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Abstract.
This paper proposes new algorithms for the Binate Covering Prob-

lem (BCP), a well-known restriction of Boolean Optimization. Binate
Covering finds application in many areas of Computer Scienceand
Engineering. In Artificial Intelligence, BCP can be used forcomput-
ing minimum-size prime implicants of Boolean functions, ofinterest
in Automated Reasoning and Non-Monotonic Reasoning. Moreover,
Binate Covering is an essential modeling tool in ElectronicDesign
Automation. The objectives of the paper are to briefly reviewbranch-
and-bound algorithms for BCP, to describe how to apply backtrack
search pruning techniques from the Boolean Satisfiability (SAT) do-
main to BCP, and to illustrate how to strengthen those pruning tech-
niques by exploiting the actual formulation of BCP. Experimental
results, obtained on representative instances indicate that the pro-
posed techniques provide significant performance gains fordifferent
classes of instances.

1 Introduction

The generic Boolean Optimization problem as well as severalof its
restrictions are well-known computationally hard problems, widely
used as modeling tools in Computer Science and Engineering.These
problems have been the subject of extensive research work inthe past
(see for example [1]). In this paper we address the Binate Cover-
ing Problem (BCP), one of the restrictions of Boolean Optimization.
BCP can be formulated as the problem of finding a satisfying assign-
ment for a given Conjunctive Normal Form (CNF) formula subject
to minimizing a given cost function. As with generic BooleanOp-
timization, BCP also finds many applications, including thecompu-
tation of minimum-size prime implicants, of interest in Automated
Reasoning and Non-Monotonic Reasoning [12], and as a modeling
tool in Electronic Design Automation (EDA) [4, 15].

In recent years, several powerful search pruning techniques have
been proposed for solving BCP, allowing dramatic improvements in
the ability to solving large and complex instances of BCP. (Details
of the work on BCP can be found in [4, 8, 15].) Despite these im-
provements, and as with other NP-hard problems, additionalsearch
pruning ability allows in general very significant gains, both in the
amount of search and in the run times. The ultimate consequence of
proposing new pruning techniques is the potential ability for solving
new classes of instances.

The main objective of this paper is to propose additional tech-
niques for pruning the amount of search in branch-and-boundal-
gorithms for solving covering problems. These techniques corre-
spond to generalizations and extensions of similar techniques pro-
posed in the Boolean Satisfiability (SAT) domain, where theyhave
been shown to be highly effective [2, 14, 16]. In particular,and to our
best knowledge, we provide for the first time conditions which en-
able branch-and-bound algorithms to backtracknon-chronologically
whenever bounding due to the cost function is required to take place.

This paper is organized as follows. In Section 2 the notationused
throughout the paper is introduced. Afterwards, branch-and-bound
covering algorithms are briefly reviewed, giving emphasis to solu-
tions based on SAT algorithms. In Section 4 we propose new tech-

niques for reducing the amount of search. In particular we show how
effective search pruning techniques from the SAT domain canbe gen-
eralized and extended to the BCP domain. Experimental results are
presented in Section 6, and the paper concludes in Section 7.

2 Preliminaries

An instanceC of a covering problem is defined as follows,

minimize
n∑

j=1

cj · xj

subject to A · x ≥ b, x ∈ {0, 1}n

(1)

where cj is a non-negative integer cost associated with variable
xj , 1 ≤ j ≤ n andA · x ≥ b, x ∈ {0, 1}n denote the set ofm
linear constraints. If every entry in the(m×n) matrixA is in the set
{0, 1} andbi = 1, 1 ≤ i ≤ m, thenC is an instance of theunate
covering problem(UCP). Moreover, if the entriesaij of A belong to
{−1, 0, 1} andbi = 1 − |{aij : aij = −1, 1 ≤ j ≤ n}|, thenC
is an instance of thebinate covering problem(BCP). Observe that if
C is an instance of the binate covering problem, then each constraint
can be interpreted as a propositional clause.

