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Abstract 
Boolean Satisjiability (SAT) is often used as the under- 

lying model for  a signijicant and increasing number of 
applications in Electronic Design Automation (EDA) as 
well as in many other jields of Computer Science and 
Engineering. In recent years, new and efJicient algorithms 
for SAT have been developed, allowing much larger prob- 
lem instances to be solved. SAT “packages” are currently 
expected to have an impact on EDA applications similar 
to that of BDD packages since their introduction more 
than a decade ago. This tutorial paper is aimed at intro- 
ducing the EDA professional to the Boolean satisjiability 
problem. Specijically, we highlight the use of SAT models 
to formulate a number of EDA problems in such diverse 
areas as test pattern generation, circuit delay computa- 
tion, logic optimization, combinational equivalence check- 
ing, bounded model checking and functional test vector 
generation, among others. In addition, we provide an 
overview of the algorithmic techniques commonly used fo r  
solving SAT, including those that have seen widespread 
use in specijic EDA applications. We categorize these 
algorithmic techniques, indicating which have been shown 
to be best suited for  which tasks. 

1 Introduction 

Recent years have seen a tremendous growth in the 
number of R&D groups at Electronic Design Automation 
(EDA) companies, universities and research laboratories, 
that have started using Boolean Satisfiability (SAT) mod- 
els and algorithms for solving different problems in EDA. 
Despite SAT being an NP-complete decision problem, 
SAT algorithms have seen dramatic improvements in 
recent years, allowing larger problem instances to be 
solved in different application domains [4, 24, 27, 421. 
Moreover, dedicated SAT algorithms that target solving 
instances from EDA problems have been proposed [26, 
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371. These algorithms exploit the specific structure of most 
instances from EDA problems and incorporate techniques 
for solving SAT problems in digital circuits. It is reason- 
able to expect further improvements to SAT algorithms as 
more attention is focused on the practical application of 
SAT to real design problems in EDA. 

The main purpose of this paper is to review existing 
applications of SAT to EDA, and to survey modern SAT 
algorithms, emphasizing solutions that have been shown 
effective for EDA applications. 

The paper is organized as follows. Section 2 intro- 
duces the definitions used throughout the paper, emphasiz- 
ing Conjunctive Normal Form (CNF) formulas and the 
representation of circuits in CNF. Afterwards, we review 
algorithms for Boolean Satisfiability, giving emphasis to 
the algorithms that are recognizably more suitable for 
EDA applications, and address the extension of the well- 
known recursive learning paradigm to CNF formulas. Sec- 
tion 5 addresses specific solutions for solving SAT in com- 
binational circuits. Section 6 reviews recent work that has 
shown promise for solving SAT in EDA applications. Sec- 
tion 7 concludes the paper. 

2 Definitions 

A conjunctive normal form (CNF) formula cp on n 
binary variables xl, . . . , x,, is the conjunction of m clauses 
ol, ..., om each of which is the disjunction of one or 
more literals, where a literal is the occurrence of a variable 
x or its complement x’ . A formula cp denotes a unique n- 
variable Boolean function f ( x l ,  ..., x n )  and each of its 
clauses corresponds to an implicate off Clearly, a func- 
tion f can be represented by many equivalent CNF formu- 
las. The satisfiability problem (SAT) is concerned with 
finding an assignment to the arguments of f ( x , ,  ..., x n )  
that makes the function equal to 1 or proving that the func- 
tion is equal to the constant 0. 

The CNF formula of a combinational circuit is the 
conjunction of the CNF formulas for each gate output, 
where the CNF formula of each gate denotes the valid 
input-output assignments to the gate. An example of a cir- 
cuit, associated CNF formula and the specification of an 
objective is shown in Figure 1. (The derivation of the CNF 
formulas for simple gates is shown in Table 1 [20].) If we 
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(b) With property z = 0 

Figure 1: Example circuit and CNF formula 

cpx I I Gate type I Gate function I 

Table 1: CNF formulas for simple gates 

vbew a CNF formula for a gate as a set of clauses, the CNF 
formula cp for the circuit is defined by the set union (or 
conjunction) of the CNF formulas of each gate. Hence, 
given a combinational circuit it is straightforward to create 
the CNF formula for the circuit as well as the CNF for 
proving a given property of the circuit. 

SAT algorithms operate on CNF formulas, and conse- 
quently can readily be applied to solving instances of SAT 
associated with combinational circuits. 

