
Probing-Based Preprocessing Techniques
for Propositional Satisfiability

Inês Lynce and João Marques-Silva
IST/INESC-ID, Technical University of Lisbon, Portugal

�ines,jpms�@sat.inesc.pt

Abstract

Preprocessing is an often used approach for solving hard
instances of propositional satisfiability (SAT). Preprocess-
ing can be used for reducing the number of variables and
for drastically modifying the set of clauses, either by elimi-
nating irrelevant clauses or by inferring new clauses. Over
the years, a large number of formula manipulation tech-
niques has been proposed, that in some situations have al-
lowed solving instances not otherwise solvable with state-
of-the-art SAT solvers. This paper proposes probing-based
preprocessing, an integrated approach for preprocessing
propositional formulas, that for the first time integrates in
a single algorithm most of the existing formula manipula-
tion techniques. Moreover, the new unified framework can
be used to develop new techniques. Preliminary experimen-
tal results illustrate that probing-based preprocessing can
be effectively used as a preprocessing tool in state-of-the-
art SAT solvers.

1. Introduction

Propositional Satisfiability (SAT) is a well-known NP-
complete problem, with extensive applications in many
fields of Computer Science and Engineering. SAT has been
the subject of intensive research in recent years, with signif-
icant theoretical and practical contributions. From a prac-
tical perspective, several competing solution strategies for
SAT have been proposed. Local search algorithms have
allowed solving extremely large satisfiable instances of
SAT, and in particular have been shown to be very effec-
tive in randomly generated instances of SAT. On the other
hand, several improvements to the backtrack search Davis-
Putnam-Logemann-Loveland algorithm have been intro-
duced, thus allowing to solve either satisfiable and unsat-
isfiable instances. These new backtrack search algorithms
utilize advanced conflict analysis procedures, that record
the causes of failures and that can therefore backtrack non-
chronologically.

In addition, there have been significant contributions in
terms of formula manipulation techniques which can in
some cases yield competitive approaches [2, 3, 4, 7, 8]. It is
generally accepted that the ability to reduce either the num-
ber of variables or clauses in instances of SAT impacts the
expected computational effort of solving a given instance.
This ability can actually be essential for specific and hard
classes of instances. Interestingly, the ability to infer new
clauses may also impact the expected computational effort
of SAT solvers. Observe that these new clauses can be use-
ful for reducing the number of variables (and consequently
the number of clauses).

This paper proposes the utilization of probing-based
techniques for manipulating propositional satisfiabil-
ity formulas. Probing allows the formulation of hypo-
thetical scenarios, obtained by assigning a value to a
variable, and then applying unit propagation. Further-
more, probing-based techniques build upon a very simple
idea: a table of triggering assignments, which regis-
ters the result of applying probing to every variable in the
propositional formula.

The new probing-based approach not only provides a
generic framework for applying different SAT preprocess-
ing techniques (by establishing conditions on the entries of
the table of assignments), but also can be used to implement
most existing formula manipulation techniques. Moreover,
and to our best knowledge, represents the first approach to
jointly apply variable and clause probing.

The paper is organized as follows. The next section de-
scribes the proposed framework, which allows the integra-
tion of existing formula manipulation techniques. Next, ex-
perimental results are presented and analyzed. Finally, Sec-
tion 4 overviews related work and section 5 concludes the
paper.

2. Integrating Probing-Based Techniques

In this section we propose an integrated approach for
implementing probing-based techniques. We start by de-
scribing the table of assignments, which records the prob-

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

ing results. In addition, we establish reasoning conditions
for identifying necessary assignments and inferring new
clauses. Finally, we present ProbIt: a probing-based prepro-
cessor for propositional satisfiability.

2.1. Preliminaries

In what follows we analyze conditions relating sets of as-
signments. Given an assignment � 1 and a formula �, the re-
sult of applying Boolean Constraint Propagation (the itera-
tive appliance of unit propagation) to � given � is denoted
by������ ��. When clear from the context, we use the no-
tation ������, and the existence of the CNF formula � is
implicit. Without assignment, ������ (or �����) denotes
plain unit propagation, given the existence of unit clauses.
Assignment � is referred to as the triggering assignment
of the assignments in ������. We may also use the nota-
tion ������ to denote the result of applying unit propaga-
tion as the result of all assignments in the set of assignments
�.