Conjunctive Normal Form (CNF) formulas are introduced next.
The use of CNF formulas is justified by noting that the set of con-
straints of an instanceC of BCP is equivalent to a CNF formula,
and because some of the search pruning techniques describedin the
remainder of the paper are easier to convey in this alternative repre-
sentation.

A propositional formulaϕ in Conjunctive Normal Form(CNF) de-
notes a boolean functionf : {0, 1}n → {0, 1}. The formulaϕ con-
sists of a conjunction of propositional clauses, where eachclauseω
is a disjunction of literals, and a literall is either a variablexj or
its complement̄xj . If a literal assumes value 1, then the clause is
satisfied. If all literals of a clause assume value 0, the clause isun-
satisfied. Clauses with only one unassigned literal are referred to as
unit. Finally, clauses with more than one unassigned literal aresaid
to beunresolved. In a search procedure, aconflict is said to be identi-
fied when at least one clause is unsatisfied. In addition, observe that
a clauseω = (l1 + · · · + lk), k ≤ n, can be interpreted as a linear
inequalityl1 + · · · + lk ≥ 1, and the complement of a variablexj ,
x̄j , can be represented by1 − xj .

When a clause is unit (with only one unassigned literal) an assign-
ment can be implied. For example, consider a propositional formula
ϕ which contains clauseω = (x1+ x̄2) and assume thatx2 = 1. For
ϕ to be satisfied,x1 must be assigned value 1 due toω. Therefore,
we say thatx2 = 1 impliesx1 = 1 due toω or that clauseω explains
the assignmentx1 = 1. These logical implications correspond to the
application of the unit clause rule [6] and the process of repeatedly
applying this rule is calledboolean constraint propagation[14, 16].
It should be noted that throughout the remainder of this paper some
familiarity with backtrack search SAT algorithms is assumed. The in-
terested reader is referred to the bibliography (see for example [1, 14]
for additional references).



Covering problems are often solved by branch and bound algo-
rithms [5, 8, 15]. In these cases, each node of the search treecorre-
sponds to a selected unassigned variable and the two branches out of
the node represent the assignment of 1 and 0 to that variable.These
variables are nameddecision variables. The first node is called the
root (or the top node) of the search tree and corresponds to thefirst
decision level. The decision level of each decision is defined as one
plus the decision level of the previous decision.

3 Search Algorithms for Covering Problems

The most widely known approach for solving covering problems
is the classical branch and bound procedure [15], in whichupper
boundson the value of the cost function are identified for each so-
lution to the constraints, andlower boundson the value of the cost
function are estimated considering the current set of variable assign-
ments. The search can be pruned whenever the lower bound esti-
mation is higher than or equal to the most recently computed upper
bound. In these cases we can guarantee that a better solutioncan-
not be found with the current variable assignments and therefore the
search can be pruned. The algorithms described in [5, 8, 15] follow
this approach.

Several lower bound estimation procedures can be used, namely
the ones based on linear-programming relaxations [8] or lagrangian
relaxations [11]. Nevertheless, and for BCP, the approximation of a
maximum independent set of clauses [4] is the most commonly used.
The tightness of the lower bounding procedure is crucial forthe algo-
rithm’s efficiency, because with higher estimates of the lower bound,
the search can be pruned earlier. For a better understandingof lower
bounding mechanisms, a method for approximating the maximum
independent set of clauses is described in section 3.1. Covering al-
gorithms also incorporate several powerful reduction techniques, a
comprehensive overview of which can be found in [4, 15].

With respect to the application of SAT to Boolean Optimization,
P. Barth [1] first proposed a SAT-based approach for solving pseudo-
boolean optimization (i.e. a generalization of BCP). This approach
consists of performing a linear search on the possible values of the
cost function, starting from the highest, at each step requiring the
next computed solution to have a lower cost than the most recently
computed upper bound. Whenever a new solution is found which
satisfies all the constraints, the value of the cost functionis recorded
as the current lowest computed upper bound. If the resultinginstance
of SAT is not satisfiable, then the solution to the instance ofBCP is
given by the last recorded solution.

