Search Pruning Conditions for Boolean Optimization

Vasco M. Manquinho
vimm@al gos. i nesc. pt

Jodo Marques-Silva
] pms@ nesc. pt

Polytechnical Institute of Portalegre Technical Universty of Lisbon, INESC/CEL

Portalegre, Portugal

Abstract.

This paper proposes new algorithms for the Binate CoverimigpP
lem (BCP), a well-known restriction of Boolean OptimizatiBinate
Covering finds application in many areas of Computer Sciemzk
Engineering. In Artificial Intelligence, BCP can be used éomput-
ing minimum-size prime implicants of Boolean functionsnterest
in Automated Reasoning and Non-Monotonic Reasoning. Mergo
Binate Covering is an essential modeling tool in ElectroDiesign
Automation. The objectives of the paper are to briefly redieamch-
and-bound algorithms for BCP, to describe how to apply backt
search pruning techniques from the Boolean Satisfiabi$#T) do-
main to BCP, and to illustrate how to strengthen those prgnéch-
nigues by exploiting the actual formulation of BCP. Expenital
results, obtained on representative instances indicase the pro-
posed techniques provide significant performance gaindiftarent
classes of instances.

1 Introduction

The generic Boolean Optimization problem as well as sevwridb

restrictions are well-known computationally hard probdemwidely
used as modeling tools in Computer Science and Enginedrivgge
problems have been the subject of extensive research wiitk ast

(see for example [1]). In this paper we address the BinateeCov

ing Problem (BCP), one of the restrictions of Boolean Optatibn.
BCP can be formulated as the problem of finding a satisfyisgas
ment for a given Conjunctive Normal Form (CNF) formula sabje
to minimizing a given cost function. As with generic Boole@p-
timization, BCP also finds many applications, including toenpu-
tation of minimum-size prime implicants, of interest in Aotated

Reasoning and Non-Monotonic Reasoning [12], and as a nmageli

tool in Electronic Design Automation (EDA) [4, 15].

In recent years, several powerful search pruning techsityase
been proposed for solving BCP, allowing dramatic improvetién
the ability to solving large and complex instances of BCRetéils

of the work on BCP can be found in [4, 8, 15].) Despite these im-

provements, and as with other NP-hard problems, additiseaich
pruning ability allows in general very significant gainstban the
amount of search and in the run times. The ultimate conseguain
proposing new pruning techniques is the potential abibtysiolving
new classes of instances.

The main objective of this paper is to propose additionahtec

niques for pruning the amount of search in branch-and-balnd
gorithms for solving covering problems. These techniquesee
spond to generalizations and extensions of similar teclasigpro-
posed in the Boolean Satisfiability (SAT) domain, where thaye
been shown to be highly effective [2, 14, 16]. In particudary to our
best knowledge, we provide for the first time conditions vhén-
able branch-and-bound algorithms to backtraok-chronologically
whenever bounding due to the cost function is required te jpddce.
This paper is organized as follows. In Section 2 the notaised
throughout the paper is introduced. Afterwards, brandHaound
covering algorithms are briefly reviewed, giving emphasisalu-

Lisbon, Portugal

niques for reducing the amount of search. In particular vosvstow
effective search pruning techniques from the SAT domairbesgen-
eralized and extended to the BCP domain. Experimentaltsearg
presented in Section 6, and the paper concludes in Section 7.

2 Preliminaries

An instanceC' of a covering problem is defined as follows,

minimize Cj X
];1 J J (1)
subject to

A-x>b, ze€{0,1}"

where ¢; is a non-negative integer cost associated with variable

zj,1 < j <nandA-z > b,z € {0,1}" denote the set oin
linear constraints. If every entry in thfe: x n) matrix A is in the set
{0,1} andb; = 1,1 < ¢ < m, thenC is an instance of thanate
covering problen{UCP). Moreover, if the entries;; of A belong to
{—1,0, 1} andb;, = 1 — |{a¢j ta; = —-1,1 <5< ’I’L}|, thenC
is an instance of theinate covering problenBCP). Observe that if
C'is an instance of the binate covering problem, then eachreonis
can be interpreted as a propositional clause.

Conjunctive Normal Form (CNF) formulas are introduced next
The use of CNF formulas is justified by noting that the set af-co
straints of an instanc€ of BCP is equivalent to a CNF formula,
and because some of the search pruning techniques desirithed
remainder of the paper are easier to convey in this altematipre-
sentation.

