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Propositional Satisfiability (SAT) is often used as the underlying model for a significant
number of applications in Artificial Intelligence as well as in other fields of Computer Sci-
ence and Engineering. Algorithmic solutions for SAT include, among others, local search,
backtrack search and algebraic manipulation. In recent years, several different organizations
of local search and backtrack search algorithms for SAT have been proposed, in many cases
allowing larger problem instances to be solved in different application domains. While local
search algorithms have been shown to be particularly useful for random instances of SAT,
recent backtrack search algorithms have been used for solving large instances of SAT from
real-world applications. In this paper we provide an overview of backtrack search SAT algo-
rithms. We describe and illustrate a number of techniques that have been empirically shown
to be highly effective in pruning the amount of search on significant and representative classes
of problem instances. In particular, we review strategies for non-chronological backtracking,
procedures for clause recording and for the identification of necessary variable assignments,
and mechanisms for the structural simplification of instances of SAT.
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1. Introduction

Propositional Satisfiability is a well-known NP-complete problem, with extensive
applications in Artificial Intelligence (AI), Electronic Design Automation (EDA), and
many other fields of Computer Science and Engineering. In recent years several compet-
ing solution strategies for SAT have been proposed and thoroughly investigated [23]. Lo-
cal search algorithms [40,41] have allowed solving extremely large satisfiable instances
of SAT. These algorithms have also been shown to be very effective in randomly gener-
ated instances of SAT. On the other hand, several improvements to the backtrack search
Davis–Putnam algorithm have been introduced. These improvements have been shown
to be crucial for solving large instances of SAT derived from real-world applications and
for proving unsatisfiability [3,35]. It is interesting to note that proving unsatisfiability
is the final objective in several applications including, among others, automated theo-
rem proving in AI, and circuit verification and circuit delay computation in EDA [38].
One final approach consists of algebraic simplification of propositional formulas. Even
though not competitive in practice, algebraic simplification techniques have been used
as a preprocessing step in several recently proposed SAT algorithms [14,22,27].
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Despite the potential interest of all these algorithmic solutions, we believe that fur-
ther improvements to backtrack search algorithms for SAT can have significant practical
impact in many areas of Computer Science and Engineering, in particular those where
local search cannot in general be applied, e.g., in proving unsatisfiability. In this paper
we propose to overview backtrack search algorithms for SAT, giving a particular em-
phasis to the techniques that are commonly used for pruning the search. Moreover, we
also analyze other techniques, highly effective in other application domains, and which,
given their simplicity, can easily be incorporated in backtrack search SAT algorithms.

The paper is organized as follows. We start in the next section by introducing
the notational framework used throughout the paper. In section 3, we describe SAT al-
gorithms based on backtrack search. Next, in section 4, we explain decision making
heuristics. Techniques commonly used for pruning the amount of search are reviewed
in section 5, whereas other less well-known techniques are described in section 6. Ex-
perimental evidence of the practical application of backtrack search SAT algorithms is
given in section 7. Afterwards, section 8 analyzes recent work in SAT domain.1 Finally,
section 9 concludes the paper by providing some perspective on future work on back-
track search SAT algorithms.

2. Definitions

A conjunctive normal form (CNF) formula ϕ on n binary variables x1, . . . , xn is
the conjunction of m clauses ω1, . . . , ωm each of which is the disjunction of one or
more literals, where a literal is the occurrence of a variable x or its complement x′.
A formula denotes a unique n-variable Boolean function f (x1, . . . , xn) and each of its
clauses corresponds to an implicate of f . Clearly, a function f can be represented by
many equivalent CNF formulas. The satisfiability problem (SAT) is concerned with
finding an assignment to the arguments of f (x1, . . . , xn) that makes the function equal
to 1 or proving that the function is equal to the constant 0.

A backtrack search algorithm for SAT is implemented by a search process that im-
plicitly enumerates the space of 2n possible binary assignments to the problem variables.
During the search, a variable whose binary value has already been determined is con-
sidered to be assigned; otherwise it is unassigned with an implicit value of X ≡ {0, 1}.
A truth assignment for a formula ω is a set of assigned variables and their corresponding
binary values. It will be convenient to represent such assignments as sets of pairs of vari-
ables and their assigned values; for example, A = {(x1, 0), (x7, 1), (x13, 0)}. Alterna-
tively, assignments can also be denoted as A = {x1 = 0, x7 = 1, x13 = 0}. Sometimes it
is convenient to indicate that a variable x is assigned without specifying its actual value.
In such cases, we will use the notation ν(x) to denote the binary value assigned to x. An
assignment A is complete if |A| = n; otherwise it is partial. Evaluating a formula ϕ for
a given truth assignment A yields three possible outcomes: ϕ|A = 1 and we say that ω is

1 This paper is organized in two main parts: the first one surveys well-established backtrack search SAT
algorithms, whereas the second part addresses recent advances and current research directions.
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satisfied and refer to A as a satisfying assignment; ϕ|A = 0 in which case ω is unsatisfied
and A is referred to as an unsatisfying assignment; and ϕ|A = X indicating that the value
of ω cannot be resolved by the assignment. This last case can only happen when A is
a partial assignment. An assignment partitions the clauses of ω into three sets: satisfied
clauses (evaluating to 1); unsatisfied clauses (evaluating to 0); and unresolved clauses
(evaluating to X). The unassigned literals of a clause are referred to as its free literals.
A clause is said to be unit if the number of its free literals is one. The search process is
declared to reach a conflict whenever ϕ|A = 0 for a given assignment A.