Additional SAT-based BCP algorithms have been proposed. In[9]
a different algorithmic organization is described, consisting in the
integration of several features from SAT algorithms in a branch and
bound procedure,bsolo, to solve the binate covering problem. The
bsoloalgorithm incorporates the most significant features from both
approaches, namely the bounding procedure and the reduction tech-
niques from branch and bound algorithms, and the search pruning
techniques from SAT algorithms.

The algorithm presented in [9] already incorporates the main prun-
ing techniques of the GRASP SAT algorithm [14]. Hence,bsolo
is a branch and bound algorithm for solving BCP that implements
a non-chronological backtracking search strategy, clauserecording
and identification of necessary assignments. Mainly due to an ef-
fective conflict analysis procedure which allows non-chronological
backtracking steps to be identified,bsoloperforms better than other
branch and bound algorithms in several classes of instances, as
shown in [9]. However, non-chronological backtracking is limited
to one specific type of conflict. In section 4 we describe how toapply
non-chronological backtracking toall types of conflicts. The main
steps of a simplified version of thebsoloalgorithm (see [10] for other
details) can be described as follows:

1. Initialize the upper bound to the highest possible value as defined
(i.e. given byub =

∑n

j=1
cj + 1).

2. Start by checking whether the current state yields a conflict. This
is done by applying boolean constraint propagation and, in case
a conflict is reached, by invoking the conflict analysis procedure,
recording relevant clauses and proceeding with the search proce-
dure or backtrack if necessary.

3. If a solution to the constraints has been identified, update the upper
bound according toub =

∑n

j=1
cj · xj .

4. Estimate a lower bound given the current variable assignments. If
this value is higher than or equal to the current upper bound,issue
a bound conflict and bound the search by applying the conflict
analysis procedure to determine which decision node to backtrack
to. Continue from step 2.

3.1 Maximum Independent Set of Clauses

The estimation of lower bounds on the value of the cost function is
a very effective method to prune the search tree and the accuracy
of lower bounding procedures is critical for identifying areas of the
search space where solutions to the constraints with lower values of
the cost function cannot be found. This section reviews a commonly
used greedy method to estimate a lower bound on the value of the
cost function based on an independent set of clauses, which is also
detailed for example in [4].

The greedy procedure consists of finding a setI of disjoint unate
clauses, i.e. clauses with only positive literals and with no literals in
common between them. Since maximizing the cost ofI is a NP-
hard problem, a greedy computation is used, as described in [5].
The effectiveness of this method largely depends on the clauses in-
cluded inI . Usually, one chooses the clause which maximizes the
ratio between its weight and its number of elements. The minimum
cost for satisfyingI is a lower boundon the solution of the prob-
lem instance and is given by,Cost(I) =

∑
ω∈I

Weight(ω) where
Weight(ω) = minxj∈ω cj .

3.2 Bound Conflicts

In bsolotwo types of conflicts which can be identified:logical con-
flicts that occur when at least one of the problem instance constraints
becomes unsatisfied, andbound conflictsthat occur when the lower
bound is higher than or equal to the upper bound. When logicalcon-
flicts occur, the conflict analysis procedure from GRASP is applied
and determines to which decision level the search should backtrack
to (possibly in a non-chronological manner).

However, the other type of conflict is handled differently. In bsolo,
whenever a bound conflict is identified, a new clausemustbe added
to the problem instance in order for a logical conflict to be issued
and, consequently, to bound the search. This requirement isinher-
ited from the GRASP SAT algorithm where, for guaranteeing com-
pleteness, both conflicts and implied variable assignmentsmustbe
explained in terms of the existing variable assignments [14]. With
respect to conflicts, each recorded conflict clause is built using the
assignments that are deemed responsible for the conflict to occur. If
the assignmentxj = 1 (or xj = 0) is considered responsible, the lit-
eral x̄j (respectively, literalxj) is added to the conflict clause. This
literal basically states that in order to avoid the conflict one possibil-
ity is certainly to have instead the assignmentxj = 0 (respectively,
xj = 1). Clearly, by construction, after the clause is built its state
is unsatisfied. Consequently, the conflict analysis procedure has to
be called to determine to which decision level the algorithmmust
backtrack to. Hence the search is bound.