A propositional formulae in Conjunctive Normal ForniCNF) de-
notes a boolean functiofi: {0,1}" — {0, 1}. The formulay con-
sists of a conjunction of propositional clauses, where etahsew
is a disjunction of literals, and a literalis either a variable:; or
its complementz;. If a literal assumes value 1, then the clause is
satisfied If all literals of a clause assume value 0, the clausenis

satisfied Clauses with only one unassigned literal are referred to as

unit. Finally, clauses with more than one unassigned literakaré
to beunresolvedln a search procedurecanflictis said to be identi-
fied when at least one clause is unsatisfied. In addition,rebghat
aclausev = (I1 + --- + lx), k < n, can be interpreted as a linear
inequalityl; + --- + I > 1, and the complement of a variahig,
Z;, can be represented by z;.

When a clause is unit (with only one unassigned literal) aigas
ment can be implied. For example, consider a propositicsrahdila
o which contains clause = (z1 + Z2) and assume that = 1. For
o to be satisfiedz; must be assigned value 1 duewoTherefore,
we say thatco = 1 impliesxz1 = 1 due tow or that clausev explains
the assignment; = 1. These logical implications correspond to the
application of the unit clause rule [6] and the process oéabgdly
applying this rule is callethoolean constraint propagatiofi4, 16].
It should be noted that throughout the remainder of this papme
familiarity with backtrack search SAT algorithms is assdniEhe in-
terested reader is referred to the bibliography (see fanela[1, 14]

tions based on SAT algorithms. In Section 4 we propose nel tec for additional references).

Covering problems are often solved by branch and bound alg®. Start by checking whether the current state yields a @bnflhis

rithms [5, 8, 15]. In these cases, each node of the searclodres
sponds to a selected unassigned variable and the two beaaahef
the node represent the assignment of 1 and 0 to that varibivse
variables are namedecision variablesThe first node is called the

root (or the top node) of the search tree and corresponds tfirtihe 3.
decision levelThe decision level of each decision is defined as one

4.

plus the decision level of the previous decision.

3 Search Algorithms for Covering Problems

The most widely known approach for solving covering prokdem
is the classical branch and bound procedure [15], in whigper
boundson the value of the cost function are identified for each so-
lution to the constraints, andwer boundson the value of the cost
function are estimated considering the current set of biassign-

is done by applying boolean constraint propagation andagec
a conflict is reached, by invoking the conflict analysis pchoe,
recording relevant clauses and proceeding with the seaodep
dure or backtrack if necessary.

If a solution to the constraints has been identified, uptle upper
bound according tab = E?:1 cj - Tj.

Estimate a lower bound given the current variable asségrsn If

this value is higher than or equal to the current upper boissde

a bound conflict and bound the search by applying the conflict
analysis procedure to determine which decision node tothsak

to. Continue from step 2.

3.1 Maximum Independent Set of Clauses

ments. The search can be pruned whenever the lower bourd esfihe estimation of lower bounds on the value of the cost fonds

mation is higher than or equal to the most recently compupgztiu
bound. In these cases we can guarantee that a better satatien
not be found with the current variable assignments and finer¢he
search can be pruned. The algorithms described in [5, 8,all6|nf
this approach.

a very effective method to prune the search tree and the awmcur
of lower bounding procedures is critical for identifyingeas of the
search space where solutions to the constraints with loaleies of

the cost function cannot be found. This section reviews anconty
used greedy method to estimate a lower bound on the valuesof th

Several lower bound estimation procedures can be used_,lylamecost function based on an independent set of clauses, whialso

the ones based on linear-programming relaxations [8] aatagjan
relaxations [11]. Nevertheless, and for BCP, the approtioneof a
maximum independent set of clauses [4] is the most commadg.u
The tightness of the lower bounding procedure is cruciattferalgo-
rithm'’s efficiency, because with higher estimates of thediobound,
the search can be pruned earlier. For a better understaofilioger
bounding mechanisms, a method for approximating the maximu
independent set of clauses is described in section 3.1.ribgval-
gorithms also incorporate several powerful reduction negples, a
comprehensive overview of which can be found in [4, 15].