Formula satisfiability is concerned with determining if a given formula ω is satis-
fiable and with identifying a satisfying assignment for it. Starting from an empty truth
assignment, a backtrack search algorithm enumerates the space of truth assignments
implicitly and organizes the search for a satisfying assignment by searching a decision
tree. Each node in the decision tree specifies an elective assignment to an unassigned
variable; such assignments are referred to as decision assignments. A decision level is
associated with each decision assignment to denote its depth in the decision tree; the
first decision assignment at the root of the tree is at decision level 1. The decision level
at which a given variable x is either electively assigned or forcibly implied will be de-
noted by δ(x). When relevant to the context, the assignment notation introduced earlier
may be extended to indicate the decision level at which the assignment occurred. Thus,
x = v@d would be read as “x becomes equal to v at decision level d”.

Let the assignment of a variable x be implied due to a clause ω = (l1 + · · · + lk)

by using the unit clause rule [11]. The antecedent assignment of x, denoted as A(x), is
defined as the set of assignments to variables other than x with literals in ω. Intuitively,
A(x) designates those variable assignments that are directly responsible for implying
the assignment of x due to ω. For example, given ω = (x + y + ¬z), the antecedent
assignments of x, y and z are A(x) = {y = 0, z = 1}, A(y) = {x = 0, z = 1}, and
A(z) = {x = 0, y = 0}, respectively. Note that the antecedent assignment of a decision
variable is empty. In order to explain some of the concepts described in the remainder
of the paper, we shall often analyze the sequences of implied assignments generated by
Boolean Constraint Propagation (BCP) [48] (which is described in section 5.1). These
sequences are captured by a directed acyclic implication graph I defined as follows:

1. Each vertex in I corresponds to a variable assignment x = ν(x).

2. The predecessors of vertex x = ν(x) in I are the antecedent assignments A(x) cor-
responding to the unit clause ω that led to the implication of x. The directed edges
from the vertices in A(x) to vertex x = ν(x) are all labeled with ω. Vertices that have
no predecessors correspond to decision assignments.

3. Special conflict vertices are added to I to indicate the occurrence of conflicts. The
predecessors of a conflict vertex κ correspond to variable assignments that force a
clause ω to become unsatisfied and are viewed as the antecedent assignment A(κ).
The directed edges from the vertices in A(κ) to κ are all labeled with ω.
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3. Backtrack search SAT algorithm

We start by describing a possible realization of a SAT algorithm which uses back-
track search, as illustrated in figure 1. The procedure Preprocess can either be
used for algebraic simplifications, as in [18], or for deriving necessary assignments as
in [29,45]. A generic organization of backtrack search for SAT is shown in figure 2.

//
// Global variables: CNF formula ϕ

// Return value: SATISFIABLE/UNSATISFIABLE
// Auxiliary variable: Backtracking level β

//
SolveSatisfiability ()
{

if (Preprocess (0) == CONFLICT) {
return UNSATISFIABLE;

}
return BacktrackSearch (0,β);

}

Figure 1. Algorithm for satisfiability.

//
// Input argument: Current decision level d

// Output argument: Backtracking decision level β

// Return value: SATISFIABLE or UNSATISFIABLE
//
BacktrackSearch (d, &β)
{

if (Decide (d) != DECISION)
return SATISFIABLE;

while (TRUE) {
if (Deduce (d) != CONFLICT) {

if (BacktrackSearch (d + 1, β) == SATISFIABLE)
return SATISFIABLE;

else if (β != d || d == 0)
Erase (d); return UNSATISFIABLE;

}
}
if (Diagnose (d, β) == CONFLICT) {

return UNSATISFIABLE;
}

}
}

Figure 2. Generic backtrack search algorithm.
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The search is recursively organized in terms of the current decision level, d, denoting an
elective decision assignment, and a backtracking decision level, that identifies the next
decision assignment to be toggled. The backtrack algorithm is composed of three main
engines:

• The decision engine (Decide) which selects a decision assignment each time it is
called.

• The deduction engine (Deduce) which identifies assignments that are deemed neces-
sary, given the current variable assignments and the most recent decision assignment,
for satisfying the CNF formula.

• The diagnosis engine (Diagnose) which identifies the causes of a given conflicting
partial assignment.

Besides the three engines, the backtrack search algorithm also invokes an
Erase (d) procedure, that erases the variable assignments resulting from the most re-
cent decision assignment. It is interesting to note that a significant number of backtrack
search algorithms proposed by different authors can be cast as different configurations
of the generic backtrack search algorithm, given suitable configurations of the three en-
gines. For example, one possible configuration is the following:

• The decision engine randomly picks an unassigned variable x and assigns x value 1.

