
Algebraic Simplification Techniques for

Propositional Satisfiability

João Marques-Silva

Department of Informatics, Technical University of Lisbon,
IST/INESC/CEL, Lisbon, Portugal

jpms@inesc.pt

Abstract. The ability to reduce either the number of variables or clauses
in instances of the Satisfiability problem (SAT) impacts the expected
computational effort of solving a given instance. This ability can actu-
ally be essential for specific and hard classes of instances. The objective
of this paper is to propose new simplification techniques for Conjunctive
Normal Form (CNF) formulas. Experimental results, obtained on rep-
resentative problem instances, indicate that large simplifications can be
observed.

1 Introduction

Recent years have seen the proposal of several effective algorithms for solving
Propositional Satisfiability (SAT), that include, among others, local search and
variations, backtrack search improved with different search pruning techniques,
backtrack search with randomization and restarts, continuous formulations and
algebraic manipulation. (These different algorithms are further described and
cited in [3].) Moreover, these algorithms have allowed efficiently solving different
classes of instances of SAT. It is generally accepted that whereas most algo-
rithms for solving SAT can be competitive in proving satisfiability for different
classes of instances, backtrack search is preferred when the objective is to prove
unsatisfiability. Nevertheless, algebraic simplification solutions are also known
to be competitive for proving unsatisfiability in specific contexts [2].

The main goal of this paper is to propose and categorize new simplification
techniques, and illustrate the effectiveness of algebraic simplification as a pre-
processing tool for SAT algorithms. Moreover, we illustrate the application of
the proposed simplification techniques in real-world instances of SAT.

The paper is organized as follows. We start with a few definitions in Section 2.
Next we address algebraic simplification, namely the techniques in this paper.
Section 4 provides experimental results on applying the proposed simplification
techniques on real-world instances of SAT. Finally, Section 5 concludes the paper.

2 Definitions

This section introduces the notational framework used throughout the paper.
Propositional variables are denoted x1, . . . , xn, and can be assigned truth values 0

R. Dechter (Ed.): CP 2000, LNCS 1894, pp. 537–542, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



538 João Marques-Silva

(or F ) or 1 (or T ). In addition to letter x, and whenever necessary, we will use
letters y, w and z to denote variables. To denote specific variables we may also
use xi, xj , xk, . . .. A literal l is either a variable xi (i.e. a positive literal) or its
complement ¬xi (i.e. a negative literal). A clause ω is a disjunction of literals and
a CNF formula ϕ is a conjunction of clauses. When referring to specific clauses
we will utilize subscripts a, b, . . ., and when referring to sub-formulas of a CNF
formula we will utilize subscripts r, s, . . .. Disjunctions of literals, not necessarily
representing clauses will be represented as α, β, γ, δ, ε.

3 Algebraic Simplification

Different formula simplification techniques have been proposed over the years.
A detailed account of these techniques if provided in [3]. In this section we
concentrate on two new techniques, namely support-set variable equivalence and
inference of binary clauses.

3.1 Support Set Variable Equivalence

In many practical situations, a sub-formula ϕs of a CNF formula ϕ actually
describes a Boolean function xi = f(y1, . . . , yk). For example, the sub-formula
ϕa = (y1 ∨ ¬x) ∧ (y2 ∨ ¬x) ∧ (¬y1 ∨ ¬y2 ∨ x) describes the Boolean function
x = y1 ∧ y2. More interestingly, if we have two sub-formulas ϕa = (y1 ∨ ¬x) ∧
(y2 ∨¬x)∧ (¬y1 ∨¬y2 ∨x) and ϕb = (y1 ∨¬z)∧ (y2 ∨¬z)∧ (¬y1 ∨¬y2 ∨ z), then
we can conclude that x = y1 ∧ y2 and z = y1 ∧ y2. Hence, x and z are indeed
equivalent and we can replace z with x and vice-versa. Observe that, by suitable
resolution operations, we could easily derive the clauses (x ∨ ¬z) ∧ (¬x ∨ z),
obtaining the same conclusion.

