. This technique has been used to improve database visualisation [Woo98]. In
[CWW00] Cui et al. formalise the data lineage problem and present algorithms to
generate lineage data in relational databases. The generation algorithms are similar
to automatically creating weak inversion functions for every new view in a database,
which allows users to “drill through” the lineage of a data item seeing the source data
(tuples) that contributed to the given data item [CW00]. This work was also extended
to deal with general transformations of data sets inside a data warehouse [CW03].
Another system that examines the data lineage problem in a data warehouse context
is AutoMed [FP03]. Process documentation is recorded in AutoMed by recording
schema transformations, a series of which is termed a schema transformation pathway.
From these transformation pathways, the lineage of a data item can be retrieved. The
granularity of this approach depends on the granularity and number of schemas defined
in the system.

Buneman et al. [BKT01] redefine the data lineage problem as “why-provenance”
and define a new type of provenance for databases, namely, “where-provenance”.
“Why-provenance” refers to why a piece of data is in the database, i.e. what data
sets (tuples) contributed to a data item, whereas, “where-provenance” addresses the
location of a data element in the source data. Based on this terminology, a formal
model of provenance is developed applying to both relational and XML databases. In
other work [BKKT02], Buneman argues for a time-stamped based archiving mecha-
nism for change tracking in contrast to diff-based mechanisms which, it is argued, may
not capture the complete process of database modification because there may be multi-
ple changes between each archive of the database. Therefore, a diff-based mechanism
is not a reliable approach for the development of a general provenance system, and the
time-stamped approach is advocated.

The research into provenance in database systems is well grounded, systematic,
and formal. Because databases have a well defined and fixed set of transformations,
the community has focused mainly on the data lineage problem. Moreover, they deal
only with closed systems. However, in open, distributed systems the number of trans-
formations can be infinite, therefore, work is needed in developing systems that can
handle any kind of transformation in such open systems. Cui et al. [CW03] is a first
step toward addressing this problem, but it only pertains to one particular context, the
data warehouse.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

138

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

10.4 Middleware Provenance Systems
Several middleware systems have been developed to provide provenance support to
applications. These systems aim to provide a general mechanism for recording process
documentation and retrieving provenance for use with multiple applications across
domains and beyond the confines of a local machine.

In [RXBR04] Ruth et al. presents a system based around the concept of an e-
notebook. Each user is required to have an individual e-notebook which can record
data and transformations, either through connections directly to instruments, or via di-
rect input from the user. Data stored in an e-notebook is represented as a DAG and
can be shared with other e-notebooks via a peer-to-peer mechanism. A DAG may span
multiple e-notebooks to take in account multiple individuals participating in a process.
To enable support of trust and credential tracking, each node in a DAG must be dig-
itally signed by the node’s creator. This system is noteworthy because of its use of
the notebook metaphor, and its approach to trust of the stored process documentation.
However, there are questions as to whether this approach is appropriate for large scale
distributed systems in terms of scalability.

Another system supporting provenance is Scientific Application Middleware (SAM)
[MCE+03]. SAM provides facilities for storing and managing records, metadata and
semantic relationships, and is built on the WebDav standard. Support for provenance
is provided by adding metadata to files stored in a SAM repository. SAM is of interest
because it does not specify the format of the data or metadata that it handles, but in-
stead acts as an open repository. However, this lack of structure means that retrieving
the provenance of a result in its entirety can be difficult.

The Chimera Virtual Data System is a virtual data catalogue, which is defined by
a virtual data schema and accessed via a query language [FVWY02]. The schema is
divided into three parts: a transformation, a derivation and a data object. A transfor-
mation represents an executable, a derivation represents the execution of a particular
executable, and a data object is the input or output of a derivation. The virtual data
language provided by Chimera is used to both describe schema elements and query
the data catalogue. Using the virtual data language, a user can query the catalogue to
retrieve the DAG of transformations that led to a result. The benefit of using a com-
mon description language is that relationships between entities can be extracted by
analysing the transformation descriptions without having to understand the underlying
data. Process documentation in Chimera is stored in the Provenance Transformation
Catalog (PTC). However, the data stored in the PTC is limited to a defined schema
and does not allow for arbitrary information. Likewise, there is currently no support
for associating data in the PTC, making determining data lineage difficult. Chimera
is, however, noteworthy because it is specifically designed to work with large scale
distributed systems.

[SM03a] argued for infrastructure support for recording process documentation in
Grids and presented a trial implementation of an architecture that was used to demon-
strate several mechanisms for handling the documentation after it was recorded. The

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

139

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

system is based around a workflow enactment engine submitting data to a provenance
service. The data submitted represents information about the invocation of various
Web Services specified by the executing workflow script. This system is interesting
from the perspective of the work presented in this document since it is both Web Ser-
vices based, and was designed with Grid applications in mind. The drawbacks of this
system, however, are that it relies completely on a workflow enactment engine, and it
lacks demonstration in any large scale system.