Whenever a bound conflict is identified, one possible approach to
building a clause to bound the search would be to include all decision
variables in the search tree. In this case, the conflict wouldalways
depend on the last decision variable. Therefore, backtracking due to
bound conflicts would necessarily be chronological (i.e. tothe previ-
ous decision level), hence guaranteeing that the algorithmwould be
complete. Suppose that the set{x1 = 1, x2 = 0, x3 = 0, x4 = 1}



corresponds to all the search tree decision assignments andωbc is
the clause to be added due to a bound conflict. Then we would have
ωbc = (x̄1 + x2 + x3 + x̄4). Again, the problem with this approach
(which was used in [9]) is that backtracking due to bound conflicts is
always chronological, since it depends on all decisions made. In the
following section we present a new procedure to build these clauses,
which enable non-chronological backtracking due to bound conflicts.

4 SAT-Based Pruning Techniques for BCP
One of the main features ofbsolo is the ability to backtrack non-
chronologically when conflicts occur. This feature is enabled by the
conflict analysis procedure inherited from the GRASP SAT algo-
rithm. However, as illustrated in section 3.2, in the original bsolo
algorithm non-chronological backtracking was only possible for log-
ical conflicts. In the case of a bound conflict all the search tree deci-
sion assignments were used to explain the conflict. Therefore, these
conflicts would always depend on the last decision level and back-
tracking would necessarily be chronological.

In this section we describe how to compute sets of assignments
that explain bound conflicts. Moreover, we show that these assign-
ments are not in general associated with all decision levelsin the
search tree; hence non-chronological backtracking can take place.

A bound conflict in an instance of the binate covering problem
(BCP)C arises when the lower bound is equal to or higher than the
upper bound . This condition can be written asC.path+C.lower ≥
C.upper, whereC.pathis the cost of the assignments already made,
C.lower is a lower bound estimate on the cost of satisfying the
clauses not yet satisfied (as given for example by an independent set
of clauses), andC.upperis the best solution found so far. From the
previous equation, we can readily conclude thatC.pathandC.lower
are the unique components involved in each bound conflict. (Notice
that C.upperis just the lowest value of the cost function for the so-
lutions of the constraints computed earlier in the search process.)
Therefore, we will analyze bothC.pathandC.lower in order to es-
tablish the assignments responsible for a given bound conflict.

We start by studyingC.path. Clearly, the variable assignments that
cause the value ofC.pathto grow are solely those assignments with
a value of 1. Hence, we can define a set of literalsωcp, such that each
variable inωcp has positive cost and is assigned value 1:

ωcp = {l = x̄j : Cost(xj) > 0 ∧ xj = 1} (2)

which basically states that to decrease the value of the costfunction
(i.e. C.path) at least one variable that is assigned value 1 has instead
to be assigned value 0.

We now considerC.lower. Let MIS be the independent set of
clauses, obtained by the method described in section 3.1, that deter-
mines the value ofC.lower. Observe that each clause inMIS is part
of MIS because it is neither satisfied nor covered by some other
clause inMIS. Clearly, for each clauseωi ∈ MIS these condi-
tions only hold due to the literals inωi that are assigned value 0. If
any of these literals was assigned value 1,ωi would certainly not be
in MIS since it would be a satisfied clause. Consequently, we can
define a set of literals that explain the value ofC.lower:

ωcl = {l : l = 0 ∧ l ∈ ωi ∧ ωi ∈ MIS} (3)

Now, as stated above, a bound conflict is solely due to the two com-
ponentsC.pathandC.lower. Hence, this bound conflict will hold as
long as the following clauseωbc is unsatisfied:

ωbc = ωcp ∪ ωcl (4)