The previous example suggests a pattern-matching approach for identifying
a set E of variables that can be expressed as a Boolean function f of some other
set S of variables (i.e., the support set) and thus replace the variables in set E
by a single variable. This approach is simply too time consuming for sets S of
arbitrary size, and so we restrict S to be of size 2, i.e. we only consider Boolean
functions of two variables.

If the support set S is restricted to be of size 2, it becomes feasible to enumer-
ate all possible Boolean functions of 2 variables, and determine the irredundant
CNF formulas associated with each Boolean function. This information is shown
in Table 1. (Observe that the missing six boolean functions are either constant 0
or 1, the actual function of a single variable or of its complement.) We can now
apply a straightforward pattern matching algorithm to a CNF formula, and iden-
tify sets E of variables with a common two-variable support set. These variables
can then be replaced by a single variable. Clearly, after variable replacement we
can apply well-known formula simplification techniques [3].

Other researchers [1] have observed the existence of variable equivalences
based on support sets, but on arbitrary instances of SAT (i.e. not in CNF for-
mat). Moreover, the underlying approach of [1,4] is significantly more time con-
suming (indeed exponential in the worst-case) than the one proposed above.



Algebraic Simplification Techniques for Propositional Satisfiability 539

Table 1. Two-variable CNF formulas

Boolean function CNF formula

x ≡ f1(a, b) = a ∧ b (a ∨ ¬x) ∧ (b ∨ ¬x) ∧ (¬a ∨ ¬b ∨ x)

x ≡ f2(a, b) = a ∨ b (¬a ∨ x) ∧ (¬b ∨ x) ∧ (a ∨ b ∨ ¬x)

x ≡ f3(a, b) = a ↔ b (a ∨ b ∨ x) ∧ (a ∨ ¬b ∨ ¬x) ∧ (¬a ∨ ¬b ∨ x) ∧ (¬a ∨ b ∨ ¬x)

x ≡ f4(a, b) = ¬a ∧ b (¬a ∨ ¬x) ∧ (b ∨ ¬x) ∧ (a ∨ ¬b ∨ x)

x ≡ f5(a, b) = a ∧ ¬b (a ∨ ¬x) ∧ (¬b ∨ ¬x) ∧ (¬a ∨ b ∨ x)

x ≡ f6(a, b) = ¬(a ∧ b) (a ∨ x) ∧ (b ∨ x) ∧ (¬a ∨ ¬b ∨ ¬x)

x ≡ f7(a, b) = ¬(a ∨ b) (¬a ∨ ¬x) ∧ (¬b ∨ ¬x) ∧ (a ∨ b ∨ x)

x ≡ f8(a, b) = ¬(a ↔ b) (a ∨ b ∨ ¬x) ∧ (a ∨ ¬b ∨ x) ∧ (¬a ∨ b ∨ x) ∧ (¬a ∨ ¬b ∨ ¬x)

x ≡ f9(a, b) = a ∨ ¬b (¬a ∨ x) ∧ (b ∨ x) ∧ (a ∨ ¬b ∨ ¬x)

x ≡ f10(a, b) = ¬a ∨ b (a ∨ x) ∧ (¬b ∨ x) ∧ (¬a ∨ b ∨ ¬x)

Another interesting result, is that the equivalence reasoning conditions proposed
by C.-M. Li in [2] are also superseded by support set equivalences and selective
resolution (see [1,3] for a definition). We should observe, in particular, that the
utilization of function f3 on two variables x = (a ↔ b) and y = (a ↔ b), for
deriving the equivalence between x and y, corresponds to Li’s inference rule
(5) [2], the other rules being superseded by selective resolution, unit-clause rule
and two-variable equivalence.

Despite the potential interest of identifying support sets of variables in a CNF
formula, in the next section a further generalization is proposed, that subsumes
variable equivalences based on two-variable support sets.