10.5 Conclusions
In this chapter we have reviewed relevant work carried out in other areas. We have
discussed the state of the art in a number of provenance related computational sys-
tems from those covering fine granularity provenance to a number of domain specific
systems, including document management systems. Additionally, we examined how
provenance related work is carried out in database systems and we discussed several
middleware provenance systems. In terms of their relation to the work in this docu-
ment, the finer granularity systems are not designed specifically for determining the
provenance of data items, and they may carry excessive overheads for the kinds of
large scale systems that we consider. In addition our approach is to design a general
purpose provenance architecture that overcomes the limitations of the domain specific
provenance systems described above. We have also addressed the kinds of multiple
transformations to data items that can occur in open, distributed systems that current
database systems do not handle, due to their closed world assumptions.

In comparison to current systems available, the architecture presented in this doc-
ument provides an implementation independent, general specification for industrial
strength Grid-based applications that overcomes many of the limitations of previous
provenance systems.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

140

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Chapter 11

Conclusion

11.1 Summary
In this document, we have presented a logical architecture for provenance systems and
the accompanying details required to understand how such an architecture functions.
We have proposed a definition of provenance suitable for representation in a compu-
tational system, in Chapter 2, as “The provenance of an entity in a given state is the
process that led to that entity being in that state.”, and a concrete representation of this
concept, process documentation, in terms of interactions between actors and states of
those actors during interaction. In Chapter 3, we present the logical architecture itself
which defines the components of a system for the recording, maintaining, visualising,
reasoning and analysis of process documentation.

Chapters 4 and 5 address the security and scalability aspects of the architecture
respectively. A security architecture, complementary to the logical architecture, is pre-
sented that provides secure transmission and access control to provenance stores, and
a series of scenarios is given to illustrate how different modes of interaction with the
secured system will take place. For scalability, the need for distribution of provenance
stores is emphasised, and a set of deployment patterns for recording of process docu-
mentation to distributed stores is given.

In Chapters 6, and 7, we provide further detail about the functionality of the prove-
nance architecture. Chapter 6 describes the underpinning data model of the provenance
architecture. In Chapter 7, we detail the functionality available through the three in-
terfaces of a provenance store: recording, query and management. In Chapter 8, we
enumerate the constraints that application actors have to satisfy in order to successfully
record documentation of execution and issue queries about the provenance of data.

Finally, Chapters 9 and 10 place the work in context. In the former chapter, we
compare the logical architecture to the software requirements captured in the EU
Provenance project, showing how each is addressed by our design, and in Chapter 10
we discuss related work.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

141

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

11.2 Future Work
A set of associated documents will be produced by the EU Provenance project, and
will be made available from the project Web site at www.gridprovenance.org.

• An instantiation of the architecture for the Web Services stack.

• A standardisation proposal for the logical architecture.

• A design for implementation of the architecture.

• A methodology explaining how to deploy the provenance architecture.

• An application of the methodology and architecture to an organ transplant man-
agement system.

• An application of the methodology and architecture to an aerospace engineering
system.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

142

www.gridprovenance.org

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Appendix A

Notes

This appendix refers to annotations introduced in the margin of the architecture docu-
ment.

Note 1: Specifically, the following are all considered as “services” because they all
take some inputs and produce some outputs: Web Service, Corba or RMI objects,
command line program. 2

Note 2: With such a broad definition, we see that WS-BPEL, WSFL, VDL, Dagman’s
DAGs or Gaudi are all workflow frameworks capable of expressing the composition of
services. Likewise, a script calling several command line commands is also regarded
as a workflow. 2

Note 3: Such messages take the form of SOAP messages for Web services. In the case
of command line executables, we do not have explicit messages; instead, they take
some explicit arguments potentially representing both inputs and outputs. We also
see a memory shared by two threads as a way of implementing such message-passing
mechanism; the message itself is the information stored in the shared memory. 2

Note 4: Our definition of process, like the Unix notion of process, refers to an instance
of a running program (workflow here). It has a beginning, and, if it is finite, it has an
end. 2

Note 5: At this stage of the specification, we do not make the distinction between re-
source and service [CaIFF+04] since they are defined in the context of the specific Web
Services technology. Our broad view of message allows us to include in a message the
necessary reference to resources, as required by WSRF. 2