Reasoning conditions are analyzed based on a tabular
representation of triggering assignments, i.e. the table of as-
signments, where each row represents a triggering assign-
ment, and each column represents a possible implied as-
signment 2. In this table, each 1-valued entry ���� ��� de-
notes an implied assignment �� given a triggering assign-
ment ��. Hence the 1-valued entries of a given row � � de-
note the elements of set �������.

2.2. Motivating Examples

This section analyzes a few examples, that motivate the
techniques upon which our framework is based, and which
allow the identification of necessary assignments and the in-
ference of new clauses. Consider a CNF formula � having
the following clauses:

�� � �� � �� �� � ��� � �� � ��
�� � �� � �� � �� �� � ��� � �� � 	�
�� � �� � �� � 	� �� � �� � 	�
�� � ��� � ��

This formula has the the table of assignments shown in
Table 1. Each line in the table corresponds to the result of
applying BCP, given a triggering assignment. For exam-
ple, given the assignment a=0 (denoted as ��� ��), we can
conclude from the table that BCP(��� ��) = ���� ��, ��� ��,
��� ���.

2.2.1. Necessary Assignments Observe that for the two
possible assignments to variable �, we always obtain the

1 An assignment � is a pair ��� �� that denotes assigning value � to lit-
eral �.

2 In practice the table of assignments is represented as a sparse matrix
and so the memory requirements are never significant.

�� � �� � �� � �� � �	 	

�� 1 1 1
� 1 1 1 1
�� 1 1 1 1 1
� 1
�� 1 1 1 1 1
� 1
�� 1
� 1
�	 1 1 1 1 1
	 1

Table 1. Table of assignments

implied assignment ��� ��. Since variable � must assume
one of the two possible assignments, then the assignment
��� �� is deemed necessary. This conclusion is represented
as ������� ��� � ������� ��� � ��� �� 3

The same conclusion could be achieved by consider-
ing clause �� � �� � �� � ��. Any assignment to the
variables that satisfies the formula must also satisfy this
clause, and so at least one of the assignments that satis-
fies the clause must hold. Given that in this example the
three assignments that satisfy the clause also imply the as-
signment ��� ��, then this assignment is part of any as-
signment that satisfies the CNF formula, and so it is a
necessary assignment. This conclusion is represented as
������� ��� � ������� ��� � ������� ��� � ��� �� 4

The two previous examples concern necessary assign-
ments conditions for formula satisfiability. Next we address
necessary assignments conditions for preventing formula
unsatisfiability.

First, note that the triggering assignment �	� �� implies
both ��� �� and ��� ��, and hence a conflict is necessarily
declared. As a result, the assignment �	� �� is deemed nec-
essary.

Another explanation for the same assignment comes
from considering clause �� � ��� � �� � 	�. The as-
signment �	� �� makes this clause unsatisfied. Hence, a con-
flict is declared, and the assignment �	� �� is deemed neces-
sary. Observe that the necessary assignments obtained from
unsatisfiability conditions correspond to the well-known
failed-literal rule [5].

2.2.2. Inferred Clauses Besides the identification of nec-
essary assignments, the table of assignments can also be
used for inferring new clauses.

3 This condition is the inference rule used in the Stålmarck’s
method [12].

4 This rule is utilized in [4] for deriving shared implications.

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

Let us consider the triggering assignment ��� �� and
the respective implied assignment ��� ��. Hence, the clause
��� � �� can be inferred. Clearly, for each entry in the ta-
ble of assignments a new binary clause can be created. In
practice our goal is to be selective with which entries to uti-
lize for inferring new clauses.

Consider clause �� � ��� � ��. Each assignment that
satisfies clause �� either implies the set of assignments
���� ��� ��� ��� ��� ��� or ���� ���. Hence, because at least
one of the assignments that satisfies �� must hold, the
clause �� � �� can be inferred.

In addition, observe that the triggering assignments
��� �� and ��� �� imply the assignments ��� �� and ��� ��, re-
spectively (besides other triggering assignments). Since
� must be subject to one of the two possible assign-
ments, then one of the assignments in ���� ��� ��� ���
must also hold, and so the clause �� � �� can be in-
ferred.

The previous examples illustrate how to infer clauses
from formula satisfiability requirements. Next, we illustrate
the inference of clauses from necessary conditions for pre-
venting formula unsatisfiability.

First, observe that the set of assignments ���� ��� ��� ���
unsatisfy clause ��. As a result, the assignments
���� ��� ��� ��� must not hold simultaneously, and so
the clause ��� � �� can be inferred.