With respect to the application of SAT to Boolean Optimiaati
P. Barth [1] first proposed a SAT-based approach for solvseugo-
boolean optimization (i.e. a generalization of BCP). Thpgraach
consists of performing a linear search on the possible sadfi¢he
cost function, starting from the highest, at each step rewihe
next computed solution to have a lower cost than the mosnhtigce

computed upper bound. Whenever a new solution is found whicly,

satisfies all the constraints, the value of the cost fundsaorcorded
as the current lowest computed upper bound. If the restitistgnce
of SAT is not satisfiable, then the solution to the instancBOP is
given by the last recorded solution.

Additional SAT-based BCP algorithms have been proposef@] In
a different algorithmic organization is described, cotmsgsin the
integration of several features from SAT algorithms in anoteand
bound procedureysolq to solve the binate covering problem. The
bsoloalgorithm incorporates the most significant features fraib
approaches, namely the bounding procedure and the reduetib-
niques from branch and bound algorithms, and the searchingrun
techniques from SAT algorithms.

The algorithm presented in [9] already incorporates thenpain-
ing techniques of the GRASP SAT algorithm [14]. Henbeplo
is a branch and bound algorithm for solving BCP that impletsien
a non-chronological backtracking search strategy, claeserding
and identification of necessary assignments. Mainly duentefa
fective conflict analysis procedure which allows non-clatogical
backtracking steps to be identifidaoloperforms better than other
branch and bound algorithms in several classes of instarases
shown in [9]. However, non-chronological backtracking irsited
to one specific type of conflict. In section 4 we describe hoapjoly
non-chronological backtracking @l types of conflicts. The main
steps of a simplified version of thisoloalgorithm (see [10] for other
details) can be described as follows:

1. Initialize the upper bound to the highest possible vakidedined

(i-e.givenbyub = 37" ¢; + 1).

detailed for example in [4].

The greedy procedure consists of finding akef disjoint unate
clauses, i.e. clauses with only positive literals and witHiterals in
common between them. Since maximizing the cost 6§ a NP-
hard problem, a greedy computation is used, as describef].in [
The effectiveness of this method largely depends on thesekain-
cluded inZ. Usually, one chooses the clause which maximizes the
ratio between its weight and its number of elements. Themumni
cost for satisfyingl is alower boundon the solution of the prob-
lem instance and is given b§ost(I) = _, Weight(w) where
Weight(w) = ming, ew ¢;.

3.2 Bound Conflicts

In bsolotwo types of conflicts which can be identifiddgical con-
flictsthat occur when at least one of the problem instance conirai
ecomes unsatisfied, abdund conflictshat occur when the lower
bound is higher than or equal to the upper bound. When logamal
flicts occur, the conflict analysis procedure from GRASP iglieg
and determines to which decision level the search shoulkittzent
to (possibly in a non-chronological manner).

However, the other type of conflict is handled differenttybkolq
whenever a bound conflict is identified, a new clamsestbe added
to the problem instance in order for a logical conflict to beued
and, consequently, to bound the search. This requiremeénhés-
ited from the GRASP SAT algorithm where, for guaranteeinm<o
pleteness, both conflicts and implied variable assignmemntstbe
explained in terms of the existing variable assignment§. [th
respect to conflicts, each recorded conflict clause is bsitligithe
assignments that are deemed responsible for the conflictctar.df
the assignment; = 1 (orz; = 0) is considered responsible, the lit-
eralz; (respectively, literal;) is added to the conflict clause. This
literal basically states that in order to avoid the conflive @ossibil-
ity is certainly to have instead the assignmept= 0 (respectively,
x; = 1). Clearly, by construction, after the clause is built itatst
is unsatisfied. Consequently, the conflict analysis proeetias to
be called to determine to which decision level the algoritmunst
backtrack to. Hence the search is bound.

Whenever a bound conflict is identified, one possible apfroac
building a clause to bound the search would be to includesaikibn
variables in the search tree. In this case, the conflict walddys
depend on the last decision variable. Therefore, backirgaue to
bound conflicts would necessarily be chronological (i.eh&previ-
ous decision level), hence guaranteeing that the algonitboid be
complete. Suppose that the §et, = 1,22 = 0,23 = 0,24 = 1}

corresponds to all the search tree decision assignments/gnid conflict analysis procedure of GRASP [14]. We should obsénma¢
the clause to be added due to a bound conflict. Then we woukel havbacktracking can be non-chronological, because clauseoes not
wye = (Z1 + x2 + z3 + Z4). Again, the problem with this approach necessarily depend on all decision assignments. Moredwerto the

(which was used in [9]) is that backtracking due to bound dctsfls
always chronological, since it depends on all decisionsenbadthe
following section we present a new procedure to build thémeses,
which enable non-chronological backtracking due to bowmdlicts.

