
Using Randomization and Learning to Solve

Hard Real-World Instances of Satisfiability

Lúıs Baptista and João Marques-Silva

Department of Informatics, Technical University of Lisbon,
IST/INESC/CEL, Lisbon, Portugal

{lmtb,jpms}@algos.inesc.pt

Abstract. This paper addresses the interaction between randomization,
with restart strategies, and learning, an often crucial technique for prov-
ing unsatisfiability. We use instances of SAT from the hardware veri-
fication domain to provide evidence that randomization can indeed be
essential in solving real-world satisfiable instances of SAT. More inter-
estingly, our results indicate that randomized restarts and learning may
cooperate in proving both satisfiability and unsatisfiability. Finally, we
utilize and expand the idea of algorithm portfolio design to propose an
alternative approach for solving hard unsatisfiable instances of SAT.

1 Introduction

Recent work on the Satisfiability Problem (SAT) has provided experimental and
theoretical evidence that randomization and restart strategies can be quite ef-
fective at solving hard satisfiable instances of SAT [4]. Indeed, backtrack search
algorithms, randomized and run with restarts, were shown to perform signifi-
cantly better on specific problem instances. Recent work has also demonstrated
the usefulness of learning in solving hard instances of SAT [2,6,8]. Learning, in
the form of clause (nogood) recording, is the underlying mechanism by which non-
chronological backtracking, relevance-based learning, and other search pruning
techniques, can be implemented.

In this paper we propose to conduct a preliminary study of the interaction be-
tween randomization and learning in solving real-world hard satisfiable instances
of SAT. Moreover, we propose a new problem solving strategy for solving hard
unsatisfiable instances of SAT. Throughout the paper we focus on real-world
instances of SAT from the hardware verification domain, namely superscalar
processor verification [7]1. These instances can either be satisfiable or unsatisfi-
able and are in general extremely hard for state of the art SAT solvers.

2 Randomization and Learning

A complete backtrack search SAT algorithm is randomized by introducing a fixed
or variable amount of randomness in the branching heuristic [4]. The amount
1 The superscalar processor verification instances can be obtained from the URL
http://www.ece.cmu.edu/˜mvelev.

R. Dechter (Ed.): CP 2000, LNCS 1894, pp. 489–494, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



490 Lúıs Baptista and João Marques-Silva

of randomness may affect the value of the selected variable, which variable is
selected from the set of variables with the highest heuristic metric, or even which
variable is selected from a set of variables within x% of the highest value of the
heuristic metric. Morever, a restart strategy consists of defining a cutoff value
in the number of backtracks, and repeatedly running a randomized complete
SAT algorithm, each time limiting the maximum number of backtracks to the
imposed cutoff value.

If randomized restarts are used with a fixed cutoff value, then the resulting
algorithm is not complete. Even though the resulting algorithm has a non-zero
probability of solving every satisfiable instance, it may not be able to prove
instances unsatisfable. One simple solution to this limitation, that allows solving
unsatisfiable instances, is to implement a policy for increasing the cutoff value.
For example, after each restart the backtrack cutoff value can be increased by
a constant amount. The resulting algorithm is complete, and thus able to prove
unsatisfiability.

Clause (nogood) recording (i.e. learning) techniques are currently the founda-
tion upon which modern backtrack search algorithms [2,6,8] build to implement
different search pruning techniques, including non-chronological backtracking,
relevance-based learning, among others. If an algorithm implements branching
randomization and a restart strategy, then each time the cutoff limit on the
number of backtracks is reached, new clauses are expected to have been iden-
tified. These clauses may either be discarded or kept for subsequent restarts of
the algorithm. Clearly, one can limit the size of the clauses that are to be kept
in between restarts. Below, we study how useful the different aspects of learning
are when randomization with a restart strategy is used.

Next we compare GRASP [6] and SATZ [5] with randomization and restarts
(results without restarts that involve these and other algorithms, as well as
additional results with restarts, are analyzed in [1])2. For each instance and
for each algorithm the number of runs was limited to 10. A significantly larger
number would have required excessive run times.

Table 1 contains the results of running GRASP with chronological back-
tracking enabled (C), and with no clauses being recorded, and the results for the
randomized version of SATZ [4,5]. For SATZ the cutoff values used were 20000,
1000 and 100 backtracks. For GRASP, the two inital cutoff and increment values
considered were 100/0 and 500/250. As can be concluded, SATZ is only able to
solve two instances for any of the cutoff values considered, and for these two
instances, the CPU times decrease with smaller cutoff values. In addition, SATZ
exceeds the allowed CPU time for all the other instances and for the different
cutoff values considered. The results for GRASP depend on the cutoff initial and
increment values. The utilization of the combination 100/0 is clearly better for
2 The results were obtained on a P-II 400 MHz Linux machine with 256 MByte of
physical memory. The CPU time limit was set to 3,000 seconds. Column Time denotes
the CPU time and column X denotes the number of times, out of the total number
of runs, the algorithm was not able to solve the given instance.