Alternatively, observe that the assignments
in ���� ��� ��� ��� imply the assignments in
���� ��� ��� ��� ��� ��� ��� ��� ��� ���, that denote an in-
consistent assignment due to variable �. Hence, the assign-
ments ���� ��� ��� ��� must not hold simultaneously, and so
the clause ��� � �� can be inferred.

2.3. Reasoning with Probing-Based Conditions

The examples of the previous section illustrate the forms
of reasoning that can be performed given information re-
garding the assignments implied by each triggering assign-
ment. These forms of reasoning include identification of
necessary assignments and inference of new clauses. In this
section we formalize different conditions, both for identi-
fying necessary assignments and for inferring new clauses.
All proposed reasoning conditions result from analyzing the
consequences of assignments made to variables and of prop-
agating those assignments with BCP.

2.3.1. Satisfiability-Based Necessary Assignments The
purpose of this section is to describe the identification of
necessary assignments based on formula satisfiability con-
ditions. The first condition identifies common implied as-
signments given the two possible triggering assignments
that can be assigned to a variable.

Theorem 2.1 Given a CNF formula �, for any variable �

of the formula, the assignments defined by ������� ��� �
������� ��� are necessary assignments.

Any complete set of assignments to the variables that sat-
isfies the CNF formula must assign either value 0 or 1 to
each variable �. If for both assignments to �, some other
variable 	 is implied to the same value
, then the assign-
ment �	�
� is deemed necessary.

The second condition identifies common implied assign-
ments given required conditions for satisfying each clause.

Theorem 2.2 Given a CNF formula �, for any clause � of
the formula, the assignments defined by

�
���

������� ���
are necessary assignments.

Any complete set of assignments that satisfies the CNF
formula must satisfy all clauses. Hence, assignments that
are common to all assignments that satisfy a given clause
must be deemed necessary assignments.

2.3.2. Unsatisfiability-Based Necessary Assignments
We now proceed describing the identification of neces-
sary assignments based on formula unsatisfiability condi-
tions. As mentioned earlier, these conditions correspond to
the failed-literal rule [5].

Theorem 2.3 Given a CNF formula �, if �������
��
yields a conflict, then the assignment ����
� is deemed nec-
essary.

The previous theorem includes the conditions regarding
both the identification of inconsistent assignments to a vari-
able and the identification of unsatisfied clauses. (Observe
that most BCP algorithms do not distinguish between these
two situations, being a conflict declared in both cases.)

2.3.3. Implication-Based Inferred Clauses As illus-
trated earlier, probing can also be used for inferring new
clauses. One simple approach for inferring new clauses is
to use each entry in the table of assignments.

Theorem 2.4 Given a CNF formula �, if ���� �� �
�������� ���, then the clause ���� � ��� is an impli-
cate of �.

Clearly, this result can yield many irrelevant bi-
nary clauses. Hence, as described in Section 2.4, the
objective is to be selective with which clauses to actu-
ally consider.

2.3.4. Satisfiability-Based Inferred Clauses This sec-
tion describes the inference of clauses based on formula
satisfiability conditions.

Theorem 2.5 Given a CNF formula �, for every pair of lit-
erals �� and �� for which there exists a variable � such that,
���� �� � ������� ��� � ���� �� � ������� ��� then the
clause ��� � ��� is an implicate of �.

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

Clearly, the two possible truth assignments on �� either
imply ���� �� or ���� ��, then one of these two assignments
must hold.

Theorem 2.6 Given a CNF formula �, for any clause � �
���� � � � � � ���� � �, all clauses of the form, ���� ����� � �� �
�������� � ���� ��� � �� � � �� � � � � �� are implicates of �.

Since the original clause � must be satisfied, any set of ���
assignments, each implied by a different literal in �, forms
an implicate of �. We should observe that the number of
clauses that can be created is upper-bounded by the Carte-
sian product of each set of assignments that results from ap-
plying BCP to each triggering assignment. In addition, ob-
serve the previous theorem can yield clauses with duplicate
literals. Clearly, simple procedures can be implemented that
filter out these duplicate literals.

2.3.5. Unsatisfiability-Based Inferred Clauses Next we
describe the inference of clauses based on formula unsatis-
fiability conditions.