4 SAT-Based Pruning Techniques for BCP

One of the main features dfsolois the ability to backtrack non-
chronologically when conflicts occur. This feature is eeddby the
conflict analysis procedure inherited from the GRASP SAToalg
rithm. However, as illustrated in section 3.2, in the oraibsolo
algorithm non-chronological backtracking was only polesfbr log-
ical conflicts. In the case of a bound conflict all the seareh tteci-
sion assignments were used to explain the conflict. Thexetbese
conflicts would always depend on the last decision level aaukb
tracking would necessarily be chronological.

clause recording mechanism,. can be used later in the search pro-
cess to prune the search tree. If these clauses would depealll o
decision assignments, clause recording would not be used e
same set of decisions is never repeated in the search process
Bound conflicts arise during the search process wheneveavwe h
C.path + C.lower > C.upper. Notice that when a new solution
is found, C.lower = 0 because the independent set is empty (all
clauses are satisfied) afdpathis equal to the cost of the new upper
bound. Therefore, when we updaeupperwith the new value, we
haveC.path + C.lower = C.upper and a bound conflict is issued
in order to backtrack in the search tree. These bound candlietjust
a particular case and the same process we described in¢timsis
applied in order to build the conflict clause.

5 Reducing Dependencies in Bound Conflicts

In this section we describe how to compute sets of assigrsmentAs shown in the previous section, in BCP algorithms it is jllego

that explain bound conflicts. Moreover, we show that thes@as
ments are not in general associated with all decision levethe
search tree; hence non-chronological backtracking cangkice.

establish conditions for implementing non-chronologicatktrack-
ing due to bound conflicts. However, the ability to backtracin-
chronologically is strongly related with the ability foradtifying a

A bound conflict in an instance of the binate covering problemsmall set of assignments that explain each bound conflits. Ses-
(BCP)C arises when the lower bound is equal to or higher than thesignments that include many assignments irrelevant faradigtex-
upper bound . This condition can be writtenG@gath + C.lower > plaining the bound conflict can drastically reduce the gbib back-
C.upper, whereC.pathis the cost of the assignments already made,track non-chronologically. Hence, after computing explions for
C.loweris a lower bound estimate on the cost of satisfying thebound conflicts, using the techniques described in the puevsec-
clauses not yet satisfied (as given for example by an indemers@t tion, the next step is to identify assignments that can beadied
of clauses), an€.upperis the best solution found so far. From the from each explanation by proving them irrelevant for theriboon-
previous equation, we can readily conclude tGgtathandC.lower flict to take place.
are the unique components involved in each bound confliciti¢h In this section we propose different techniques for redyice-
that C.upperis just the lowest value of the cost function for the so- pendencies in the explanations of bound conflicts, henceciegl
lutions of the constraints computed earlier in the searcitgss.) the number of literals iwy..

Therefore, we will analyze bot@.pathand C.lowerin order to es-
tablish the assignments responsible for a given bound canfli

We start by studying.path Clearly, the variable assignments that) o
cause the value df.pathto grow are solely those assignments with Let’; be aliteral such thalj € wep andl; & wei. Thenl; is in wp.

avalue of 1. Hence, we can define a set of liteals such thateach only due to the’.path component explaining the bound conflict. Let
variable inw., has positive cost and is assigned value 1: MIS be the independent set, computed with the procedure dedcrib

in [5], which is used to obtain the value 6flower. In this situation,
2 literal [; can be removed froma., provided the following conditions

apply:
which basically states that to decrease the value of thefanstion] o _)
(i.e.C.path at least one variable that is assigned value 1 has instea® There exists a satisfied clause such that); is the only literal
to be assigned value 0. which currently satisfies;.