Using Randomization and Learning to Solve Hard Real-World Instances 491

Table 1. Results for Grasp with Restarts and without Learning and for SATZ

Instance Grp 0/0C 100/0 Grp 0/0C 500/250 Satz 20000 Satz 1000 Satz 100

Time X Time X Time X Time X Time X

2dlx cc bug1 790.0 1 2464.7 8 3000 10 3000 10 3000 10

2dlx cc bug105 7.3 0 120.2 0 3000 10 3000 10 3000 10

2dlx cc bug11 172.1 0 1702.4 4 3000 10 3000 10 3000 10

2dlx cc bug38 166.4 0 2121.8 6 3000 10 3000 10 3000 10

2dlx cc bug54 1322.2 3 2859.9 9 1208 2 359.0 1 142.2 0

2dlx cc bug80 397.5 0 1665.4 5 3000 10 3000 10 3000 10

dlx2 cc a bug5 1652.6 3 3000.0 10 3000 10 3000 10 3000 10

dlx2 cc a bug59 278.3 0 2099.0 6 657 0 79.4 0 41.4 0

dlx2 cc bug02 1140.1 2 2768.2 8 3000 10 3000 10 3000 10

dlx2 cc bug08 426.3 0 2852.8 9 3000 10 3000 10 3000 10

Table 2. Results with Restarts and Learning (cutoff/increment = 500/250)

Instance Grasp 0/0 Grasp 0/10 Grasp 0/20 Grasp 10/20 Grasp 20/20

Time X Time X Time X Time X Time X

2dlx cc bug1 57.0 0 67.0 0 105.9 0 66.3 0 196.2 0

2dlx cc bug105 19.6 0 22.2 0 25.5 0 33.7 0 51.4 0

2dlx cc bug11 240.4 0 338.8 0 399.1 0 168.5 0 226.9 0

2dlx cc bug38 44.4 0 54.4 0 50.3 0 73.6 0 100.4 0

2dlx cc bug54 252.6 0 228.1 0 198.1 0 166.8 0 143.3 0

2dlx cc bug80 127.3 0 54.7 0 50.5 0 41.5 0 59.8 0

dlx2 cc a bug5 133.9 0 121.9 0 206.1 0 151.0 0 204.4 0

dlx2 cc a bug59 33.2 0 14.2 0 24.3 0 17.8 0 17.3 0

dlx2 cc bug02 147.6 0 49.9 0 47.0 0 42.9 0 91.9 0

dlx2 cc bug08 48.8 0 27.0 0 19.8 0 25.7 0 29.8 0

these problem instances. Nevertheless, the algorithm quits in a few cases and for
some runs.

Table 2 contains the results of running GRASP with non-chronological back-
tracking enabled, using randomization and restarts, and with different clause
recording arrangements. Each column is identified by two values ws/g, denot-
ing the largest clause size that is kept in between restarts (ws), and the largest
clause size that GRASP records during the search (g). For this experiment the
initial cutoff value was set to 500, and the increment set to 250. The conclu-
sions are clear. Branching randomization with a restart strategy allows solving
all problem instances for all runs, provided learning is enabled. Moreover, and in
most of the examples, recording clauses both during the search and in between
restarts, can contribute to reducing the CPU times.



492 Lúıs Baptista and João Marques-Silva

3 Algorithm Portfolio Design

Recent work on algorithm portfolio design [3] has shown that a portfolio ap-
proach for solving hard instances of SAT can lead to significant performance
gains. Basically, a set of algorithms is selected which is then used for solving
each problem instance on different processors, or interleaving the execution of
several algorithms in one or more processors. In this section we explore this idea
with the objective of solving hard unsatisfiable instances of SAT. As before, the
problem instances studied were obtained from hardware verification problems [7].

Our portfolio approach is somewhat different than what was proposed in [3],
and targets proving unsatisfiability for hard instances of SAT. Instead of hav-
ing fundamentally different algorithms, or several copies of the same algorithm
running on different processors, our approach is to utilize randomization with
a restart strategy, and each time the search is restart, a different algorithm is
selected from a set of k different algorithms {A1, . . . , Ak}. Each algorithm {Ai}
has a given probability pi of being selected.

The key aspects that characterize our portfolio approach are that the restart
strategy used is to iteratively increase the cutoff limit, thus guaranteeing com-
pleteness of the algorithm, and that learning between restarts is used, thus re-
using information from previously searched portions of the search tree to avoid
subsequently searching equivalent portions.

In our current solution, instead of using significantly different search algo-
rithms, we utilize instead significantly different configurations of the same al-
gorithm, GRASP. Different configurations of GRASP basically allow different
branching heuristics, different amounts of randomization in the branching heuris-
tics, different learning bounds during the search, and different learning bounds
in between restarts.

For the results presented below, the portfolio of configurations considered
was the following:

– Four different configurations with similar probabilities are used.
– The limit on recorded clauses during search ranges from 30 to 40.
– Relevance-based learning ranges from 4 to 5.
– Recorded clauses in between restarts range from 10 to 15.
– The amount of randomization is fixed for all configurations.
– Three well-known and widely used branching heuristics are used (see [1]).