(Observe that the set union symbol in the previous equation denotes
a disjunction of literals.) As long as this clause is unsatisfied, the val-
ues ofC.pathandC.lowerwill remain unchanged, and so the bound
conflict will exist. We can thus use this unsatisfied clauseωbc to an-
alyze the bound conflict and decide where to backtrack to, using the

conflict analysis procedure of GRASP [14]. We should observethat
backtracking can be non-chronological, because clauseωbc does not
necessarily depend on all decision assignments. Moreover,due to the
clause recording mechanism,ωbc can be used later in the search pro-
cess to prune the search tree. If these clauses would depend on all
decision assignments, clause recording would not be used since the
same set of decisions is never repeated in the search process.

Bound conflicts arise during the search process whenever we have
C.path + C.lower ≥ C.upper. Notice that when a new solution
is found,C.lower = 0 because the independent set is empty (all
clauses are satisfied) andC.pathis equal to the cost of the new upper
bound. Therefore, when we updateC.upperwith the new value, we
haveC.path + C.lower = C.upper and a bound conflict is issued
in order to backtrack in the search tree. These bound conflicts are just
a particular case and the same process we described in this section is
applied in order to build the conflict clause.

5 Reducing Dependencies in Bound Conflicts

As shown in the previous section, in BCP algorithms it is possible to
establish conditions for implementing non-chronologicalbacktrack-
ing due to bound conflicts. However, the ability to backtracknon-
chronologically is strongly related with the ability for identifying a
small set of assignments that explain each bound conflict. Sets of as-
signments that include many assignments irrelevant for actually ex-
plaining the bound conflict can drastically reduce the ability to back-
track non-chronologically. Hence, after computing explanations for
bound conflicts, using the techniques described in the previous sec-
tion, the next step is to identify assignments that can be discarded
from each explanation by proving them irrelevant for the bound con-
flict to take place.

In this section we propose different techniques for reducing de-
pendencies in the explanations of bound conflicts, hence reducing
the number of literals inωbc.

5.1 Relating C.path and C.lower

Let lj be a literal such thatlj ∈ ωcp andlj 6∈ ωcl. Thenlj is in ωbc

only due to theC.path component explaining the bound conflict. Let
MIS be the independent set, computed with the procedure described
in [5], which is used to obtain the value ofC.lower. In this situation,
literal lj can be removed fromωcp provided the following conditions
apply:

• There exists a satisfied clauseωi such that̄lj is the only literal
which currently satisfiesωi.

• All literals of ωi besideslj must be positive, unassigned and must
not intersectMIS (so thatωi can be added toMIS if lj assumes
value 0).

• All literals in ωi must have a cost higher than or equal to the cost
of literal lj .

• No clause inMIS can containlj .

This reduction step can be made because iflj = 0, ωi would be
in the independent set and the lower bound value would not de-
crease. Therefore, literallj can be deemed irrelevant for explaining
the bound conflict and can be removed fromωbc.

As an example, let us suppose that variablesx1, x2 andx3 belong
to the cost function with the same cost andx1 = 1. If a bound conflict
occurs, from (2)̄x1 would be inωbc. However, suppose that clause
ωi = (x1 + x2 + x3) is satisfied only due tox1, i.e.,x2 andx3 are
unassigned. Ifx2 andx3 do not belong to any clause inMIS, x̄1 can
be removed fromωbc becausex1 = 1 is not relevant for the conflict.
If variable x1 was unassigned or assigned value 0,ωi would be in
MIS and the bound conflict would still occur.

It is interesting to observe that we can generalize the second con-
dition, allowingωi to have positive literals whose variables are as-
signed value 0. Let us consider the example clauseωi = (x1 + x2 +
x3 + x4). Let x1 = 1 andx2 = 0. Moreover, let the cost ofx1



be no greater than the cost ofx2, let x3, x4 be such thatωi would
be inMIS if x1 = 0, and let no other clause in MIS contain literal
x2. In this situation, the dependency onx1 can be removed, and the
dependency onx2 need not be considered. Indeed, withx1 = 0, ωi

would be inMIS and so the cost would not decrease. In addition,
since the cost ofx2 is larger than or equal to the cost ofx1, by as-
signing value 1 tox2, the cost would also not decrease. Hence the
result follows. One should note that the same reasoning applies for
anarbitrary number of variables assigned value 0 in a given clause
with a single literal assigned value 1.