Note 6: Should the actors involved in the process be the only one to document it? The
answer is yes. Indeed, if actors are not involved in the process, then no message has
been sent to them. Hence, they cannot be aware of the process, and therefore could not
possible provide any documentation relevant to this specific execution. 2

Note 7: In a grid application based on command line executables, an interaction p-
assertion can include the executable fully qualified name, its inputs and its outputs,

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

143

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

whereas in a Web Services based approach, interactions documentation can include
input and output SOAP messages, and a reference to the service, port and operation
being invoked. In the latter case, we note that an interaction p-assertion potentially
includes not only the SOAP message body, but also its envelope, containing valuable
information such as security, addressing, resource or coordination contexts. 2

Note 8: We note that capturing such data dependencies in large scale databases is the
focus of research on data provenance in databases; techniques developed in such a
context may have to be integrated with the proposed approach. 2

Note 9: In a concrete instantiation of the logical architecture for Java and Web Ser-
vices technologies, interfaces will be specified by WSDL, whereas libraries will be
Java classes, generated by wsdl2java, implementing the stubs necessary to commu-
nicate with the provenance stores, and extended with some hand written convenience
functions. 2

Note 10: In Chapter 2, we have defined a workflow as the specification of a given
service composition. In the context of Web Services, such a service composition can
be expressed in a workflow language, such as WS-BPEL or other, which can be exe-
cuted (or enacted) by a component usually referred to as workflow enactment engine.
The workflow enactment engine is just one of the actors that is involved in an appli-
cation and is therefore expected to contribute p-assertions. We anticipate that for a
given workflow language, many p-assertions may be derived automatically from the
workflow script itself. For instance, interaction p-assertions can be produced for each
service invocation; likewise, relationship p-assertions can be derived from so-called
data links. 2

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

144

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Appendix B

Abbreviations

This appendix contains abbreviations used in this document.

CA Certificate Authority
GPAK Global P-Assertion Key
GPID Global P-Assertion Identifier
GUI Graphical User Interface
IR Internal Representation
PReP P-Assertion Recording Protocol
RBAC Role Based Access Control
RDF Resource Description Framework
UI User Interface
XML Extensible Markup Language

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

145

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Appendix C

XML Schema Diagrams

Figure C.1 gives an example of a small XML Schema displayed as a diagram. We will
now explain the format of the diagram with reference to this figure.

Figure C.1: An example XML Schema diagram

Figure C.1 defines the structure of type ts:Test. The type Test contains a sequence
of elements, which we now detail. One element in the sequence is ts:testName, which
can be any type and must occur once and only once in an instance of ts:Test. ts:Name
is followed by element ts:testNumber, which must contain a string. The ts:testNumber
element must occur at least once and can occur as many times as needed. This is
denoted by the “1..unbounded” under the element. Finally, the sequence contains a
choice between two elements, ts:startTest and ts:stopTes, either of which must contain
a date.

Below is a simple of description of each of the parts of the XML Schema diagram
format.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

146

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

An element (instance) is represented by the quali-
fied name of the element in the box. By default an
element must occur once and only once. Where
this restriction does not hold, the text “1..un-
bounded”, “0..unbounded”, “0..N”, “1..N” (where
N is an integer) appears under the element box.
The left hand number is the minimum occurrences
of the element at the position in the XML doc-
ument, the right hand number is the maximum
(with “unbounded” for no maximum).

A complex type is denoted by a lightly marked
box with the qualified name of the type at the top
left. The structure of the type is given by the ele-
ments, types and control structures within the box.

A horizontal sequence of dots represents a se-
quence of elements or control structures, that must
appear in an element conforming to the type in the
surrounding type box.

A vertical sequence of dots represents a choice be-
tween elements or control structures, that must ap-
pear in an element conforming to the type in the
surrounding type box.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

147

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Index

access control, 33, 35, 39, 64
delegation of, 34, 45

activity, 104
actor, 15

actor state, 15
actor side library, 110
actor side management library, 110
actor side query library, 110
actor side record library, 110
actor state p-assertion, 19, 75
actor-side library, 26
application services, 28
architecture

logical, 26
views, 10

asserter identity, 80
authentication, 33, 39

mutual, 48
authorisation, 33, 36

engine, 39

certificate, 34, 48, 80
proxy, 47, 74

credential, 33
server, 39, 63

data accessor, 76
data staging, 59
derivation engine, 41, 64
documentation style, 70, 72

anonymous, 73
composite, 74
internal reference, 73
rationale, 71
reference, 72
reference-digest, 73

security-encryption, 74
security-signing, 74
verbatim, 72

federation, 34, 40, 63

idempotence, 84
identity validator, 37
implementation recommendations, 131
inferior, 104
interaction, 15
interaction context, 29, 69
interaction identifier, 67
interaction key, 66
interaction metadata, 69
interaction p-assertion, 17, 70
interface, 15
internal representation list, 39, 100
IR