We now considelC.lower. Let M 1S be the independent set of ® All literals of w; besided; must be positive, unassigned and must
clauses, obtained by the method described in section Ztldéter- not intersect/ IS (so thatw; can be added ta/15 if [; assumes
mines the value of.lower. Observe that each clauseMil .S is part value 0).)
of MIS because it is neither satisfied nor covered by some othep All literals in w; must have a cost higher than or equal to the cost
clause inMIS. Clearly, for each clause; € MIS these condi- of literal I;. _
tions only hold due to the literals in; that are assigned value 0. If ® No clause inM/IS can contairl;.
any of these literals was assigned valuevlwould certainly not be
in M 1S since it would be a satisfied clause. Consequently, we cal
define a set of literals that explain the valueGofower.

5.1 Relating C.path and C.lower

wep ={l =T; : Cost(z;) >0Ax; =1}

H’his reduction step can be made becausk it= 0, w; would be

in the independent set and the lower bound value would not de-
crease. Therefore, literd) can be deemed irrelevant for explaining
the bound conflict and can be removed frog.

As an example, let us suppose that variabigsc, andzs belong
to the cost function with the same cost and= 1. If a bound conflict
occurs, from (2)z; would be inw,.. However, suppose that clause
w; = (z1 + w2 + x3) is satisfied only due t@+, i.e.,z2 andzs are
unassigned. l£2 andzs do not belong to any clause M IS, z; can
be removed fronw,. becauser; = 1 is not relevant for the conflict.

If variable 1 was unassigned or assigned valuesQwould be in
M S and the bound conflict would still occur.

It is interesting to observe that we can generalize the secon-
dition, allowingw; to have positive literals whose variables are as-
signed value 0. Let us consider the example clayse (z1 + z2 +
x3 + x4). Letzy = 1 andz2 = 0. Moreover, let the cost of;

wa={l:1=0ANlEw; ANw; € MIS})
Now, as stated above, a bound conflict is solely due to the two ¢
ponentsC.pathandC.lower. Hence, this bound conflict will hold as
long as the following clausey. is unsatisfied:

4)

(Observe that the set union symbol in the previous equatnotes
a disjunction of literals.) As long as this clause is unigtik the val-
ues ofC.pathandC.lowerwill remain unchanged, and so the bound
conflict will exist. We can thus use this unsatisfied clauseto an-
alyze the bound conflict and decide where to backtrack togutsie

Whe = Wep U Wel

be no greater than the cost ®4, let xs, x4 be such that,; would conflict clauseuy,. can still be built using (4), but the.; can now be
be in MIS if 1 = 0, and let no other clause in MIS contain literal reformulated as

x2. In this situation, the dependency @n can be removed, and the

dependency o, need not be considered. Indeed, with= 0, w; wa={l:1=0ANl€wiAwi € MIS\D_-MIS} (8)
would be in MIS and so the cost would not decrease. In addition, . o .

since the cost of is larger than or equal to the costof, by as- Moreover, the simplifications described above éof can now be

signing value 1 tars, the cost would also not decrease. Hence the@PPlied to the resulting.;.

result follows. One should note that the same reasoningespfar _One should note that the reduction on the number of dependen-
anarbitrary number of variables assigned value 0 in a given clauseFi€S relies on which clauses we choose to includ®in/75. If a
with a single literal assigned value 1. clause fromM IS is selected with assigned literals belonging.te

Next we show howw,; can be simplified by evaluating the con- Pecause of other clausesid/S or due tow.,, then the dependen-
sequences of modifying the value of some literals on theevalu ~Ci€S are exactly the same. Therefore, itis deswablt_althMIS b_e a
C.path Suppose we have a literal= z;, with [€ w and let subset of\/ IS such that the_ number ofdepepdenme&mbe mini-
2z; = 0. If z; only belongs to one clause; of the independent set Mum. A greedy procedure is used for selecting the clausesiove
and its cost is greater than or equal to the minimum costpthen; ~ from MIS.
can be removed from,.. To better understand how this is possible, . .
suppose instead that; = 1. In this situationw; would not be in 5.3 Resolution-Induced Dependency Reduction
the independent set (it would be a satisfied clause) an@'thever |n this section we illustrate how the resolution operatib8][can be
component would be low&rHowever, since the cost of the variable ysed for establishing conditions that permit the elimimabf depen-
is higher than or equal to the minimum costaf theC.path com- dencies. We should note that the proposed conditions, é@mgh
ponent would be higher, and hence the conflict would stilih8lo, based on the resolution operation, do not require the ékpiiation
the assignment; = 0 is irrelevant for the conflict to arise and literal of new clauses.