• The deduction engine implements Boolean Constraint Propagation (BCP) [48] and
returns its outcome. A CONFLICT indication denotes the existence of unsatisfied
clauses. Otherwise, in case of a NO_CONFLICT indication, the pure-literal rule [11]
is applied.

• The diagnosis engine keeps track of which decision assignments have been toggled.
Each time it is invoked, it checks whether at decision level d, the corresponding
decision variable x has already been toggled. If not, it erases the variable assignments
which are implied by the assignment on x, including the assignment on x, assigns the
opposite value to x and returns a NO_CONFLICT indication. In contrast, if the value
of x has already been toggled, it sets β to d − 1 and returns a CONFLICT indication.

From the above we can immediately conclude that such configuration represents
one possible realization of the Davis–Putnam SAT algorithm [10,11]. Moreover, the
generic algorithm can easily be customized to implement the POSIT [15] and the
Tableau [9] SAT algorithms, among others.

There are three main approaches to improve backtrack search SAT algorithms.
The first approach consists of fine-tuning the implementation details which, as shown by
Freeman in [15], can be of key significance. For example, highly efficient implemen-
tations of BCP as well as of the Erase procedure introduce significant performance
improvements over other less optimized realizations. The second approach for improv-
ing a SAT algorithm is the procedure for selecting decision assignments, which in most
cases has a very significant impact on the overall efficiency of the algorithm. A large
number of decision making heuristics for SAT have been proposed over the years, and
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a detailed account can be found for example in [15]. In addition, a brief overview of
decision making heuristics will be given in section 4. Finally, the third approach for
improving backtrack search algorithms consists of reducing the space that must actually
be searched. Recent experimental results [3,35] strongly suggest that pruning the search
can be extremely effective for many classes of instances of SAT. In the next section we
review techniques commonly used for pruning the amount of search and illustrate how
these techniques can be embedded in the proposed search framework. Furthermore, in
section 6 we investigate other potentially useful pruning techniques, some of which have
seldom been applied in the context of SAT.

4. Decision making heuristics

The heuristics used for variable selection during the search, and, consequently, the
organization of the decision engine, represent a key aspect of backtrack search SAT al-
gorithms [3,6,15,24,25,49]. Several heuristics have been proposed over the years, each
denoting a tradeoff between computational requirements and the ability to reduce the
amount of search [24]. Examples of decision making heuristics include Bohm’s heuris-
tic [6], the Jeroslow–Wang branching rule [25], MOM’s heuristic [15] and BCP-based
heuristics [3]. Most heuristics try to constrain the search as much as possible, by iden-
tifying at each step decision assignments that are expected to imply the largest number
of variable assignments. For example, the one-sided Jeroslow–Wang heuristic [24,25]
assigns value true to the literal that maximizes the following function:

J (L) =
∑

L∈Ci

2−ni , (1)

where ni is the number of free literals in unresolved clause Ci . Hence, preference is
given to satisfying a literal that occurs in the largest number of the smallest clauses.
MOM’s heuristic [15], for example, also gives preference to variables that occur in the
smallest clauses, but variables are preferred if they simultaneously maximize their num-
ber of positive and negative literals in the smallest clauses. Bohm’s heuristic [6] applies
a similar reasoning, giving preference to variables that occur more often in the smallest
clauses and, among these variables, to those for which both positive and negative literals
occur in the smallest clauses. Other heuristics involve BCP-based probing of each unas-
signed variable, in order to deciding which variable will lead to the largest number of
implied assignments [3,15]. For example, rel_sat [3] successfully applies this heuristic.

More recently, a different kind of decision heuristic has been proposed [36]. This
new heuristic has been used in Chaff, a highly optimized SAT solver. More than to
develop a well-behaviored heuristic, the motivation in Chaff has been to design a fast
heuristic. In fact, one of the key properties of this strategy is the very low overhead,
due to being independent of the variable state. As a result, the variable metrics are only
updated when there is a conflict.
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5. Pruning techniques for backtrack search

Practical search-based SAT algorithms incorporate a significant number of tech-
niques for pruning the search. In the following sections we describe different techniques
for pruning backtrack search.

5.1. Necessary assignments

The identification of the necessary assignments plays a key role in SAT and in Con-
straint Satisfaction, where it can be viewed as a form of reduction of the domain of each
variable. In SAT algorithms, the most commonly used procedure for identifying neces-
sary assignments is Boolean Constraint Propagation (BCP) [10,48]. The pseudo-code
description of BCP is given in figure 3, and basically consists on the iterated applica-
tion of the unit clause rule, originally described in [11]. Observe that one argument to
the procedure is the decision level d, which in our framework is associated with every
variable assignment.