IR-APP-1, 133
IR-APP-2, 133
IR-APP-3, 134
IR-APP-4, 134
IR-ASL-1, 132
IR-ASL-10, 133
IR-ASL-11, 133
IR-ASL-12, 133
IR-ASL-13, 133
IR-ASL-14, 133
IR-ASL-2, 132
IR-ASL-3, 132
IR-ASL-4, 132
IR-ASL-5, 132
IR-ASL-6, 132
IR-ASL-7, 132
IR-ASL-8, 133

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

148

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

IR-ASL-9, 133
IR-P-1, 132
IR-P-2, 132
IR-PS-1, 131
IR-PS-10, 132
IR-PS-2, 131
IR-PS-3, 131
IR-PS-4, 131
IR-PS-5, 131
IR-PS-6, 131
IR-PS-7, 131
IR-PS-8, 131
IR-PS-9, 132

link
definition, 56
object link, 57
view link, 56

local p-assertion identifier, 67

management interface, 26
management user interface, 28
matching, 17
message, 15
message sink, 67
message source, 67
message transformation description, 107

negotiation, 29
non-repudiation, 34, 35, 63, 80, 107

p-assertion, 16, 67
p-assertion data item, 68
p-assertion data key, 68
P-assertion Recording Protocol (PReP), 84

messages, 86
p-assertion template, 61
p-header, 29, 69
p-structure, 78
parameter name, 76
patterns, 50

p-assertion recording, 51
application of, 55
ContextPassing, 52

SeparateStore, 51
SharedStore, 54

policies, 28
policy, 97

service requirement, 28, 97
access control, 40, 101, 109
authorisation, 39, 74, 100, 109
data staging, 99
data upload, 98
index management, 100
provenance store, 29, 97
search language, 100
security, 40, 100
signature signing, 100
templates, 99
user requirement, 28, 97

presentation user interface, 28
privacy, 34, 73
process, 15
process documentation, 16
process documentation query, 95
processing services, 28
provenance

architecture, 25
definition, 22
definition MWO, 14
definition OED, 14
query, 22
system, 25

provenance lifecycle, 19
provenance query

composition of, 89
document language mapping, 89
full relationships, 94
p-structure reference, 90
provenance query result start, 92
query data handle, 87
relationship target, 91
relationship target filter, 87

provenance role, 25
provenance store, 25, 26
provenance store utilities, 97

indexes, 97

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

149

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

link modification, 97

query engine, 23
query result, 23
querying interfaces, 26

receiver, 15
recording interface, 26
references, 60

external, 60
internal, 61

relationship p-assertion, 18, 76
remote interactor, 40, 60, 63, 101
requirement

AER-1, 129
AER-10, 130
AER-11, 130
AER-2, 129
AER-3, 129
AER-4, 129
AER-5, 130
AER-6, 130
AER-7, 130
AER-8, 130
AER-9, 130
GR-EHCR.1, 127
GR-EHCR.2, 127
GR-EHCR.3, 127
GR-EHCR.4, 127
GR-EHCR.5, 127
GR-EHCR.6, 128
GR-OTM.1, 125
GR-OTM.2, 125
GR-OTM.3, 126
GR-OTM.5, 126
GR-OTM.6, 126
GR-OTM.7, 126
GR-OTM.8, 126
GR-OTM.9, 127
OTM-15, 128
OTM-16, 128
OTM-17, 128
OTM-18, 128

OTM-19, 129
SL-1, 124
SL-2, 124
SL-3, 124
SL-4, 124
SL-5, 124
SL-6, 124
SL-7, 125
SL-8, 125
SL-9, 125
SR-1-1, 112
SR-1-10, 115
SR-1-11, 115
SR-1-12, 115
SR-1-13, 115
SR-1-14, 115
SR-1-15, 116
SR-1-16, 116
SR-1-17, 116
SR-1-18, 116
SR-1-2, 112
SR-1-3, 113
SR-1-4, 113
SR-1-5, 113
SR-1-6, 113
SR-1-7, 114
SR-1-8, 114
SR-1-9, 114
SR-2-1, 117
SR-2-2, 117
SR-2-3, 117
SR-2-4, 117
SR-3-1-1, 118
SR-3-1-2, 118
SR-3-1-3, 118
SR-3-1-4, 118
SR-3-2-1, 118
SR-4-1, 118
SR-4-2, 119
SR-4-3, 119
SR-4-4, 119
SR-5-1, 119
SR-5-2, 119