3 SAT Applications in EDA 

This section briefly surveys the application of SAT 
models to EDA applications. (See [31] for a more detailed 
account of some of the earlier applications.) One of the 
most well-know applications is Automatic Test Pattern 
Generation (ATPG) [20, 25, 381. Other applications in 

11 Input arg: Current decision level d 
I1 Output arg: 
I1 Return value: SATISFIABLE or UNSATISFIABLE 
11 
SAT ( d ,  & p )  

Backtrack decision level p 

if (Decide ( d )  != DECISION) 
return SATISFIABLE; 

while (TRUE) { 
if (Deduce ( d )  != CONFLICT) { 

if (SAT ( d  + 1, p ) == SATISFIA'BLE) 
return SATISFIABLE; 

elseif ( p  != d 1 1  d == 0 )  { 
Erase ( d )  ; return UNSATISFIABLE; 

1 
1 
if (Diagnose ( d ,  p )  == CONFLICT) { 

1 
return UNSATISFIABLE; 

1 
Figure 2: Generic backtrack search SAT algorithm 

testing include delay fault testing [7] and redundancy 
identification and elimination [ 171. 

Besides testing, SAT models have been used in circuit 
de1a.y computation [28, 361, FPGA routing [29, 301, logic 
synthesis [12] and, recently, in crosstalk noise analysis [8]. 
SAT models have also been used for functional vector 
generation [ 131. 

With respect to circuit verification, SAT models have 
found several applications. Combinational equivalence 
checking can easily be cast as an instance of SAT, and dif- 
ferent approaches have been proposed [16, 19, 261. Addi- 
tional work has included processor verification [6] and 
bounded model checking 151. 

SAT can also be used for solving linear integer opti- 
mization problems [3], with immediate potential applica- 
tions in solving covering problems [9], in computing 
prime implicants of Boolean functions [22] and in physi- 
cal design problems [35]. An example of a SAT-based 
covering algorithm is described in [23]. 

4 Algorithms for Satisfiability 

Over the years several approaches have been pro- 
posed for solving SAT, including local search [32], back- 
track search [ l l ] ,  continuous formulations [33] and 
algebraic manipulation [ 15, 341. Of these, only backtrack 
search has proven useful for solving instances of SAT 
from EDA applications, in particular for applications 
where the objective is to prove unsatisfiability. In this sec- 
tion we review modern backtrack search algorithms for 
SAT and describe recent extensions of the recursive learn- 
ing paradigm [ 191 to solving SAT. 

4.1 Backtrack Search 
The overall organization of a generic backtrack search 

SAT algorithm is shown in Figure 2. This generic SAT 
algorithm captures the organization of several of the most 
conipetitive algorithms [4, 27, 421. The algorithm con- 
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Figure 3: Example circuit 

ducts a search through the space of the possible assign- 
ments to the problem instance variables. At each stage of 
the search, a variable assignment is selected with the 
D e c i d e  ( ) function. A decision level d is associated with 
each selection of an assignment. Implied necessary assign- 
ments are identified with the D e d u c e  ( ) function, which 
in most cases corresponds to straightforward derivation of 
implications [ 10,411. Whenever a clause becomes unsatis- 
fied the D e d u c e  ( ) function returns a conflict indication 
which is then analyzed using the Diagnose ( ) function. 
The diagnosis of a given conflict returns a backtracking 
decision level b ,  which denotes the decision level to 
which the search process is required to backtrack to. The 
E r a s e  ( ) function clears implied assignments that result 
from each assignment selection. Different organizations of 
SAT algorithms can be modeled by this generic algorithm. 
Currently, all of the most efficient SAT algorithms [4, 27, 
421 are characterized by several of the following key prop- 
erties: 
1 .  The analysis of conflicts can be used for implementing 

Non-chronological Backtracking search strategies. 
Hence, assignment selections deemed irrelevant can be 
skipped over during the search [4,27,42]. 

2. The analysis of conflicts can also be used for identifying 
and recording new implicates of the Boolean function 
associated with the CNF formula. Clause Recording 
plays a key role in recent SAT algorithms, but in most 
cases large recorded clauses are eventually deleted [4, 
27, 421. 

3. Other techniques have been developed. Relevance- 
Bused Learning [4] extends the life-span of large 
recorded clauses that will eventually be deleted. 
Conjict-Induced Necessary Assignments [27] denote 
assignments to variables which are necessary for 
preventing a given conflict from occurring again during 
the search. 

Before running the SAT algorithm, different forms of 
preprocessing can be applied [U]. This in general is 
denoted by a Preprocess ( ) function. 