From [48], we know that given a set of variable assignments, BCP identifies nec-
essary assignments due to the unit clause rule in linear time on the number of literals
of the CNF formula. However, BCP does not identify all necessary assignments given
a set of variable assignments and a CNF formula. Consider, for example, the formula
(x1 + x′

2) · (x1 + x2). For any assignment to variable x2, variable x1 must be assigned
value 1 for preventing a conflict. Nevertheless, BCP applied to this CNF formula would
not produce this straightforward conclusion.

One immediate extension to BCP are different forms of value probing. For exam-
ple, for any value assignment to variable x2, the assignment of x1 to 1 is always implied.
Thus, the value of x1 must be assigned value 1. Different forms of value probing have

//
// Input argument: Current decision level d

// Return value: CONFLICT or NO_CONFLICT
//
Deduce (d)
{

while (exists unit clause in ϕ) {
Let ω be a unit clause with free literal l;
Let x be the variable associated with l;
Assign x so that l = 1 and ω becomes satisfied;
if (exists unsatisfied clause) {

return CONFLICT;
}

}
return NO_CONFLICT;

}

Figure 3. Deduction engine implementing BCP.
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been proposed over the years in different application domains (see, for example, [28]),
but have seldom been incorporated in backtrack search algorithms for propositional sat-
isfiability.

5.2. Clause recording

Clause recording is another pruning technique, which is tightly associated with
non-chronological backtracking (described in the next section). This technique is often
referred to as nogood recording in the literature on Truth Maintenance Systems [12,43]
and Constraint Satisfaction Problems [39]. Basically, given a set of variable assign-
ments, that is identified as representing a sufficient condition that leads to an identified
conflict, clause recording consists in the creation of a new clause that prevents the same
assignments from occurring simultaneously again during the subsequent search.

The pseudo-code for a diagnosis engine which implements non-chronological
backtracking and clause recording is shown in figure 4. More complete details of creat-
ing clauses due to identified conflicts can be found in [3,35].

We illustrate clause recording with the example of figure 5. A subset of the CNF
formula is shown, and we assume that the current decision level is 6, corresponding to
the decision assignment x1 = 1. As shown, this assignment yields a conflict involv-
ing clause ω6. By inspection of the implication graph, we can readily conclude that a
sufficient condition for this conflict to be identified is

(x10 = 0) ∧ (x11 = 0) ∧ (x9 = 0) ∧ (x1 = 1). (2)

By creating clause ω10 = (x10 + x11 + x9 + x′
1) we prevent the same set of assign-

ments from occurring again during the subsequent search.
Unrestricted clause recording is in most cases impractical. Recorded clauses con-

sume memory and repeated recording of clauses eventually leads to the exhaustion of the
available memory. Furthermore, large recorded clauses are known for not being partic-
ularly useful for search pruning purposes [35]. As a result, there are two main solutions

//
// Input argument: Current decision level d

// Output argument: Backtracking decision level β

// Return value: CONFLICT or NO_CONFLICT
//
Diagnose (d, &β)
{

ωC = Create_Conflict_Induced_Clause();
AddTo_CNF_Formula (ωC);
β = Compute_Max_Decision_Level (ωC);
Erase (d);
return ((β != d) ? CONFLICT : NO_CONFLICT);

}

Figure 4. Outline of the diagnosis engine.
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Figure 5. Example of conflict diagnosis with clause recording.

for clause recording. First, clauses can be temporarily recorded while they either imply
variable assignments or are unit clauses, being discarded as soon as the number of unas-
signed literals is greater than one [3]. Second, clauses with a size less than a threshold
k are kept during the subsequent search, whereas larger clauses are discarded as soon as
the number of unassigned literals is greater than one [35]. We refer to this technique as
k-bounded learning.

Finally, we note that clause recording can also be implemented when applying
value probing techniques (described in section 5.1). This solution allows value probing
to be used for deriving additional clauses, which further constrain the search. For exam-
ple, for the clauses (x1 +x′

2) ·(x1 +x2), if we probe the assignment x1 = 0, then applying
BCP leads to a conflict. Diagnosis of this conflict [35] yields the unit clause (x1), which
immediately implies the assignment x1 = 1.

5.3. Non-chronological backtracking

The chronological backtracking search strategy always causes the search to recon-
sider the last, yet untoggled, decision assignment. Chronological backtracking is the
most often used strategy in SAT algorithms [2,4,9,10,14–16,27–29,37,45,48]. However,
since this backtracking strategy uses no knowledge of the causes of conflicts, it can easily
yield large sequences of conflicts all of which result from essentially the same variable
assignments. In contrast, non-chronological backtracking strategies, originally proposed
by Stallman and Sussman in [43] and further studied by Gaschnig [17] and others (see,
for example [13]), attempt to identify the variable assignments causing a conflict and
backtrack directly so that at least one of those variable assignments is modified. In the
last couple of years a few SAT algorithms have been described in the literature which
implement non-chronological backtracking [3,35]. In general recorded clauses are used
for computing the backtracking decision level, which is defined as the highest decision
level of all variable assignments of the literals in each newly recorded clause.
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Figure 6. Computing the backtrack decision level.