Next we show howωcl can be simplified by evaluating the con-
sequences of modifying the value of some literals on the value of
C.path. Suppose we have a literall = xj , with l ∈ ωcl and let
xj = 0. If xj only belongs to one clauseωi of the independent set
and its cost is greater than or equal to the minimum cost ofωi, thenl
can be removed fromωbc. To better understand how this is possible,
suppose instead thatxj = 1. In this situation,ωi would not be in
the independent set (it would be a satisfied clause) and theC.lower
component would be lower1. However, since the cost of the variable
is higher than or equal to the minimum cost ofωi, theC.path com-
ponent would be higher, and hence the conflict would still hold. So,
the assignmentxj = 0 is irrelevant for the conflict to arise and literal
l can be removed fromωbc. Observe that even if a clauseωi, contain-
ing a literalxj = 0, also contains other literals assigned value 0 (e.g.
xk = 0), the same reasoning still applies, and dependency onxj can
be removed. This holds even whenxk = 0 is contained in more than
one clause ofM IS.

Another reduction technique consists of using a satisfied clause to
reduce a dependency fromωcl. Let us consider the following set of
clauses,

ω1 = (x1 + x2 + x3)
ω2 = (x1 + x4 + x5)
ω3 = (x1 + x3 + x4)

(5)

with x1 = 0, x2, x3, x4, x5 unassigned andω1 andω2 be part of
MIS . Let the cost ofx2, x3, x4, x5 be less than or equal to the cost
of x1. Finally, let no other clause inM IS containx1. If x1 would
take value 1,C.lower would decrease by 1 sinceω1 andω2 would be
satisfied, butω3 would now be inMIS . However,C.path would be
raised due to the cost ofx1 and the conflict would still hold. Hence,
the dependency onx1 can be removed.

5.2 Using Excess Cost Value
Let us consider a bound conflict and letdiff = (C.path +
C.lower) − C.upper. Clearly,diff ≥ 0.

It is plain that if C.path was lower bydiff , the bound conflict
would still hold since we would then haveC.upper = C.path +
C.lower. Therefore, we may conclude that not all assignments in
C.path are necessary for explaining the conflict, since if some as-
signments were not made, we would still have a bound conflict.In
this case, it is possible to remove some literals fromωcp as long as
their cost is lower than or equal todiff .

Moreover, the value ofdiff can also be used for reducing depen-
dencies fromC.lower. Notice that if we remove a subset of clauses
D MIS from MIS (used to obtainC.lower) such that,

Cost(D MIS) ≤ diff where (6)

Cost(D MIS) =
∑

ω∈D MIS

Weight(ω) (7)

then the lower bound conflict will still hold sinceC.upper ≤
C.path + C.lower, whereC.lower is now obtained from the inde-
pendent set of clausesMIS \ D MIS. Therefore, the lower bound

1 In fact, if theC.lower would be recomputed all over again, it is not guaran-
teed that it would decrease. Nevertheless, we know that without clauseωi
satisfied byxj = 1, MIS\{ωi} it is still an independent set of clauses.
Therefore,MIS\{ωi} can be used as alow estimate ofC.lower.

conflict clauseωbc can still be built using (4), but theωcl can now be
reformulated as

ωcl = {l : l = 0 ∧ l ∈ ωi ∧ ωi ∈ MIS \ D MIS} (8)

Moreover, the simplifications described above forωcl can now be
applied to the resultingωcl.

One should note that the reduction on the number of dependen-
cies relies on which clauses we choose to include inD MIS. If a
clause fromMIS is selected with assigned literals belonging toωbc

because of other clauses inMIS or due toωcp, then the dependen-
cies are exactly the same. Therefore, it is desirable thatD MIS be a
subset ofMIS such that the number of dependencies inωbc be mini-
mum. A greedy procedure is used for selecting the clauses to remove
from MIS.