Theorem 2.7 Given a CNF formula �, for all pairs �� and
�� for which there exists a variable � such that, ��� �� �
�������� ��� � ��� �� � �������� ��� the clause ��� � ���
is an implicate of �.

If two assignments imply distinct truth values on a given
variable ��, then the two assignments must not hold simul-
taneously.

One additional condition related with unsatisfiability is
the following:

Theorem 2.8 Given a CNF formula �, for each set of as-
signments � � ��������� ��� � � � � � �������� ���� such
that there exists a clause � � � , with 	��� � �, then the
clause, ��� � � � � � ��� is an implicate of �.

If the union of sets of assignments resulting from ap-
plying BCP to a set of � triggering assignments unsatis-
fies a given clause, then the simultaneous occurrence of the
� assignments must be prevented. Hence a new clause can
be created. Observe that a stronger condition can be estab-
lished if the condition 	��������� � � is used, at the
cost of additional computational overhead. Moreover, ob-
serve that the result of Theorem 2.8 is related with a tech-
nique proposed in [6]. For a clause �� �
�, where
 is a
disjunction of literals, if assigning value 0 to all literals in

 yields a conflict, then �
� is an implicate of �. The two
techniques are related since both infer clauses from unsat-
isfiability requirements. The work of [6] assumes a specific
clause and considers BCP of simultaneous sets of assign-
ments5. Theorem 2.8 allows any � triggering assignments,
but considers the separate application of BCP (which may
yield fewer implied assignments).

5 As a result, we refer to this technique as literal dropping.

2.4. ProbIt: a Probing-Based SAT Preprocessor

The reasoning conditions described in the previous sec-
tion were used to implement a SAT preprocessor, ProbIt.
This preprocessor is organized as follows:

1. Create the table of assignments by applying BCP to
each individual assignment.

2. Apply a restricted set of the reasoning conditions de-
scribed in the previous sections:

(a) Identification of necessary assignments, obtained
by reasoning conditions from Theorems 2.1, 2.2
and 2.3.

(b) Identification of equivalent variables, obtained by
a restricted application of reasoning conditions
from Theorem 2.4.

3. Iterate from 1 while more equivalent variables can be
identified.

For the current version of ProbIt we opted not to in-
fer new clauses during preprocessing. Existing experimen-
tal evidence suggests that the inference of clauses during
preprocessing can sometimes result in large numbers of new
clauses, which can impact negatively the run times of SAT
solvers [7]. The identification of conditions for the selective
utilization of clause inference conditions during preprocess-
ing is the subject of future research work.

As a result, the utilization of Theorem 2.4 is restricted
to the inference of binary clauses that lead to the identifi-
cation of equivalent variables. Remember that two-variable
equivalence (e.g. �	 �) is described by the pair of clauses
�
����� ���
��, that can be represented as implications
�� � ����� � �� (and also as �
� �
����
� �
���.
In ProbIt, rather than inferring new clauses which allow to
identify equivalent variables, it is simpler to identify equiv-
alences without having to infer the corresponding clauses.
Based on the table of assignments, equivalent variables may
be identified as follows:

� If ��� �� � ������� ��� and ��� �� � ������� ���,
then �	 �.

� If ��� �� � ������� ��� and ��� �� � ������� ���,
then �	 �.

Moreover, the same reasoning can be applied to identify
the two-variable equivalence �	
�.

3. Experimental Results

In these section we present experimental results to eval-
uate the usefulness of the new algorithm. First, we analyze
the improvements on JQuest2 by integrating ProbIt as a
preprocessor. Then, experimental results obtained for Pro-
bIt+JQuest2 are compared with results obtained for other
state-of-the-art SAT solvers.

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

Family ProbIt ProbIt+JQ2 JQuest2
barrel(8) 18.36 700.28 1,118.12

longmult(16) 544.18 1,725.17 4,658.67
queueinvar(10) 48.04 70.96 30.00

miters(25) 166.53 248.11 (2)11,175.65
fvp-unsat-1.0(4) 648.57 1,599.44 549.75
quasigroup(22) 61.21 531.43 735.25

Table 2. Improvements on JQuest2

ProbIt has been integrated on top of JQuest2, a compet-
itive Java SAT solver 6. JQuest2 is a backtrack search SAT
solver, based on efficient data structures, and implement-
ing the most effective backtrack search techniques, namely
clause recording and non-chronological backtrack, search
restarts, and adaptive branching heuristics. One of the main
objectives of JQuest2 is allowing the rapid prototyping of
new SAT algorithms. Since ProbIt is still an evolving pre-
liminary implementation, the utilization of JQuest2 facili-
tates the evaluation and configuration of ProbIt.