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

150

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

SR-6-1, 119
SR-6-2, 120
SR-6-3, 120
SR-6-4, 120
SR-6-5, 120
SR-6-6, 120
SR-6-7, 121
SR-7-1, 121
SR-7-2, 121
TSR-1-1, 122
TSR-1-10, 123
TSR-1-17, 123
TSR-1-18, 123
TSR-1-2, 122
TSR-1-3, 122
TSR-1-4, 122
TSR-1-6, 122
TSR-1-8, 122
TSR-1-9, 123
TSR-3-1-1, 123
TSR-4-1, 123
TSR-6-2, 123
TSR-6-6, 123

requirements
AER requirements, 129
documentation requirements, 119
functional requirements, 112
interface requirements, 118
operational requirements, 118
other requirements, 121
OTM EHCR requirements, 125
performance requirements, 117
scalability requirements, 124
security requirements, 119
tools requirements, 121

role
application actor, 25
asserting actor, 25
managing actor, 26
provenance store actor, 25
querying actor, 25
recording actor, 25

rule

appropriate interaction, 103
architectural rules, 102
assertion category policy, 109
documentation style policy, 109
error rule, 106
inferior propagation rule, 104
interaction key transmission, 103
link recording, 103
mutual authentication rule, 106
query store policy, 110
recipient store policy, 110
recording consistency, 103
secure behaviour rule, 106
service requirement policies, 110
signature rule, 106
superior propagation rule, 105
tokens rule, 107
tracer generation rule, 104
unique interaction key, 102

scalability, 26
architectural, 50
implementation, 65

schema transformation description, 107
security domain, 33, 45, 63
sender, 15
signature, 34, 63, 73, 80, 100, 107
single sign-on, 34
stateless, 84
superior, 104
system administrator, 33, 101, 120

task, 104
tracer, 29

session tracer, 104
trust mediator, 37, 63

view, 80
view kind, 68

workflow, 15, 59, 61, 143
enactment, 28, 55, 105, 144

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

151

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Bibliography

[AA93] G. Alonso and A. El Abbadi. Goose: Geographic object oriented support
environment. In Proc. of the ACM workshop on Advances in Geographic
Information Systems, pages 38–49, Arlington, Virginia, November 1993.

[ACV97] Gian Pietro Picco Antonio Carzaniga and Giovanni Vigna. Designing
distributed applications with mobile code paradigms. In Proceedings of
the 19th international conference on Software engineering, pages 22–
32, Boston, Massachusetts, May 1997.

[AH97] G. Alonso and C. Hagen. Geo-opera: Workflow concepts for spatial
processes. In Proc. 5th Intl. Symposium on Spatial Databases (SSD ’97),
Berlin, Germany, June 1997.

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pat-
tern Language. Oxford University Press, 1977.

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford Univer-
sity Press, 1979.

[And05a] Árpád Andics (ed.). D2.1.1: User requirements document. Technical
report, MTA SZTAKI, February 2005.

[And05b] Árpád Andics (ed.). D2.2.1: Software requirements document. Techni-
cal report, MTA SZTAKI, February 2005.

[BJMC88] R. A. Becker and J. M. J. M. Chambers. Auditing of data analyses. SIAM
Journal of Scientific and Statistical Computing, 9(4):747–760, 1988.

[BKKT02] P. Buneman, S. Khanna, K.Tajima, and W.C. Tan. Archiving scientific
data. In Proc. of the 2002 ACM SIGMOD International Conference on
Management of Data, pages 1–12. ACM Press, 2002.

[BKT01] P. Buneman, S. Khanna, and W.C. Tan. Why and where: A characteri-
zation of data provenance. In Int. Conf. on Databases Theory (ICDT),
2001.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

152

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

[Bos02] R. Bose. A conceptual framework for composing and managing scien-
tific data lineage. In Proceedings of the 14th International Conference
on Scientific and Statistical Database Management, pages 15–19, Edin-
burgh, Scotland, July 2002.

[Bra97] S. Bradner. Rfc 2119 — key words for use in rfcs to indicate requirement
levels. http://www.faqs.org/rfcs/rfc2119.html, March 1997.

[Bra05] Miguel S. Branco. A provenance infrastructure for the atlas experiment
at cern. 9 month report, University of Southampton; Faculty of Engi-
neering, Science and Mathematics; School of Electronics and Computer
Science, 2005.

[Bur00] Steve Burbeck. The tao of e-business services. Technical report, Emerg-
ing Technologies, IBM Software Group, October 2000.

[CaIFF+04] Karl Czajkowski, Donal Ferguson adn Ian Foster, Jeffrey Frey, Steve
Graham, Igor Sedukhin, David Snelling, Steve Tuecke, and William
Vambenepe. The WS-Resource Framework, March 2004.