In order to illustrate non-chronological backtracking, let us consider the example
of figure 6, which continues the example in figure 5, after recording clause ω10 = (x10 +
x11 + x9 + x′

1). At this stage BCP implies the assignment x1 = 0 because clause ω10

becomes unit at decision level 6. By inspection of the CNF formula (see figure 5), we
can conclude that clauses ω7 and ω8 imply the assignments shown, and so we obtain
a conflict involving clause ω9. It is straightforward to conclude that even though the
current decision level is 6, all assignments directly involved in the conflict are associated
with variables assigned at decision levels less than 6, the highest of which being 3. Hence
we can backtrack immediately to decision level 3.

5.4. Relevance-based learning

A simple and highly effective improvement to clause recording is referred to as
relevance-based learning, and was originally introduced by Bayardo and Schrag [3].
Suppose that we implement non-chronological backtracking with clause recording but,
due to space restrictions, all recorded clauses must eventually be deleted. In general,
recorded clauses can be deleted as soon as at least two literals become unassigned, since
in this situation these clauses are not responsible for implying any variable assignments.
Relevance-based learning basically consists of allowing recorded clauses to be deleted
only when a larger number of literals becomes unassigned [3]. As a result, recorded
clauses may get used again, either for yielding conflicts or for implying variable assign-
ments. In contrast with unrestricted clause recording, the growth of the size of the CNF
formula can be kept under tight control. For example, in [3] the number of allowed
unassigned literals before deleting recorded clauses was either three and four.

From the current and the previous sections one can envision using k-bounded learn-
ing (described in section 5.2) with relevance-based learning. The search algorithm is or-
ganized so that all recorded clauses of size no greater than k are kept and larger clauses
are deleted only after m literals have become unassigned. Given the experimental results
obtained with the separate application of each of these techniques [3,35], their integra-
tion is expected to be particularly useful, given that only small clauses are added to the
CNF formula, which in general introduce significant pruning, and the life span of larger
clauses is increased.
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5.5. Conflict-induced necessary assignments

The diagnosis of conflicts, as described in the previous sections, can be extended
to further prune the amount of search. Let us consider again the implication graph of
figure 5. By inspection we can conclude that the vertex x4 = 1 is a dominator [46]
of vertex x1 = 1 with respect to vertex κ . As a result, the assignment x4 = 1 leads
by itself to the same conflict provided the assignments with decision levels less than 6
remain unchanged. Hence, instead of clause ω10 = (x10 + x11 + x9 + x′

1) we can
create two clauses, ω11 = (x10 + x11 + x′

4) and ω12 = (x4 + x9 + x′
1), respectively.

Consequently, by identifying dominators of the implication graph, we are able to reduce
the size of recorded clauses [35]. Furthermore, the new clauses allow a larger number
of assignments to be implied with BCP. For the two clauses above, ω11 implies the
assignment x4 = 0, whereas ω12 subsequently implies the assignment x1 = 0. Observe
that the original clause ω10 would not cause the implication of the assignment x4 = 0.
In general we refer to these extra implied assignments as conflict-induced necessary
assignments.

6. Exploiting the structure of SAT instances

Besides the derivation of necessary assignments and the diagnosis of conflicts,
other pruning techniques can be incorporated in SAT algorithms based on backtrack
search. In this section we briefly review pruning techniques that exploit the structure of
the CNF formula to simplify the search. These techniques have been extensively and
successfully applied in solving different formulations of the set covering problem [7,8].

6.1. Clause subsumption

Consider the clauses ω1 = (x1+x′
2+x′

3+x′
4) and ω2 = (x1+x′

4). By inspection, we
can readily conclude that (ω2 = 1) ⇒ (ω1 = 1). Hence, we say that ω2 structurally sub-
sumes ω1, and so ω1 needs not be considered further for satisfiability purposes. During
the search, variable assignments can naturally cause some clauses to become dynami-
cally subsumed by others. For example, consider clauses ω3 = (x1 + x′

2 + x′
3 + x′

4) and
ω4 = (x1 +x′

4 +x5). Assuming that during the search x5 is assigned value 0, then we say
that ω4 dynamically subsumes ω3, and this holds as long as x5 = 0. In SAT algorithms
we can envision different implementations of clause subsumption:

1. Apply structural subsumption between every pair of clauses in the CNF formula prior
to initiating the search.

2. After each decision assignment and associated implied assignments are identified,
compute which clauses become dynamically subsumed by other clauses and remove
them from the set of clauses. If these assignments must eventually be undone, then
these clauses are no longer subsumed by other clauses.



318 I. Lynce, J.P. Marques-Silva / Backtrack search SAT algorithms

3. Each time a conflict is diagnosed and a new clause is recorded, apply structural sub-
sumption between the newly recorded clause and all other clauses in the CNF for-
mula.

With respect to the above approaches for clause subsumption, case 1 produces a
very small number of subsumed clauses [34] for most benchmarks. Case 2, though
potentially promising, introduces significant computational overhead after each call to
BCP, thus being impractical for highly efficient SAT algorithms. Finally, case 3 also
incurs a significant computational overhead, as empirically shown in [34], and so it is
hardly justifiable for practical instances of SAT.