Tables 2 and 3 give the CPU time in seconds required
for solving for different classes of problem instances, that
include some of the hardest instances. For each benchmark
suite, the total number of instances is shown. For all ex-
perimental results a P-IV@1.7 GHz Linux machine with 1
GByte of physical memory was used. The CPU time was
limited to 5000 seconds. Consequently, we added 5000 sec-
onds for each instance not solved in the allowed CPU time
(the number of aborted instances is indicated in parenthe-
sis).

In Table 2, ProbIt+JQuest2 (JQuest2 with ProbIt inte-
grated) is compared with the original JQuest2. Moreover,
the time required for the preprocessor ProbIt is also given.
Table 3 compares ProbIt+JQuest2 with other SAT solvers,
namely zChaff and 2clseq. zChaff is one of the most com-
petitive SAT solvers. On the other hand, 2clseq is also
known a competitive SAT solver, characterized by integrat-
ing formula manipulation techniques.

From the obtained results, several conclusions can be
drawn:

� ProbIt+JQuest2 comes out as the most robust solver on
the set of problem instances considered. Despite be-
ing implemented in Java, which necessarily yields a
slower implementation, ProbIt+JQuest2 performance
is indeed comparable to state-of-the-art SAT solvers.

� The performance of ProbIt+JQuest2 is comparable to
2clseq in instances where formula manipulation helps

6 JQuest2 entered in the second stage of the indus-
trial category in the SAT’2003 Competition (see
http://www.satlive.org/SATCompetition/2003/comp03report/).

Family ProbIt+JQ2 2clseq zChaff
barrel(8) 700.28 1,634.23 487.91

longmult(16) 1,725.17 2,201.37 2,191.08
queueinvar(10) 70.96 83.23 5.52

miters(25) 248.11 170.84 (2)10,537.49
fvp-...-1.0(4) 1,599.44 (2)13,545.74 549.75

quasigroup(22) 531.43 3,726.91 348.07

Table 3. Comparison with other solvers

on solving an instance. This explains why zChaff per-
formance is not competitive for these instances.

� ProbIt+JQuest2 performance is also compara-
ble to zChaff on instances where more sophisti-
cated backtrack search techniques are required.
Nonetheless, and when compared to JQuest2 re-
sults, ProbIt+JQuest2 may require more time to solve
a family of benchmark examples. This can be ex-
plained by the time required for applying ProbIt
techniques. Clearly this is a drawback when the num-
ber of variables in the CNF formula is not reduced.

4. Related Work

The ProbIt algorithm described in the previous section
uses probing as the basis for implementing a number of for-
mula manipulation techniques. In this section we relate Pro-
bIt with previous work in probing and formula manipulation
techniques.

4.1. Probing-Based Techniques

In the SAT domain, the idea of establishing hypotheses
and inferring facts from those hypotheses has been exten-
sively studied in the recent past [3, 4, 5, 6].

The failed literal rule is a well-known and extensively
used probing-based technique (see for example [5]): if the
assignment � � � yields a conflict (due to BCP), then we
must assign � � �. This rule is covered by necessary as-
signments obtained from unsatisfiability conditions (Theo-
rem 2.3).

Variable probing is a probing-based technique, which
consists of applying the branch-merge rule to each vari-
able [3] 7. Common assignments to variables are identified,
by detecting and merging equivalent branches 8. Observe
that variable probing is covered by reasoning conditions es-
tablished with Theorem 2.1.

7 The branch-merge rule is the inference rule used in the Stålmark’s
Method [12].

8 In addition, variable probing is often used as part of look-ahead
branching heuristics in SAT solvers [9].

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

Clause Probing is similar to variable probing, even
though variable probing is based on variables and clause
probing is based on clauses. Clause probing consists of
evaluating clause satisfiability requirements for identi-
fying common assignments to variables. Common as-
signments are deemed necessary for a clause to become
satisfied and consequently for the formula to be satis-
fied. These techniques have been applied to SAT in [10]
and more recently in [4]. In our framework, clause prob-
ing is captured by Theorem 2.2. To the best of our knowl-
edge, no other work proposes the joint utilization of vari-
able and clause probing.