[CW00] Y. Cui and J. Widom. Practical lineage tracing in data warehouses. In
Proceedings of the 16th International Conference on Data Engineering
(ICDE’00), San Diego, California, February 2000.

[CW03] Y. Cui and J. Widom. Lineage tracing for general data warehouse trans-
formations. The VLDB Journal, 12(1):41–58, 2003.

[CWW00] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a
warehousing environment. ACM Trans. Database Syst., 25(2):179–227,
2000.

[EAD02] Encoded archival description. http://www.loc.gov/ead/, 2002.

[FP03] H. Fan and A. Poulovassilis. Tracing data lineage using schema transfor-
mation pathways. In B. Omelayenko and M. Klein, editors, Knowledge
transformation for the Semantic Web, pages 64–79. IOS Press, 2003.

[FVWY02] I. Foster, J. Voeckler, M. Wilde, and Y.Zhao. Chimera: A virtual data
system for representing, querying and automating data derivation. In
Proc. of the 14th Conf. on Scientific and Statistical Database Manage-
ment, July 2002.

[GGS+03] M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis, D. Marvin,
L. Moreau, and T. Oinn. Provenance of e-science experiments - experi-
ence from bioinformatics. In Simon J Cox, editor, Proc. UK e-Science
All Hands Meeting 2003, pages 223–226, September 2003.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

153

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns. Addison-Wesley Professional, 1995.

[GLM04a] Paul Groth, Michael Luck, and Luc Moreau. Formalising a protocol
for recording provenance in grids. In Proceedings of the UK OST e-
Science second All Hands Meeting 2004 (AHM’04), Nottingham, UK,
September 2004.

[GLM04b] Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording
provenance in service-oriented grids. In Proceedings of the 8th Interna-
tional Conference on Principles of Distributed Systems (OPODIS’04),
volume 3544 of Lecture Notes in Computer Science, pages 124–139,
Grenoble, France, December 2004. Springer-Verlag.

[GMF+05] Paul Groth, Simon Miles, Weijian Fang, Sylvia C. Wong, Klaus-Peter
Zauner, and Luc Moreau. Recording and using provenance in a pro-
tein compressibility experiment. In Proceedings of the 14th IEEE In-
ternational Symposium on High Performance Distributed Computing
(HPDC’05), July 2005.

[GMM05] Paul Groth, Simon Miles, and Luc Moreau. Preserv: Provenance record-
ing for services. In Proceedings of the UK OST e-Science second All
Hands Meeting 2005 (AHM’05), Nottingham,UK, September 2005.

[Gro04] Paul T. Groth. Recording provenance in service-oriented architectures. 9
month report, University of Southampton; Faculty of Engineering, Sci-
ence and Mathematics; School of Electronics and Computer Science,
2004.

[Gro05a] Paul T. Groth. On the record: Provenance in large scale, open distributed
systems. Transfer thesis, University of Southampton; Faculty of Engi-
neering, Science and Mathematics; School of Electronics and Computer
Science, July 2005.

[Gro05b] Paul T. Groth. On the record: Provenance in large scale, open, dis-
tributed systems. Technical report, University of Southampton; Faculty
of Engineering, Science and Mathematics; School of Electronics and
Computer Science, July 2005.

[HI05] Neil Hardman and John Ibbotson. D9.3.1: Functional prototype. Tech-
nical report, IBM, September 2005.

[IGM05] John Ibbotson, Paul Groth, and Simon Miles. D5.1.1: Scalability re-
quirements. Technical report, IBM Hursley, September 2005.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

154

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

[IHT05] John Ibbotson, Neil Hardman, and Victor Tan. D4.1.1: Security require-
ments. Technical report, IBM Hursley, September 2005.

[ISA00] General international standard archival description (isad(g)).
http://www.icacds.org.uk/eng/ISAD(G).pdf, 2000.

[JGM+06] Sheng Jiang, Paul Groth, Simon Miles, Victor Tan, Steve Munroe, Sofia
Tsasakou, and Luc Moreau. Client side library design and implementa-
tion. Technical report, 2006.

[Kru95] Philippe Kruchten. Architectural blueprints — the “4+1” view. model
of software architecture. IEEE Software, 12(6), November 1995.

[KS05] Guy K. Kloss and Andreas Schreiber. D7.1.1: Application 1: Aerospace
engineering. specification of mapping to provenance architecture, and
domain specific provenance handling. Technical report, German
Aerospace (DLR), September 2005.

[Lan91a] D.P. Lanter. Design of a lineage-based meta-data base for gis. Cartog-
raphy and Geographic Information Systems, 18(4):255–261, 1991.