5.3 Resolution-Induced Dependency Reduction
In this section we illustrate how the resolution operation [13] can be
used for establishing conditions that permit the elimination of depen-
dencies. We should note that the proposed conditions, even though
based on the resolution operation, do not require the explicit creation
of new clauses.

The conditions proposed subsequently can be applied for remov-
ing dependencies fromωcp andωcl. In all cases, we use examples
to illustrate the application of resolution, but provide the necessary
conditions for generic application.

We start by studying simplifications toωcp established with the
resolution operation. Let us consider the following set of clauses,

ω1 = (x1 + x2 + x3)
ω2 = (x1 + x2 + x4)

(9)

with x2 = 1, and such thatx3, x4 are not covered by the currently
computedM IS. x1 can either be assigned or unassigned, and can
either be or not be covered by the currently computedM IS. By ap-
plying resolution betweenω1 andω2, with respect tox1, we obtain
the resulting clauseω3 = c(ω1, ω2, x1) = (x2 + x3 + x4). Now,ω3

is certainly satisfied solely byx2. Hence, we can conclude that the
dependency onx2 can be removed by applying the previous results
on simplifyingωcp. Notice thatx1 can beanyvariable. However, if
x1 is unassigned and not covered byM IS, then we can immediately
apply the previous results on simplifyingωcp.

Next, we illustrate one additional form of using the resolution op-
eration for removing dependencies. As an example, assume a bound
conflict, and consider the following set of clauses,

ω1 = (x1 + x2 + x3)
ω2 = (x1 + x4 + x5)

(10)

wherex1 is assigned either value 0 or 1, its cost is 0, and such that
the dependency onx1 is only due toω1 or ω2. Furthermore, let us
assume thatω1 would be part ofMIS with x1 = 0, and thatω2

would be part ofMIS with x1 = 1. In this situation the dependency
onx1 can be removed. Notice that if the cost ofx1 is non-zero, then
the removal of the dependency onx1 is guaranteed by the previous
results (section 5.1) on simplifyingωcl.

Clearly, the application of the resolution operation can begen-
eralized and used for eliminating more than one variable, the only
drawback being the computational effort involved.

6 Experimental Results
In this section we compare different algorithms for solvingBCP on
example instances taken from digital circuit testing problems [7].
Due to space limitations, only the most representative instances are
presented. For the experimental results given below, the CPU times
were obtained on a SUN Sparc Ultra I, running at 170MHz, and
with 100 MByte of physical memory. In all cases the maximum
CPU time that each algorithm was allowed to spend on any given



instance was 1 hour. The experimental procedure consisted of run-
ning a selected set of problem instances with thebsoloalgorithm, as
described in Sections 3 and 4. These results are shown in Table 1.
Next, in Table 2, we present the results ofbsolo with the depen-
dency elimination techniques of Section 5. For both tables,Dec,
NCB, andJMP denote, respectively, the total number of decisions,
number of non-chronological backtracks and largest backjump in the
search tree, whereastime andmem indicate, respectively, that the
time and memory limits were reached.

The experimental results from Tables 1 and 2 clearly indicate the
efectiveness of the proposed techniques with redutions in both the
time spent to solve the problem instances and the number of deci-
sions. A more efective pruning can also be observed, with an increase
in the number of non-chronological backtracks and larger jumps in
the search tree.