3.2 Generalized Inference of Binary Clauses

In this section we propose to study subsets of clauses for inferring binary clauses,
which not only identify support set equivalences, but also provide more general
conditions for deriving binary clauses. In what follows, all proposed conditions
can be explained by resorting to resolution. However, it is in general extremely
hard to decide to which clauses the resolution operation should be applied to,
being computationally infeasible to apply the resolution operation to all possible
pairs of clauses. The objective of studying sets of clauses is to indirectly select
to which sets of clauses the resolution operation should be applied to.

Moreover, the reasoning technique to be described below is categorized in
terms of how many binary clauses and ternary clauses are involved. Clearly,
the size and number of k-ary clauses involved could be made arbitrary, but
the computational overhead could become prohibitive. In general each proposed
condition is classified as being of the form mB/nT, meaning that m binary
clauses and n ternary clauses are involved.

Let us start by considering an illustrative example. Let ϕc = (y1 ∨ ¬x) ∧
(y2 ∨ ¬x) ∧ (¬y1 ∨ ¬y2 ∨ z) be a sub-formula. The application of the resolution
operation between the three clauses allows deriving (¬x ∨ z). Similarly, for the
sub-formula ϕd = (y1∨¬z)∧(y2∨¬z)∧(¬y1 ∨¬y2∨x), the resolution operation



540 João Marques-Silva

Table 2. Rules for Inferring Binary/Unit Clauses

Clause Pattern Inferred Clause(s)

(l1 ∨ ¬l2) ∧ (l1 ∨ ¬l3) ∧ (l2 ∨ l3 ∨ l4) (l1 ∨ l4)

(l4 ∨ ¬l2) ∧ (l1 ∨ ¬l3) ∧ (l2 ∨ l3 ∨ l4) (¬l3 ∨ l4), (l1 ∨ l4)

(l1 ∨ l2 ∨ l3) ∧ (¬l1 ∨ ¬l2 ∨ l3) ∧ (l1 ∨ ¬l2 ∨ l4) ∧ (¬l1 ∨ l2 ∨ l4) (l3 ∨ l4)

(l1 ∨ l2 ∨ ¬l3) ∧ (l1 ∨ l2 ∨ ¬l4) ∧ (l1 ∨ l2 ∨ ¬l5) ∧ (l3 ∨ l4 ∨ l5) (l1 ∨ l2)

(l1 ∨ l2) ∧ (¬l1 ∨ l2 ∨ l3) (l2 ∨ l3)

(l1 ∨ ¬l2) ∧ (l1 ∨ ¬l3) ∧ (l1 ∨ ¬l4) ∧ (l2 ∨ l3 ∨ l4) (l1)

(l1 ∨ l2 ∨ ¬l3) ∧ (l1 ∨ l2 ∨ ¬l4) ∧ (l3 ∨ l4) (l1 ∨ l2)

(l1 ∨ l2) ∧ (¬l1 ∨ l3 ∨ l4) ∧ (l2 ∨ l3 ∨ ¬l4) (l2 ∨ l3)

allows deriving the clause (x∨¬z). It is interesting to observe that we have just
illustrated a different approach for proving x equivalent to z for the first example
of the previous section.

In general, let us consider a sub-formula of the form ϕs = (l1 ∨ ¬l2) ∧ (l1 ∨
¬l3)∧ (l2 ∨ l3 ∨ l4), where l1, . . . , l4 are any literals. The application of resolution
allows deriving the binary clause (l1 ∨ l4). Since 2 binary clauses and 1 ternary
clause are involved in deriving the resulting binary clause, we say that 2B/1T
reasoning was applied. The other form of 2B/1T reasoning is the following. Let
the sub-formula be ϕt = (l4 ∨ ¬l2) ∧ (l1 ∨ ¬l3) ∧ (l2 ∨ l3 ∨ l4). Then, application
of resolution allows deriving the binary clauses (l3 ∨ l4) and (l1 ∨ l4).