I can be removed froma,,.. Observe that even if a clausg, contain- The conditions proposed subsequently can be applied foswem
ing a literalz; = 0, also contains other literals assigned value 0 (e.g.ing dependencies from., andw,;. In all cases, we use examples
x), = 0), the same reasoning still applies, and dependenay;@an to illustrate the application of resolution, but provide thecessary
be removed. This holds even whep = 0 is contained in more than conditions for generic application.

one clause ofi/IS. We start by studying simplifications to.,, established with the

Another reduction technique consists of using a satisfi@dsel to resolution operation. Let us consider the following setlatises,
reduce a dependency fram;. Let us consider the following set of

clauses, w1 = (z1+ 22+ x3) 9
wi = (r1+z2+23) w2 = (T1+x2+x4) ©)
w2 = (z1+4+zs+25) (5)
ws = (T14x3+24) with 2 = 1, and such thats, x4 are not covered by the currently

computedM IS. x; can either be assigned or unassigned, and can
either be or not be covered by the currently computedsS. By ap-
plying resolution betweew; andws, with respect tar;, we obtain
the resulting clauses = c(wi, w2, 1) = (2 + 3+ x4). Now, w3
is certainly satisfied solely bys. Hence, we can conclude that the
dependency om2 can be removed by applying the previous results
on simplifyingw.,. Notice thatx, can beanyvariable. However, if
x1 is unassigned and not covered b§7 S, then we can immediately
apply the previous results on simplifying,,.

Next, we illustrate one additional form of using the resioliatop-

with 1 = 0, z2, z3, x4, x5 Unassigned and; andws be part of
MIS. Let the cost ofrs, x3, x4, x5 be less than or equal to the cost
of x1. Finally, let no other clause iM .S containz;. If 2, would
take value 1C.lower would decrease by 1 sincg andw: would be
satisfied, butvs would now be inMI1S. However,C.path would be
raised due to the cost af; and the conflict would still hold. Hence,
the dependency am; can be removed.

5.2 Using Excess Cost Value

Let us consider a bound conflict and l€iff = (C.path + eration for removing dependencies. As an example, assuroeraib
C.lower) — C.upper. Clearly, diff > 0. conflict, and consider the following set of clauses,

It is plain that if C.path was lower bydiff, the bound conflict _
would still hold since we would then hav@.upper = C.path + wi = (21 + 22 + 73) (10)

C.lower. Therefore, we may conclude that not all assignments in w2 (T1 + 24 + z5)

g'pnar;’é rirsevcgﬁae?%?rr?;%ree)\j\%awg&? dtgﬁncr?g\tléc; E?Sr? dlfcz?\?i?:tas-\'vhereml is assigned either value 0 or 1, its cost is 0, and such that

th?s case, it is possible to rlemove some literals frogp as lon as- the dependency o is only due tow, or w2. Furthermore, let us

theircost’is IOV\?er than or equal tff P 9 assume that; would be part of MIS with z; = 0, and thatw,
Moreover, the value ofiiff can also be used for reducing depen- would be part ofM IS with z; = 1. In this situation the dependency

- :) onz; can be removed. Notice that if the costuafis non-zero, then
dencies fromC.lower. Notice that if we remove a subset of clauses . Y
D_MIS from M1 (used to obtairC.lower) such that, the removal of the dependency on is guaranteed by the previous

results (section 5.1) on simplifyinge;.

. Clearly, the application of the resolution operation cangke-
<
Cost(D-MIS) < diff where (6) eralized and used for eliminating more than one variable,cthly
Cost(D_-MIS) = Z Weight(w) @) drawback being the computational effort involved.
weD_MIS

6 Experimental Results

In this section we compare different algorithms for solvBGP on
example instances taken from digital circuit testing peofs [7].
Due to space limitations, only the most representativeaiests are
L In fact, if theC.lower would be recomputed all over again, it is not guaran- presented._ For the experimental results given .belOW’ the mRes
teed that it would decrease. Nevertheless, we know thabufitblause; were obtained on a SUN Sparc Ultra I, running at 170MHz, and
satisfied byz; = 1, MIS\{w;} it is still an independent set of clauses. with 100 MByte of physical memory. In all cases the maximum
Therefore,M IS\ {w;} can be used aslaw estimate ofC.lower. CPU time that each algorithm was allowed to spend on any given

then the lower bound conflict will still hold sinc€.upper <
C.path + C.lower, whereC.lower is now obtained from the inde-
pendent set of claused 1.5 \ D_MIS. Therefore, the lower bound

instance was 1 hour. The experimental procedure consistatho
ning a selected set of problem instances withlikeloalgorithm, as
described in Sections 3 and 4. These results are shown ie Tabl
Next, in Table 2, we present the results liffolo with the depen-
dency elimination techniques of Section 5. For both tables;,
NCB, and JMP denote, respectively, the total number of decisions,
number of non-chronological backtracks and largest bacgjin the
search tree, whereas ne andmemindicate, respectively, that the
time and memory limits were reached.