Finally, in Table 3 we can observe the results of several other al-
gorithms on the same set of instances. Clearly,lp solve[3] (a generic
Integer Linear Programming solver) is unable to solve almost all in-
stances given the time limit.scherzo[5], a state of the art BCP solver,
which incorporates several powerful pruning techniques ina classi-
cal branch-and-bound algorithm, is also unable to solve most of the
example instances. The SAT-based linear search algorithmopbdp[1]
is able to solve most instances, hence suggesting that theseinstances
are well-suited for SAT-based solvers. Notice however thatbsolo is
faster thanopbdpin most examples, and in some cases the improve-
ment exceeds 1 order magnitude.

bsolo
Benchmark min. CPU Dec. NCB Jump

c1908F469@0 – ub13 117079 721 9
c3540F20@1 6 1045.14 3359 218 7
c432 F1gat@1 8 575.16 14756 608 53

c432 F37gat@1 9 ub15 218136 35785 21
c499 Fic2@1 – ub41 1003200 1586 3

c6288F35gat@1 4 107.69 756 41 42
c6288F69gat@1 6 1413.17 4048 110 41

9symmlF6@0 9 6.05 272 23 4
alu4 Fj@0 6 185.59 1292 55 4
alu4 Fl@1 6 146.01 999 81 4

apex2Fv14@1 10 20.15 908 48 4
apex2Fv17@1 12 23.38 1082 70 5
duke2Fv7@0 5 13.31 335 33 12
misex3Fa@0 9 56.78 898 83 14
misex3Fb@1 8 83.91 1038 71 8
spla Fv14@0 8 38.93 914 120 12

Table 1. Results for bsolo

bsolo
Benchmark min. CPU Dec. NCB Jump

c1908F469@0 – ub13 111386 1057 7
c3540F20@1 6 907.40 2939 213 7
c432 F1gat@1 8 541.48 14117 647 53

c432 F37gat@1 9 ub14 286490 48534 21
c499 Fic2@1 – ub41 1003200 1586 3

c6288F35gat@1 4 44.42 555 39 42
c6288F69gat@1 6 608.99 2198 94 41

9symmlF6@0 9 6.12 272 23 4
alu4 Fj@0 6 145.73 1034 46 5
alu4 Fl@1 6 132.75 933 73 5

apex2Fv14@1 10 20.41 936 60 4
apex2Fv17@1 12 23.60 1058 78 5
duke2Fv7@0 5 12.93 332 32 12
misex3Fa@0 9 55.18 879 81 14
misex3Fb@1 8 80.47 1006 69 8
spla Fv14@0 8 28.23 785 113 10

Table 2. Results for bsolo with dependency reductions

7 Conclusions
This paper extends well-known search pruning techniques, from the
Boolean Satisfiability domain, to branch-and-bound algorithms for
solving the Binate Covering Problem. The paper also describes con-
ditions that allow for non-chronological backtracking in the pres-
ence of bound conflicts. To our best knowledge, this is the first time

Algorithms
Benchmark min. lp solve scherzo opbdp bsolo

c1908F469@0 – time time ub 24 ub13
c3540F20@1 6 time mem. ub 13 907.40
c432 F1gat@1 8 ub 15 time 1148.27 541.48

c432 F37gat@1 9 time time 3574.44 ub14
c499 Fic2@1 – time time ub 41 ub41

c6288F35gat@1 4 time mem. 1330.95 44.42
c6288F69gat@1 6 time mem. ub 9 608.99

9symmlF6@0 9 ub 9 29.44 1.59 6.12
alu4 Fj@0 6 time 879.05 413.71 145.73
alu4 Fl@1 6 time 1638.98 557.14 132.75

apex2Fv14@1 10 ub 10 mem. 624.07 20.41
apex2Fv17@1 12 time mem. 532.94 23.60
duke2Fv7@0 5 time mem. 18.20 12.93
misex3Fa@0 9 time mem. 182.41 55.18
misex3Fb@1 8 time mem. 983.55 80.47
spla Fv14@0 8 time mem. 215.79 28.23

Table 3. Algorithm comparison

that branch-and-bound algorithms are augmented with the ability for
backtracking non-chronologically in the presence of conflicts that re-
sult from bound conditions. In addition, we have established con-
ditions for reducing the size of bound conflict explanations, which
further elicits non-chronological backtracking.

Preliminary results obtained on several instances of the Binate
Covering Problem indicate that the proposed techniques areindeed
effective and can be significant for specific classes of instances, in
particular for instances of covering problems with sets of constraints
that are hard to satisfy.
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