The notion of literal dropping, that considers applying
sets of simultaneous assignments for inferring clauses that
subsume existing clauses, is described for example in [6].
As mentioned earlier, some of the clause inference condi-
tions proposed by Theorem 2.8 can be related with previ-
ous techniques for literal dropping, proposing more general
conditions for inferring clauses, but based on less power-
ful unit propagation.

4.2. Other Manipulation Techniques

Two-variable equivalence is a well-known formula ma-
nipulation technique that has been integrated in ProbIt (see
Section 2.4). Additional two-variable equivalence condi-
tions can be established, namely by the identification of
strongly connected components [1]. It is interesting to ob-
serve that the existing strongly connected components in a
CNF formula are captured from the construction of the as-
signment table and the application of Theorem 2.4. Further-
more, sophisticated techniques have been developed to de-
tect chains of biconditionals [8, 11].

The 2-closure of a 2CNF sub-formula [7] allows to in-
fer additional binary clauses. The identification of the tran-
sitive closure of the implication graph is obtained from the
construction of the assignment table and the application of
Theorem 2.4: if ��� �� � ������� ��� then create clause
��� � ��.

More recently, a competitive SAT solver incorporating
hyper-resolution with binary clauses has been proposed [2].
Given the set of clauses ���� � ��� ���� ���� ���� ���� �
�� � ��� � �� � ��� � �� � ��, hyper-resolution allows infer-
ring ��� ��. Once again, observe that this technique is cov-
ered by the construction of the assignment table and the ap-
plication of Theorem 2.4: if ��� �� � ������� ��� then cre-
ate clause �� � ��.

Compared with existing work, probing-based prepro-
cessing techniques not only naturally capture all the above
mentioned formula manipulation techniques, but also fur-
ther allow the development of new techniques. In addition,
the proposed unified framework also allows relating and
comparing different formula manipulation techniques.

5. Conclusions

This paper introduces ProbIt, a new probing-based for-
mula manipulation SAT preprocessor. ProbIt has been im-
plemented as a unified formula manipulation framework,
based on probing assignments, that captures a signifi-
cant number of formula manipulation techniques. More-
over, this new approach integrates for the first time most
formula manipulation techniques and allows develop-
ing new techniques. In addition, the obtained experimental
results clearly indicate that ProbIt is effective in increas-
ing the robustness of state-of-the-art SAT solvers.

References

[1] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time al-
gorithm for testing the truth of certain quantified boolean
formulas. Information Processing Letters, 8(3):121–123,
March 1979.

[2] F. Bacchus. Enhancing Davis Putnam with extended binary
clause reasoning. In AAAI’02, August 2002.

[3] D. L. Berre. Exploiting the real power of unit propagation
lookahead. In LICS Workshop on Theory and Applications
of Satisfiability Testing, June 2001.

[4] R. I. Brafman. A simplifier for propositional formulas with
many binary clauses. In IJCAI’01, August 2001.

[5] J. Crawford and L. Auton. Experimental results on the cross-
over point in satisfiability problems. In AAAI’93, pages 22–
28, 1993.

[6] O. Dubois and G. Dequen. A backbone-search heuristic for
efficient solving of hard 3-sat formulae. In IJCAI, August
2001.

[7] A. V. Gelder and Y. K. Tsuji. Satisfiability testing with more
reasoning and less guessing. In D. S. Johnson and M. A.
Trick, editors, Second DIMACS Implementation Challenge.
American Mathematical Society, 1993.

[8] C. M. Li. Integrating equivalency reasoning into davis-
putnam procedure. In AAAI’00, pages 291–296, July 2000.

[9] C. M. Li and Anbulagan. Look-ahead versus look-back for
satisfiability problems. In CP’97, pages 341–355, October
1997.

[10] J. P. Marques-Silva and T. Glass. Combinational equivalence
checking using satisfiability and recursive learning. In Proc.
of the ACM/IEEE Design, Automation and Test in Europe
Conference, pages 145–149, March 1999.

[11] R. Ostrowski, Éric Grégoire, B. Mazuren, and L. Sais. Re-
covering and exploiting structural knowledge from cnf for-
mulas. In CP’02, pages 185–199, September 2002.

[12] G. Stålmarck. A system for determining propositional logic
theorems by applying values and rules to triplets that are gen-
erated from a formula, 1989. Swedish Patent 467 076 (Ap-
proved 1992), US Patent 5 276 897 (approved 1994), Euro-
pean Patent 0 403 454 (approved 1995).

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