The techniques that characterize modern backtrack 
search SAT algorithms are based on the ability to analyze 
the causes of conflicts during the search and deriving 
explanations for those conflicts. For example, let us con- 
sider the example circuit of Figure 3, where w = 1 and 
y 3  = 0 ,  and x 1  is assigned value 1. Clearly, this assign- 
ment yields a conflict, since y, and y2 are both assigned 

Assignments: { z = 1, U = 0 )  o1 = (U + x + Y W )  

w2 = ( x + 7 y )  

o3 = ( W  + Y  +-d 
Figure 4: Recursive learning on clauses 

value 0, and these assignments are inconsistent with the 
assignment of node y3 .  This conflict will hold as long as 
the assignments x 1  = 1 ,  w = 1 and y3 = 0 hold. 
Hence, in order to prevent this conflict at least one of the 
assignments must be complemented. As a result, the 
clause 

4.2 Recursive Learning 

+ lw + y 3 )  can be derived. 

Recursive learning has been extensively used in 
EDA [19]. Moreover, in 1261 the recursive learning para- 
digm has been extended to CNF formulas. Next, we 
briefly describe how this can be done in practice. 

For any clause w in a CNF formula cp to be satisfied, 
at least one of its yet unassigned literals must be assigned 
value 1. Recursive learning on CNF formulas consists of 
studying the different ways of satisfying a given selected 
clause and identifying common assignments, which are 
then deemed necessary for the clause to become satisfied 
and consequently for the instance of SAT to be satisfiable. 
Clearly, and because conflict diagnosis can also be imple- 
mented, each identified assignment needs to be adequately 
explained. Consequently, with each identified assignment 
a clause that describes why the assignment is necessary is 
created. Let us consider the example CNF formula of Fig- 
ure 4. In order to satisfy clause 03, either w = 1 or 
y = 1 . Considering each assignment separately leads to 
the implied assignment x = 1 ; for w = 1 due to 0, and 
for y = 1 due to w2. Hence, the assignment x = 1 is 
necessary if the CNF formula is to be satisfied. One suffi- 
cient explanation for this implied assignment is given by 
the logical implication ( z  = 1) A ( U  = 0)  3 ( x  = l), 
which can be represented in clausal form as ( -LZ + U + x )  . 
Consequently, this clause represents a new implicate of the 
Boolean function associated with the CNF formula and so 
it can be added to the CNF formula. This new clause also 
implies the assignment x = 1 as long as z = 1 and 
u = 0 ,  as intended. As with recursive learning for combi- 
national circuits, recursive learning for CNF formulas can 
be generalized to any recursion depth. The proposed recur- 
sive learning algorithm is further detailed in [26]. 

Observe that our proposed recursive learning proce- 
dure derives and records implicates of the function associ- 
ated with the CNF formula. Clearly, these implicates 
prevent repeated derivation of the same assignments dur- 
ing the subsequent search. In contrast, the recursive learn- 
ing procedure developed for combinational circuits [ 191 
only records necessary assignments. Hence, when used as 
part of a search algorithm, the original recursive learning 
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procedure might eventually re-derive some of the already 
derived necessary assignments. 

5 Solving SAT on Combinational Circuits 

It is generally accepted that the utilization of CNF 
models and SAT algorithms has important advantages: 
I .  Existing, and extensively validated SAT algorithms, can 

2. New improvements and new SAT algorithms can be 

In contrast, the utilization of CNF formulas and asso- 
ciated SAT algorithms is also characterized by several 
drawbacks: 
1. As observed in [39], the structural information of the 

circuit, often of crucial importance, is lost. 
2. In many EDA problems, a large number of instances of 

SAT has to be solved for each circuit. Hence, mapping a 
given problem description into SAT can represent a 
significant percentage of the overall running time [25]. 

3. Computed input patterns are in general overspecified. 
Overspecification can be a serious drawback in different 
applications, including circuit testing and binate 
constraint solving. 

With the purpose of addressing these problems, in 
[39, 401 a new dynamic data structure, i.e. an extended 
implication graph, is proposed for solving instances of 
SAT in combinational circuits. Despite the promising 
results of [39, 401, utilizing a new data structure requires 
dedicated algorithms. Hence new search pruning tech- 
niques, developed for example in the context of SAT algo- 
rithlms, will have to be adapted to the circuit graph data 
structure. 

In this section we illustrate how to utilize structural 
information in SAT algorithms [37]. To a generic SAT 
algorithm we add a layer that maintains circuit-related 
information, e.g. fanidfanout information as well as value 
justification relations. The proposed approach allows 
usiing any SAT algorithm to which this layer can be added. 
The main advantages of the proposed approach is that 
some of the previously mentioned drawbacks, i.e. inacces- 
sibi lity to structural information and overspecification of 
input patterns, are eliminated. The main contribution over 
the work of [39] is that data structures used for SAT need 
not be modified, and so existing algorithmic solutions for 
SAT can naturally be augmented with the proposed layer 
for handling structural information. Moreover, the 
approach proposed in this paper is significantly simpler 
than the one in [39], since only minor modifications to 
S A T  algorithms are required. 