6.2. Formula partitioning

In order to illustrate formula partitioning, let us consider the following CNF for-
mula,

ϕ1 = (
x′

1 + x3
) · (x′

1 + x2
) · (

x1 + x′
2 + x′

3

)

· (x4 + x5 + x′
6

) · (x′
4 + x6

) · (
x′

5 + x6
)
. (3)

For this CNF formula, the set of variables in clauses ϕa = (x′
1 + x3) · (x′

1 + x2) ·
(x1 + x′

2 + x′
3) is disjoint from the set of variables in clauses ϕb = (x4 + x5 + x′

6) ·
(x′

4 + x′
6) · (x′

5 + x6), and so the original CNF formula ϕ1 can be structurally partitioned
into the CNF sub-formulas ϕa and ϕb. It is straightforward to conclude that the two
sub-formulas, ϕa and ϕb can be solved separately and any solution to ϕ1 is composed of
the set union of the solutions to each sub-formula. Assuming a CNF formula ϕ1 with
n variables that can be partitioned into m partitions each with nj variables, we reduce
the worst-case search space of 2n = 2n1 × · · · × 2nm into a worst-case search space of
2n1 + · · · + 2nm , thus introducing a significant reduction in the worst-case search space.
Moreover, formula partitioning can be generalized to take into consideration variable
assignments. For example, let us consider the following CNF sub-formula,

ϕ2 = (
x′

1 + x3
) · (

x′
1 + x2

) · (x1 + x′
2 + x′

3

) · (x1 + x7 + x′
4

)

· (x′
4 + x5 + x′

6

) · (x′
4 + x6

) · (x′
5 + x6

)
(4)

and the assignment x7 = 1 that satisfies clause (x1 +x7 +x′
4). As a result, we now obtain

the CNF formula ϕ1 given by (3) which, as we saw above, can be partitioned into the
sub-formulas ϕa and ϕb. This form of CNF formula partitioning is referred to as dynamic
partitioning, since it results from assignments made to the variables during the search.
In SAT algorithms we can envision several implementations of clause partitioning.

1. Identify structural partitions before initiating the search.

2. After each decision assignment and associated implied assignments are identified,
split the resulting CNF formula into dynamic partitions. If these assignments must
eventually be undone, then the partitions no longer hold.
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3. After each decision assignment and associated implied assignments are identified,
implicitly select a partition and restrict the search to that partition. A partition is
implicitly selected when decision assignments are restricted to variables in that par-
tition.

In practical instances of SAT case 1 is not expected to be particularly relevant and
case 2 incurs a significant computational overhead, making it hardly justifiable in prac-
tice [34]. Finally, the implicit identification of partitions, as empirically shown in [34]
for the DIMACS benchmarks [26], can significantly simplify the search for different
instances of SAT.

6.3. Partial solution caching

Formula partitioning can be further extended by allowing the solutions of partitions
to be cached. This technique is commonly and effectively used in algorithms for solving
covering problems [7,8]. Let us consider, for example, the CNF formula of (4) and the
assignment x7 = 1. As shown above, this causes ϕ2 to be partitioned into the sub-
formulas ϕa and ϕb. If we attempt to solve sub-formula ϕb, then one possible solution
is {x5 = 1, x6 = 1}. As a result, during the subsequent search and each time this
partition of ϕ2 is created, by setting, for example, x7 = 1, we can immediately say that
a solution to the partition ϕb is {x5 = 1, x6 = 1} without having to actually conduct
a search to identify this solution. Consequently, we can create a database of triggering
assignments and corresponding solution of a partition. These precomputed solutions
can be used for preventing the search, for the solution of a given partition for which
a solution has already been computed in the preceding search. For our example, an
entry in such a database would be 〈{x7 = 1}, {x5 = 1, x6 = 1}〉, which basically states
that in the presence of the assignment x7 = 1, we can readily apply the assignments
{x5 = 1, x6 = 1}, which represent the solution of partition ϕb of the original CNF
formula. If the objective assignments are not consistent with already made assignments
(e.g., by having, for example, x5 = 0) then the cached solution is simply not used. As
shown in [7] partial solution caching can introduce improvements to the running times
of orders of magnitude in standard benchmarks.