Additional forms of mB/nT reasoning can be established. Due to efficiency
concerns, our analysis will be restricted to 2B/1T, 1B/1T, 1B/2T, 3B/1T and
0B/4T. The resulting set of unit/binary clause inference rules is summarized in
Table 2. Moreover, and from the previous examples and claims, we can readily
conclude that support set variable equivalence (described in the previous section)
is superseded by 2B/1T and 0B/4T reasoning.

4 Experimental Results

This section evaluates the practical application of the algebraic simplification
techniques described in this paper. These techniques can be evaluated according
to two main metrics:

– The ability to effectively simplify the original formula.
– The effective reduction in the amount of search, when using formula simpli-
fication techniques within a preprocessing engine for backtrack search SAT
algorithms.

In this paper we concentrate on the ability to simplify the original formula.
The reduction in the amount of search is analyzed in [3]. Moreover, the problem
instances used in this section are also described in [3]

Table 3 shows the results, namely the number of variables and clauses before
and after applying the simplification techniques. As can be concluded, for most of



Algebraic Simplification Techniques for Propositional Satisfiability 541

Table 3. Formula Simplification

Instance Initial Formula Final Formula

Variables Clauses Variables Clauses

bf1355-075 2180 6778 722 3075

bf2670-001 1393 3434 411 1252

ssa2670-130 1359 3321 440 1295

ssa2670-141 986 2315 283 883

barrel6 2306 8931 519 2209

barrel7 3523 13765 805 3467

longmult5 2397 7431 1483 5180

longmult6 2848 8853 1824 6376

queueinvar12 1112 7335 1049 9884

queueinvar16 1168 6496 1088 7114

c1908 1917 5096 658 2248

c1908 bug 1919 5100 659 2250

c2670 2703 6756 1220 3725

c2670 bug 2708 6696 1162 3553

dlx2 cc bug02 1515 12808 1486 13965

dlx2 cc bug08 1515 12808 1486 13890

the instances considered, large reductions in the number of variables and clauses
can be achieved. In some cases (e.g. barrel6 and barrel7) the final number of
variables is one fourth of the original number. Similar reductions can be observed
in the number of clauses. Nevertheless, for some instances (e.g. queueinvar16
and dlx2 cc bug08) the amount of simplification in the number of variables is
negligible. In these cases, it is interesting to observe an increase in the number
of clauses, due to the application of clause inference techniques (see Section 3.2).

5 Conclusions

This paper proposes new techniques for the algebraic simplification of proposi-
tional formulas. These techniques have been incorporated into a preprocessing
system to be used with any SAT algorithm. Preliminary experimental results,
obtained on real-world instances of SAT, clearly demonstrate the effectiveness
of the proposed techniques, allowing significant reductions in the sizes of the
resulting CNF formulas.

Despite the promising results obtained, and given the amount of simplifica-
tion achieved on most problem instances, the next natural step is to incorporate
the same algebraic simplification techniques into backtrack search SAT algo-
rithms, to be applied during the search.



542 João Marques-Silva

References

1. J. F. Groote and J. P. Warners. The propositional formula checker heerhugo. Tech-
nical Report SEN-R9905, CWI, January 1999. 538, 539

2. C.-M. Li. Integrating equivalency reasoning into davis-putnam procedure. In Pro-
ceedings of the National Conference on Artificial Intelligence, August 2000. Ac-
cepted for publication. 537, 539

3. J. P. Marques-Silva. Algebraic simplification techniques for propositional satisfia-
bility. Technical Report RT/01/2000, INESC, March 2000. 537, 538, 539, 540

4. G. St̊almarck. A system for determining propositional logic theorems by applying
values and rules to triplets that are generated from a formula, 1989. Swedish Patent
467 076 (Approved 1992), US Patent 5 276 897 (approved 1994), European Patent
0 403 454 (approved 1995). 538


	Algebraic Simplification Techniques for Propositional Satisfiability
	Introduction
	Definitions
	Algebraic Simplification
	Support Set Variable Equivalence
	Generalized Inference of Binary Clauses

	Experimental Results
	Conclusions