Let C denote a property of a combinational circuit C 
which is to be satisfied to an objective value o. This satisfi- 
ability problem is denoted by (C , o) and can be mapped 
into an instance of SAT, (p . The following information is 
associated with each variable x of (p, that also represents a 

be used instead of dedicated algorithms. 

easily applied to each target application. 

P 

P 

x = NAND(w,, ..., wa) k:::::::-::::l 
Table 2 Threshold values on assigned inpul:s 

I w ; = 1  I Gate I w ; = o  I 

Table 3: Justification counters associated with gate inputs 

circuit node x of C : 
1. Fl(x)  denotes the fanin nodes of x. 
2. FO(x) denotes the set of fanout nodes of x. 
3. u,(x) denotes the threshold value on the number of 

suitable assigned inputs (of x) that are necessary for 
justifying value v on node x. 

4. t,(x) denotes the actual counter of assigned inputs (of x) 
that are involved in justifying the value v on node x. 

Note that the value assigned to each variable x is 
denoted by v(x) . Moreover, observe that each circuit node 
x, with assigned value v, becomes justified whenever 

Table 2 contains a few examples of threshold values 
on thie number of assigned inputs required for justifying a 
given node. For example, for an AND gate at least one 
inpul assigned value 0 justifies the assignment of value 0 
to x, whereas for value 1 all inputs must be assigned value 
1. Hence, uo(x) = 1 and u,(x) = IFl(x)l. As another 
example, observe that for an XOR gate justification of any 
assigned value requires assignments to all gate inputs; 
hence uo(x) = u,(x) = IFl(x)l. For other simple gates 
this information can also be easily derived, and in all cases 
we have uo(x), uI(x) E { 1, IFl(x) l } .  

For any simple gate with output x, we can associate 
with each fanin node w the counters that must be updated 
as thl: result of assigning a value v to w. For example, for 
an AND gate an assignment of 0 to a fanin node w incre- 
ments to(x) by 1, and an assignment of 1 to fanin node w 
increments tl(x) by 1. These relations are illustrated in 
Table 3 for a few example gates. Note that for the XOR 
gates, both counters are updated when an input node 
becomes assigned. 

As with standard search algorithms in combinational 
circuits [I], a justijication frontier is maintained, which 
den0 tes the sets of variablednodes that require -iustifica- 
tion. Observe that the condition that indicates the need for 
node justification is (v(x) = v) A (I$) < uv(x)), where 

t V ( 4  2 uv(4 . 
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Y E  ( 0 , l ) .  
Given the previous definitions, a SAT algorithm can 

be adapted so that the information regarding justification 
can be properly maintained. Moreover, the fanin informa- 
tion can be used for implementing structure-based heuris- 
tic decision making procedures, e.g. simple or multiple 
bucktracing [ 11. With respect to the algorithm of Figure 2, 
functions Deduce ( ) and Diagnose ( ) have to invoke 
dedicated procedures for updating node justification infor- 
mation. Additionally, the Decide ( ) function now tests 
for satisfiability by checking for an empty justification 
frontier instead of checking whether all clauses are satis- 
fied. These are the only required modifications to the gen- 
eral SAT algorithm. In addition, the Decide ( ) function 
can optionally be modified to perform backtracing given 
the fanin information associated with each variable. 

We should note that the data structures described 
above operate in much the same way as justification works 
in combinational circuits [l]. The main difference is that 
in our approach justification and value consistency are for- 
mally dissociated; value consistency is handled by the 
SAT algorithm and justification by the new added layer. 

Moreover, we should observe that by taking into 
account the circuit structure information, the recursive 
learning procedure described in Section 4.2 can be made 
simpler, since only clause justifications of nodes in the 
fanin of a given unjustified node need to be considered. 

SAT has led to the proposal of dedicated reconfigurable 
hardware architectures [2, 431 that, despite being signifi- 
cantly less sophisticated than software algorithms, can 
achieve significant speedups for specific classes of 
instances. 

7 Conclusions 

This paper surveys applications of SAT models to 
EDA applications, and briefly describes the core tech- 
niques that characterize modern SAT solvers, capable of 
solving large and hard instances of SAT. In addition, the 
paper describes different recently proposed techniques, 
that show promise for EDA applications. Among these, 
we address the extension of recursive learning to CNF for- 
mulas, adapting SAT solvers to combinational circuits, 
equivalency reasoning and randomization. 

Despite the large number of practical EDA applica- 
tions that can be mapped into SAT instances, and despite 
the improvements in the effectiveness of SAT algorithms, 
SAT is an NP-complete problem. Most (if not all) SAT 
solvers are still unable to solve many practical problem 
instances, many of these from EDA applications. The 
recent increase in the number of EDA applications utiliz- 
ing SAT models further motivates a continuing effort 
towards improving SAT algorithms. 
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