7. Experimental evidence

In this section we illustrate the potential practical application of backtrack search
SAT algorithms. For this purpose, we evaluated two well-known backtrack search SAT
algorithms, ntab [9] and POSIT [15], which are based on chronological backtracking
search strategies, and incorporate highly effective variable selection heuristics. In ad-
dition, three recent backtrack search SAT algorithms, that implement most of the tech-
niques described in this paper, SATO [49], rel_sat [3] and GRASP [35] were evaluated.
Finally, a general purpose constraint solver, wcsat [47], was also evaluated. The ex-
periment consisted in running the different algorithms on several real-world practical
instances from circuit verification. All instances are unsatisfiable. (We note that this is
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Table 1
Results on benchmark examples

Example SAT ntab POSIT wcsat SATO rel_sat GRASP

bench1 N – – 12.75 0.48 2.37 48.70
bench2 N – – 26.37 1.09 1.66 16.92
bench3 N – – 17.71 0.96 1.39 13.22
bench4 N – – 18.68 0.77 1.72 13.19
bench5 N – – 21.80 1.46 1.71 17.82
bench6 N – – – – 146.09 198.93
bench7 N – – – – 101.24 154.04
bench8 N – – – – 58.40 185.99
bench9 N – – – – 24.37 165.36
bench10 N – – – – – 111.70
bench11 N – – – – – 223.80
bench12 N – – – – 80.81 93.83

true in general for circuit verification.) The results are shown in table 1.2 Entries marked
with ‘–’ indicate that the algorithm did not finish in 300 seconds of allowed CPU time.
As can be readily concluded, backtrack search SAT algorithms that implement the tech-
niques described in this paper are by far the most competitive in solving these particular
types of instances. Furthermore, we observe that the different organizations of rel_sat [3]
and of GRASP [34,35] lead to somewhat different results. rel_sat is in general faster,
but may be unable to solve a few instances. The same holds true with SATO. On the
other hand, GRASP is slower in most benchmarks but, for the examples shown, it is
more robust since it does not quit for any instance. Finally, we observe that the version
of GRASP used above implements all the techniques described in section 5, including
relevance-based learning as described in [3]. The above results indicate that backtrack
search SAT algorithms, specifically those that implement different search pruning tech-
niques, can be the only algorithmic solution for successfully solving specific classes of
practical instances on SAT. These results further substantiate further work on developing
new and more effective pruning techniques for backtrack search SAT algorithms.

8. Recent work

In this section we describe recent work on backtrack search SAT algorithms,
namely simplification techniques, probing methods for the identification of necessary
assignments, randomization and restarts, and implementation issues.

8.1. Advanced techniques

Recent work on improving backtrack satisfiability algorithms has included ad-
vanced techniques, such as the simplification of a given formula [30,33] and the identi-
fication of necessary assignments [28,32,44].

2 The results of GRASP and SATO were obtained on a Pentium 200 MHz machine. The other results were
obtained on a Pentium Pro 200 MHz machine.
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Resolution is probably the most well-known technique among the existing simpli-
fication techniques. Resolution can be regarded as a general technique for deriving new
clauses. For example, given clauses (x + y + z′) and (x′ + y + z′), resolution allows
deriving clause (y+z′). However, when applying general resolution, we may generate in
the worst case an exponential number of clauses, many of which are redundant and often
irrelevant. As a consequence of general resolution being computationally too expensive,
some alternative techniques have been developed. These techniques indirectly identify
which resolution operations to apply [22].

Two-variable equivalence is another formula simplification procedure. Let us con-
sider an example, using the pair of clauses (x1 + x′

2) and (x′
1 + x2). For any assignment

that satisfies the two clauses, the truth values of x1 and x2 must be the same. For this
reason, variables x1 and x2 are said to be equivalent. Therefore one can replace x2 by x1

on all occurrences of x2 (or vice-versa).
Recent work on formula simplification also includes equivalency reasoning [30].

The main contribution of equivalency reasoning is to establish conditions under which
the CNF formula can be simplified by identifying pairs of equivalent variables and by,
subsequently, removing one variable from each such pair of variables.

Additional work on formula simplification consists of identifying patterns in CNF
formulas from which new unit and binary clauses can be inferred [33]. The objective
of studying clause patterns is to indirectly select to which sets of clauses the resolution
operation should actually be applied to. In practice, the inference of clauses contributes
to adding more information to the problem specification, and therefore can potentially
simplify the subsequent search. Moreover, we should note that the inference of binary
clauses can contribute to finding more equivalent variables.

As mentioned above, other advanced techniques include probing for identifying
necessary assignments. From section 5.1, we know that BCP does not identify all nec-
essary assignments given a set of variable assignments and a CNF formula. Moreover,
the backtrack search procedure can and has been augmented with different probing tech-
niques, namely by using Recursive Learning [28,32] and by applying the branch-merge
rule of Stålmark’s Method [22,44]. Recursive Learning and Stålmark’s Method can be
respectively interpreted as concrete forms of clause probing and variable probing.

Clause probing [28,32] consists of the recursive evaluation of clause satisfia-
bility requirements for identifying common assignments to variables. Common as-
signments are deemed necessary for a given clause to become satisfiable and conse-
quently for the instance of SAT to be satisfiable. Let us consider the formula ϕa =
(x1 + x2) · (x′

1 + x3) · (x′
2 + x3). Clause probing would try to assign x1 = 1 and then

x2 = 1 to satisfy clause (x1 + x2), and in each case it would propagate the implied
assignments. For this example observe that every way of satisfying clause (x1 + x2)

implies x3 = 1. Hence, x3 = 1 is a necessary assignment.
The main goal of variable probing is to identify common assignments to variables,

detecting and merging equivalent branches in the search tree. In other words, variable
probing is defined by the recursive application of the branch-merge rule to each vari-
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able [22]. Let us now consider the formula ϕb = (x1 +x2) ·(x′
1 +x3) ·(x′

2 +x4) ·(x′
3 +x4).