[Lan91b] D.P. Lanter. Lineage in gis: The problem and a solution. Technical
Report 90-6, National Center for Geographic Information and Analysis
(NCGIA), UCSB, Santa Barbara, CA, 1991.

[LE91] D.P. Lanter and R. Essinger. User-centered graphical user interface de-
sign for gis. Technical Report 91-6, National Center for Geographic
Information and Analysis (NCGIA). UCSB, 1991.

[LNP04] Mark Little, Eric Newcomer, and Greg Pavlik (Editors). Web services
context specification committee draft version 0.8. Committee draft ver-
sion 0.8, Arjuna Technologies, Fujitsu, IONA Technologies, Oracle and
Sun, November 2004.

[Lyn95] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
December 1995.

[Mar01] A. P. Marathe. Tracing lineage of array data. J. Intell. Inf. Syst., 17(2-
3):193–214, 2001.

[MCE+03] J.D. Myers, A.R. Chappell, M. Elder, A. Geist, and J. Schwidder. Re-
integrating the research record. IEEE Computing in Science & Engi-
neering, pages 44–50, 2003.

[MCG+05] Luc Moreau, Liming Chen, Paul Groth, John Ibbotson, Michael Luck,
Simon Miles, Omer Rana, Victor Tan, Willmott, and Fenglian Xu. Log-
ical architecture strawman for provenance systems. Technical report,
University of Southampton, 2005.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

155

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

[MGBM05] Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The re-
quirements of recording and using provenance in e-science experiments.
Technical report, University of Southampton, 2005.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus.
Cambridge University Press, 1999.

[MM06] Simon Miles and Luc Moreau. Querying the provenance of electronic
and physical entities. Technical report, University of Southampton, Jan-
uary 2006.

[MPL+03] J. D. Myers, C. Pancerella, C. Lansing, K. L. Schuchardt, and B. Didier.
Multi-scale science: supporting emerging practice with semantically de-
rived provenance. In ISWC 2003 Workshop: Semantic Web Technologies
for Searching and Retrieving Scientific Data, Sanibel Island, Florida,
USA, October 2003.

[Ran05] Omer F. Rana. D6.1.1: Tools description document. Technical report,
University of Cardiff, December 2005.

[Rel06] Causal relationships ontology. http://twiki.pasoa.ecs.soton.ac.uk/pub/PASOA/Ontologies/causal.owl,
2006.

[RXBR04] P. Ruth, D. Xu, B. K. Bhargava, and F. Regnier. E-notebook middleware
for acccountability and reputation based trust in distributed data sharing
communities. In Proc. 2nd Int. Conf. on Trust Management, Oxford,
UK, volume 2995 of LNCS. Springer, 2004.

[SH05] Munindar P. Singh and Michael N. Huhns. Service-Oriented Comput-
ing: Semantics, Processes, Agents. John Wiley & Sons, Ltd., 2005.

[SM03a] M. Szomszor and L. Moreau. Recording and reasoning over data prove-
nance in web and grid services. In Int. Conf. on Ontologies, Databases
and Applications of Semantics, volume 2888 of LNCS, 2003.

[SM03b] Martin Szomszor and Luc Moreau. Recording and reasoning over data
provenance in web and grid services. In International Conference on
Ontologies, Databases and Applications of SEmantics (ODBASE’03),
volume 2888 of Lecture Notes in Computer Science, pages 603–620,
Catania, Sicily, Italy, November 2003.

[Tan04] V. H. K. Tan. Interaction tracing for mobile agent security. PhD thesis,
University of Southampton, 2004.

[Tel94] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Univer-
sity Press, 1994.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

156

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

[TGX05] Paul Townend, Paul Groth, and Jie Xu. A provenance-aware weighted
fault tolerance scheme for service-based applications. In Proc. of the 8th
IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC 2005), May 2005.

[VA98] A. Vahdat and T. Anderson. Transparent result caching. In Proc. of
the 1998 USENIX Technical Conference, New Orleans, Louisiana, June
1998.

[VSWTV05] Javier Vzquez-Salceda, Steve Willmott, Kifor Tams, and Lszl Zs. Varga.
D8.1.1: Application 2: Organ transplant management. specification of
mapping to provenance architecture, and domain specific provenance
handling. Technical report, UPC, September 2005.

[WMF+05a] Sylvia C. Wong, Simon Miles, Weijian Fang, Paul Groth, and Luc
Moreau. Provenance-based validation of e-science experiments. In Pro-
ceedings of 4th Internation Semantic Web Conference (ISWC’05), vol-
ume 3729 of Lecture Notes in Computer Science, pages 801–815, Gal-
way, Ireland, November 2005. Springer-Verlag.