The experimental results from Tables 1 and 2 clearly inditia¢
efectiveness of the proposed techniques with redution®ih the
time spent to solve the problem instances and the numberodf de
sions. A more efective pruning can also be observed, withenease
in the number of non-chronological backtracks and largergsi in
the search tree.

Finally, in Table 3 we can observe the results of severalraihe
gorithms on the same set of instances. Cle$plgolve[3] (a generic
Integer Linear Programming solver) is unable to solve atratisn-
stances given the time limgcherzd5], a state of the art BCP solver,
which incorporates several powerful pruning techniques atassi-
cal branch-and-bound algorithm, is also unable to solvet wiothe
example instances. The SAT-based linear search algodgidp[1]
is able to solve most instances, hence suggesting thatitietaaces
are well-suited for SAT-based solvers. Notice however bsaois
faster tharopbdpin most examples, and in some cases the improve
ment exceeds 1 order magnitude.

bsolo

Benchmark| min. CPU Dec. NCB [Jump
c1908F469@0 — ubl3 117079 721 9
c3540F20@1 6 | 1045.14 3359 218 7
c432F1gat@1 8 575.16 14756 608 53
c432F37gat@1 9 ublb 218136 | 35785 21
c499Fic2@1 — ub41 | 1003200 1586 3
Cc6288F35gat@1 4 107.69 756 41 42
Cc6288F69gat@1 6 | 141317 4048 110 4T
9symmLF6@0 9 6.05 272 23 4
alu4AFj@0 6 185.59 1292 55 4
aluAFI@1 6 146.01 999 81 4
apex2Fv14@1 10 20.15 908 48 4
apex2Fv1I7T@1 12 23.38 1082 70 5
dukeZFv7@0 5 13.31 335 33 12
misex3Fa@0 9 56.78 3898 83 14
misex3Fb@1 8 83.91 1038 71 8
splaFv14@0 8 38.93 914 120 12
Table 1. Results for bsolo
bsolo
Benchmark] min. CPU Dec. NCB | Jump
c1908F469@0 — ubI3 111386 | 1057 7
c3540F20@1 6 | 907.40 2939 213 7
c432F1gat@1 8 | 541.48 147117 647 53
c432F37gat@1 9 ub14 286490 | 48534 21
c499FicZ@1 — ub41 | 1003200 | 1586 3
Cc6288F350at@1 4 4442 555 39 42
Cc6288F69gat@1 6 | 608.99 2198 94 11
9symmLF6@0 9 6.12 272 23 !
alu4Fj@0 6 | 145.73 1034 46 5
alu4AFI@T 6 | I32.75 933 73 5
apexZFvI4@T 10 20.41 936 60 4
apex2Fv17@1 12 23.60 1058 78 5
duke2Fv7@0 5 12.93 332 32 12
misex3Fa@0 9 55.18 879 81 14
misex3Fb@1 8 80.47 1006 69 8
splaFv14@0 8 28.23 785 113 10

Table 2. Results for bsolo with dependency reductions

7 Conclusions

This paper extends well-known search pruning techniques) the
Boolean Satisfiability domain, to branch-and-bound atbars for
solving the Binate Covering Problem. The paper also dessrion-
ditions that allow for non-chronological backtracking imetpres-
ence of bound conflicts. To our best knowledge, this is thetfire