We will start by trying variable probing with variable x1. We conclude that both as-
signments, i.e., x1 = 0 and x1 = 1, imply x4 = 1. Hence, x4 = 1 is a necessary
assignment.

Note that both clause and variable probing can be applied using recursion of arbi-
trary depth, respectively for clauses and for variables. Moreover, both approaches are
based on similar reasoning, despite one being based on clauses and the other on vari-
ables. More interestingly, observe that these methods can be integrated into backtrack
search SAT algorithms and can also be used together.

8.2. Search strategies

The utilization of different forms of randomization in backtrack search SAT algo-
rithms has also seen increasing acceptance in recent years [21]. Randomization consists
of introducing a certain degree of uncertainty in selecting branching variables and val-
ues during the search. On the other hand, restarts allow repeatedly restarting the search
each time a given limit number of decisions is reached. Moreover, restarts with random-
ization allow searching different regions of the search space and have been shown to
yield dramatic improvements on satisfiable instances that exhibit heavy-tailed behavior
[1,20,36].

8.3. Fast implementations

Implementation issues for SAT solvers include the design of suitable data struc-
tures for storing variables, clauses and literals. The elected data structures dictate the
way BCP and conflict analysis are implemented and have significant impact on the run
time performance of the SAT solver. The simplest and most widely used representa-
tion a formula consists of having a set of literals for each variable and for each clause
[3,9,15,35]. The state of each clause is determined by a set of counters.

A variation to this data structure was proposed in SATO [49]. In SATO, each
clause has two additional pointers: head and tail to point to its first and last unassigned
literals, which can be updated either during BCP or during backtracking. Moreover, each
variable only maintains its own head and tail lists, i.e., its occurrences as respectively
the first and the last unassigned literals in a clause. Consequently, instead of keeping
counters for each clause, unit clauses and conflict clauses are detected by examining the
relative positions of the head and tail pointers of each clause.

More recently, Chaff [36] has achieved significant performance gains through a
careful engineering of all aspects of the search, especially a low overhead decision strat-
egy (see section 4) and a particularly efficient implementation of BCP. Chaff’s imple-
mentation is different from SATO’s in that it does not require a fixed direction of motion
for the two additional pointers, in Chaff referred to as watch pointers. In SATO, the
head literal can only move towards the tail literal and vice versa, and therefore variable
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unassignments have the same overhead as variable assignments. In contrast, in Chaff
pointers do not need to be updated during backtracking, and so only variable state needs
to be recovered.

8.4. Multiprocessor implementations

Another recent research direction in backtrack search SAT algorithms are multi-
processor approaches. Different parallelization solutions can be envisioned. One ex-
ample is to partition the problem instance into several parts that are run by the same
algorithm on different processors. Another example is to partition the search space, by
ensuring that different processors analyze different portions of the search space.

The first parallel procedure was proposed by Böhm and Speckenmeyer [5]. These
authors divided the input formula into subformulas which are distributed among proces-
sors. Another well-known multiprocessor implementation is PSATO [50], a master–
slave distributed SAT solver, where each slave process executes a modified version of the
sequential SAT solver SATO. The master process distributes the given problem among
the slaves in such a way that the slaves explore non-overlapping portions of the search
space in discrete time segments. In this way, PSATO is able to exploit parallelism with-
out incurring the overhead of redundant search, i.e., parallel processes searching the
same portion of the search space. More recently, the organization of PSATO has been
extended in PaSAT [42] that integrates the exchange of recorded clauses between con-
current processes. The recorded clauses that become exchanged are selected using clause
length as a simple criterion.

Another technique which can take advantage of multiprocessor implementations
is algorithm portfolio design [19]. This approach is motivated by the fact that different
algorithms give rise to different probability distributions. In this context, Gomes
and Selman [19] have proposed to take advantage of such differences by combining
several algorithms into a portfolio. Moreover, the different algorithms can be executed
in parallel.

9. Conclusions

Backtrack search SAT algorithms are the option of choice for several classes of
instances of SAT and whenever the objective is to prove unsatisfiability. Recent years
have seen significant contributions for improving the efficiency of backtrack search SAT
algorithms, that involve in most cases different techniques for pruning the search. Exten-
sive experimental evaluation of these techniques [3,34,35,49] shows dramatic improve-
ments, for a large number of classes of instances of SAT, over less optimized backtrack
search SAT algorithms, in particular the Davis–Putnam procedure [10] and several of
its improvements [15,31]. Despite the aforementioned contributions, we believe further
experimental evaluation is required. First, because an empirical categorization of the dif-
ferent techniques might provide useful insights. Second, because a unified algorithmic
framework, derived from these empirical insights, might allow solving a larger number
of instances of SAT.
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