[WMF+05b] Sylvia C. Wong, Simon Miles, Weijian Fang, Paul Groth, and Luc
Moreau. Validation of e-science experiments using a provenance-based
approach. In Proceedings of Fourth All Hands Meeting (AHM’05), Not-
tingham, September 2005.

[Woo98] Allison Gyle Woodruff. Data Lineage and Information Density in
Database Visualization. PhD thesis, University of California at Berke-
ley, 1998.

[WS97] A. Woodruff and M. Stonebraker. Supporting fine-grained data lineage
in a database visualization environment. In Proc. of the 13th Interna-
tional Conference on Data Engineering, pages 91–102, Birmingham,
England, April 1997.

[XBC+05] Fenglian Xu, Alexis Biller, Liming Chen, Victor Tan, Paul Groth, Si-
mon Miles, John Ibbotson, and Luc Moreau. A proof of concept design
for provenance. Technical report, University of Southampton, February
2005.

[ZDF+05] Yong Zhao, Jed Dobson, Ian Foster, Luc Moreau, and Michael Wilde.
A notation and system for expressing and executing cleanly typed work-
flows on messy scientific data. Sigmod Record, 34(3), September 2005.

[ZGG+03] J. Zhao, C. Goble, M. Greenwood, C. Wroe, and R. Stevens. Annotating,
linking and browsing provenance logs for e-science. In Proc. of the

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

157

PROVENANCE
Enabling and Supporting Provenance in Grids for Complex Problems Contract Number: 511085

Workshop on Semantic Web Technologies for Searching and Retrieving
Scientific Data, October 2003.

Copyright @ 2005, 2006 by the PROVENANCE consortium
The PROVENANCE project receives research funding from the European Commission’s Sixth Framework Programme

158

	Introduction
	Motivation
	Structure of Document
	Status of this Document
	Acknowledgements

	Provenance Definition
	Common Sense Definition
	Context: Service Oriented Architectures
	Definition of Provenance
	Representation of Provenance
	Provenance Lifecycle and Three Provenance Views
	Beyond Computer Data
	The Nature of Queries
	Conclusion

	Logical Architecture
	Architecture vs System
	Role Definition
	Logical Architecture
	The P-Header
	Conclusion

	Security Architecture
	Background
	Provenance Related Security Issues
	Provenance Store Security Architecture
	Components of Security Architecture
	Interaction Between Components

	Security in Other Architecture Components
	Between other components and the provenance store
	Intermediate components
	Delegation of identity or access control

	Additional security issues
	Conclusion

	Scalability Architecture
	Recording Patterns
	SeparateStore Pattern
	ContextPassing Pattern
	SharedStore Pattern
	Pattern Application

	Linking
	View Links
	Object Links
	Linking Summary

	Data Staging
	References
	By-Value versus By-Reference recording
	Record-Once versus Record-Many

	P-Assertion Templates
	Large Query Results
	Security
	Conclusion

	Provenance Modelling
	Identifying Interactions
	Identifying P-Assertions and Data
	Interaction Contexts and the P-Header
	Interaction P-Assertion Modelling
	Documentation Style Modelling
	Actor State P-Assertion Modelling
	Relationship P-Assertion Modelling
	The P-Structure
	Security
	Conclusion

	Functionality
	Recording Interface
	Provenance Query Interface
	Query Data Handles
	Relationship Target Filters
	Provenance Query Results

	Process Documentation Query Interface
	Management Interface
	Notification of Provenance Store Use
	Provenance Store Utility

	Policies
	Provenance Store Capability Policies

	Security
	Conclusion

	Actor Behaviour
	Introduction
	Architectural Rules
	Tracers
	Session Tracer
	Other Tracers

	Security
	Documentation Style Driven Message Transformation
	Actor Capability Policies
	Recording
	Querying
	Service Requirement Policies

	Actor Side Library
	Conclusion

	Justification
	Software Requirements Document
	Functional Requirements
	Performance Requirements
	Interface Requirements
	Operational Requirements
	Documentation Requirements
	Security Requirements
	Other Requirements

	Tools Requirements
	Scalability Requirements
	Requirements from the OTM/EHCR Application
	Requirements from the Aerospace Engineering Application
	Implementation Recommendations
	Provenance Store
	Processing and UI Services
	Actor-Side Libraries
	Application Use of Provenance Architecture

	Conclusion

	Related Work
	Fine Granularity Provenance Systems
	Domain Specific Provenance Systems
	Current Practises of Document Management Systems

	Provenance in Database Systems
	Middleware Provenance Systems
	Conclusions

	Conclusion
	Summary
	Future Work

	Notes
	Abbreviations
	XML Schema Diagrams
	Index