Algorithms
Benchmark] min. | Ip_solve | scherzo opbdp bsolo
cI908F469@0 — fime fime ub 24 ubI3
c3540F20@1 6 fime mem. ub I3 | 907.40
c432F1gat@1 8 ub 15 time | 1148.27 | 541.48
c432F37gat@1 9 time time | 3574.44 ubl4d
c499FicZ@1 — time time ub 41 ub41
Cc6288F35gat@1 4 fime mem. | 1330.95| 44.42
Cc6288F69gat@1 6 time mem. ub 9 | 608.99
9symmLF6@0 9 ub9 29.44 1.59 6.12
aludFj@0 6 fime 879.05| 413.71| 145.73
aludFl@1 6 time | 1638.98| 557.14| 132.75
apex2Fvl4@1 10 ub 10 mem. 624.07| 20.41
apex2Fv17@1 12 time mem. 532.94 | 23.60
dukeZFv7@0 5 fime mem. 18.20 12.93
misex3Fa@0 9 fime mem. 182.41 55.18
misex3Fb@1 8 fime mem. 983.55 80.47
splaFvI4@0 8 fime mem. 21579 28.23

Table 3. Algorithm comparison

that branch-and-bound algorithms are augmented with titigyebr
backtracking non-chronologically in the presence of cot¥lihat re-
sult from bound conditions. In addition, we have establishen-
ditions for reducing the size of bound conflict explanatjombich
further elicits non-chronological backtracking.

Preliminary results obtained on several instances of theatBi
Covering Problem indicate that the proposed techniqueindezd
effective and can be significant for specific classes of it#s, in

particular for instances of covering problems with setsasfatraints
that are hard to satisfy.

REFERENCES

(1]

[2]

(3]

(4]
(5]
(6]

[7]

(8]

(9]

[10]

(11]
[12]

[13]
[14]

[15]

[16]

P. Barth. A Davis-Putnam Enumeration Algorithm for LarePseudo-
Boolean Optimization. Technical Report MPI-1-95-2-003a®Plank
Institute for Computer Science, 1995.

R. Bayardo Jr. and R. Schrag. Using CSP look-back teckesido solve
real-world SAT instances. IRroceedings of the National Conference
on Atrtificial Intelligence 1997.

M. R. C. M. Berkelaar. UNIX Manual Page of Ip-solve.
Eindhoven University of Technology, Design Automation t8etg
ftp://ftp.es.ele.tue.nl/pub/lsolve, 1992.

O. Coudert. Two-Level Logic Minimization, An Overviedntegration,
The VLSI Journalvol. 17(2):677-691, October 1993.

O. Coudert. On Solving Covering Problems. Pmoceedings of the
ACM/IEEE Design Automation Conferendeine 1996.

M. Davis and H. Putnam. A Computing Procedure for Quardtfon
Theory. Journal of the Association for Computing Machinerpl.
7:201-215, 1960.

P. F. Flores, H. C. Neto, and J. P. M. Silva. An exact solutio the
minimum-size test pattern problem. Rroceedings of the IEEE In-
ternational Conference on Computer Desigages 510-515, October
1998.

S. Liao and S. Devadas. Solving Covering Problems UsiRg{Based
Lower Bounds. InProceedings of the ACM/IEEE Design Automation
Conferencel1997.

V. M. Manquinho, P. F. Flores, J. P. M. Silva, and A. L. Glika. Prime
implicant computation using satisfiability algorithms.Rroceedings of
the IEEE International Conference on Tools with Artificiatdlligence
pages 232—-239, November 1997.

V. M. Manquinho and J. P. Marques-Silva. On solving leaol op-
timization with satisfiability-based algorithms. 8ixth International
Symposium on Artificial Intelligence and Mathematiganuary 2000.
G. L. Nemhauser and L. A. Wosleynteger and Combinatorial Opti-
mization John Wiley & Sons, 1988.

C. Pizzuti. Computing Prime Implicants by Integer Ragming. In
Proceedings of the IEEE International Conference on Toatls Artifi-
cial Intelligence November 1996.

S. J. Russell and P. Norvidrtificial Intelligence: A Modern Approach
Prentice-Hall, 1994.

J. P. M. Silva and K. A. Sakallah. GRASP: A new search atgm for
satisfiability. InProceedings of the ACM/IEEE International Confer-
ence on Computer-Aided Desigrages 220-227, November 1996.

T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovannitwentelli.
Explicit and Implicit Algorithms for Binate Covering Pradrhs. IEEE
Transactions on Computer Aided Desigrol. 16(7):677-691, July
1997.

H. Zhang. SATO: An efficient propositional prover. Rioceedings of
the International Conference on Automated Dedugctmages 272-275,
July 1997.