The experimental results for the unsatisfiable hardware verification in-
stances [7] are shown in Table 3. For this experiment, we evaluated two portfolio
organizations, i.e. pf1 and pf2, that differ in the initial cutoff and increment
values. For pf1 the values were set to 500/250, and for pf2 the values were set
to 100/50.

The results for the default GRASP algorithm results are shown in column
Grasp, the results for the restart strategy in column Grasp (rst), and the re-
sults for the portfolio approach in columns Grasp (pf1) and Grasp (pf2). In
addition, the results for rel sat, SATZ and randomized SATZ (Satz (rst)) are



Using Randomization and Learning to Solve Hard Real-World Instances 493

Table 3. Results on Unsatisfiable Instances

File Grasp Grasp (rst) Grasp (pf1) Grasp (pf2) Relsat Satz Satz (rst)

Time X Time X Time X Time X Time X Time X Time X

dlx1 c 1.9 0 2.2 0 3.6 0 3.7 0 7.0 0 7918.7 0 10000 10

dlx2 aa 1.8 0 2.7 0 17.5 0 9.5 0 23.7 0 10000 1 10000 10

dlx2 ca 2686.7 0 3006.1 0 631.3 0 758.2 0 10000 1 10000 1 10000 10

dlx2 cc 100000 1 10000 10 2032.1 0 2401.6 0 10000 1 10000 1 10000 10

dlx2 cl 100000 1 10000 10 1076.4 0 1077.9 0 10000 1 10000 1 10000 10

dlx2 cs 9598.1 0 8970.4 6 987.0 0 1263.3 0 10000 1 10000 1 10000 10

dlx2 la 6259.2 0 9617.4 7 307.7 0 382.0 0 10000 1 10000 1 10000 10

dlx2 sa 12.0 0 7.6 0 34.2 0 29.0 0 295.6 0 10000 1 10000 10

also shown. In all cases the CPU time limit was 10,000 seconds, with the excep-
tion of the default GRASP algorithm for which 100,000 seconds were allowed.
Finally, and as in the previous section, the total number of runs was 10 for the
algorithms using randomization with restarts.

As can be concluded, the portfolio approach, built on top of branching ran-
domization with restarts, allows solving all instances with much smaller run
times (for the harder instances more than 1 order magnitude faster). Of the
two organizations evaluated, the best results were obtained with the initial cut-
off and increment values set to 500/250, since on average this choice of values
allows solving the harder instances faster. We should note that, to our best
knowledge, no other SAT algorithm is capable of solving the harder instances,
dlx2 cc and dlx2 cl, thus suggesting that an approach based on a portfolio
of configurations may be crucial for proving unsatisfiability for some classes of
instances.

4 Conclusions

This paper studies the interaction between randomization and learning in back-
track search SAT algorithms when solving real-world hard instances of SAT.
Preliminary results indicate that both randomization and learning (in the form
of non-chronological backtracking ability and recorded clauses) can be essential
for solving the satisfiable problem instances studied. Moreover, and for unsat-
isfiable instances, we have provided empirical evidence that randomization and
learning, when utilizing a portfolio of algorithm configurations, may solve prob-
lem instances that, to our best knowledge, no known SAT algorithm is otherwise
able to solve. Finally, the experimental results obtained indicate that significantly
different organizations (in terms of the initial cutoff and increment values) may
be required for proving either satisfiability or unsatisfiability. Future work will
necessarily address developing unified organizations for proving both satisfiabil-
ity and unsatisfiability in classes of problem instances.



494 Lúıs Baptista and João Marques-Silva

References

1. L. Baptista and J. P. Marques-Silva. The interplay of randomization and learning on
real-world instances of satisfiability. In AAAI Workshop on Leveraging Probability
and Uncertatinty in Computation, July 2000. 490, 492

2. R. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the National Conference on Artificial Intelligence,
1997. 489, 490

3. C. P. Gomes and B. Selman. Algorithm portfolio design: Theory vs. practice. In
Proceedings of the Thirteenth Conference On Uncertainty in Artificial Intelligence,
1997. 492

4. C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through
randomization. In Proceedings of the National Conference on Artificial Intelligence,
July 1998. 489, 490

5. C. M. Li and Anbulagan. Look-ahead versus look-back for satisfiability problems.
In Proceedings of International Conference on Principles and Practice of Constraint
Programming, 1997. 490

6. J. P. Marques-Silva and K. A. Sakallah. GRASP-A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.
489, 490

7. M. N. Velev and R. E. Bryant. Superscalar processor verification using efficient
reductions from the logic of equality with uninterpreted functions to propositional
logic. In Proceedings of Correct Hardware Design and Verification Methods, LNCS
1703, pages 37–53, September 1999. 489, 492

8. H. Zhang. SATO: An efficient propositional prover. In Proceedings of the Interna-
tional Conference on Automated Deduction, pages 272–275, July 1997. 489, 490


	Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability
	Introduction
	Randomization and Learning
	Algorithm Portfolio Design
	Conclusions


