
The Effect of Nogood Recording in DPLL-CBJ
SAT Algorithms

Inês Lynce and João Marques-Silva

Technical University of Lisbon,
IST/INESC/CEL, Lisbon, Portugal

{ines,jpms}@sat.inesc.pt

Abstract. Propositional Satisfiability (SAT) solvers have been the sub-
ject of remarkable improvements in the last few years. Currently, the
most successful SAT solvers share a number of similarities, being based
on backtrack search, applying unit propagation, and incorporating a
number of additional search pruning techniques. Most, if not all, of the
search reduction techniques used by state-of-the-art SAT solvers have
been imported from the Constraint Satisfaction Problem (CSP) domain
and, most significantly, include forms of backjumping and of nogood
recording. This paper proposes to investigate the actual usefulness of
these CSP techniques in SAT solvers, with the objective of evaluating
the actual role played by each individual technique.

1 Introduction

The areas of Constraint Satisfaction Problem (CSP) and Propositional Satisfi-
ability (SAT) have been the subject of intensive research in recent years, with
significant theoretical and practical contributions. In the area of SAT, several
highly optimized solvers have been developed [3,11,16,17,26]. These state-of-
the-art SAT solvers can now very easily solve very large, very hard real-world
problem instances, which more traditional SAT solvers are totally incapable of.
All of these highly effective SAT solvers are based on improvements made to the
original Davis-Putnam-Logemann-Loveland (DPLL) backtrack search SAT al-
gorithm [6]. Such improvements range from new search strategies, to new search
pruning and reasoning techniques, and to new fast implementations.

Moreover, the relationship between SAT and CSP has become apparent due
to an increasing number of mappings between SAT and CSP that have recently
been proposed [10,24]. These different encodings have shed new insights on solv-
ing hard instances of CSP. Moreover, such results motivate a better understand-
ing of the actual usefulness of the CSP techniques that have been utilized in
successful SAT solvers.

Regarding different algorithmic solutions for SAT, and despite the potential
theoretical and practical interest of all of them, we believe backtrack search to
be the most robust approach for solving hard, structured, real-world instances of
SAT. This belief has been amply supported by extensive experimental evidence
obtained in recent years [3,11,16,17,26]. Moreover, the most effective algorithms

B. O’Sullivan (Ed.): Constraint Solving and CLP, LNAI 2627, pp. 144–158, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø¯P) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

The Effect of Nogood Recording in DPLL-CBJ SAT Algorithms 145

are complete, and so able to prove what local search is not capable of, i.e. un-
satisfiability. Indeed, this is often the objective in a large number of significant
SAT-related real-world applications.

Most if not all backtrack search SAT algorithms also incorporate propagation
techniques for consistency checking, by applying Boolean constraint propagation
(BCP) [25]. (Observe that backtrack search with BCP, i.e. DPLL, is conceptually
similar to the maintaining arc consistency algorithm (MAC) [21], and equivalent
for suitable mappings [1,10,24].) Another strategy for reducing the number of
searched nodes consists of performing back jumps in the search tree, skipping
portions of the search space that can be shown not to contain a solution. In this
context, and whenever a consistency check fails, conflict-directed backjumping
(CBJ) [19] enables the search process to safely jump directly to the cause of the
conflict.

In addition, state-of-the-art SAT solvers [3,11,16,17,26] effectively use learn-
ing techniques. In these solvers, whenever a conflict (dead-end) is reached, a new
clause (nogood) is recorded to prevent the occurrence of the same conflict again
during the subsequent search. Moreover, and from the first SAT solvers that
incorporated non-chronological backtracking (NCB) [3,16], learning has always
been a key component of the search algorithm, where recorded nogoods are used
to determine the search point to backtrack to.

Hence, it is certainly relevant to conduct an unbiased evaluation of the iso-
lated usefulness of DPLL-CBJ and of learning on a successful SAT solver. This
work will allow us to find out whether a DPLL-CBJ SAT algorithm is enough per
se, or the algorithm should definitely include nogood learning techniques. There-
fore, the objectives of this paper are two-fold. First, to describe the organization
of a DPLL-CBJ SAT algorithm. Second, to evaluate the effect of learning in this
algorithm. For this purpose, we developed a general framework that implements
a DPLL-CBJ SAT algorithm with and without nogood recording. Moreover, we
evaluate the performance on a representative set of instances, obtained from dif-
ferent real-world problems. This evaluation allows us to confirm and extend the
preliminary experimental results presented in [2].

The remainder of the paper is organized as follows. Next, we introduce def-
initions used throughout the other sections. Moreover, we provide a histori-
cal perspective regarding the evolution of both CSP and SAT. Afterwards, we
briefly describe chronological backtrack (CB) algorithms for SAT. In Section 4
we overview non-chronological backtracking (NCB) SAT algorithms, and further
relate them with DPLL-CBJ. Experimental results are given in Section 5, and
finally Section 6 concludes the paper.

2 Background

This section introduces the notational framework used throughout the paper,
for CSP and SAT. Moreover, we provide a historical perspective for both areas.

146 I. Lynce and J. Marques-Silva

2.1 CSP

A CSP consists of a set of variables V and a set of constraints C. Each variable
v ∈ V has a domain of values Mv of size mv. Each a-ary constraint c ∈ C restricts
a tuple of variables 〈v1, ..., va〉 to an allowed combination of simultaneous values
for the variables in the tuple. In a binary CSP, each constraint is a relation
between two variables. Any binary CSP can be associated with a constraint
graph, where the nodes represent variables and each edge links a pair of nodes if
and only if there is a constraint on the corresponding variables. A CSP consists
of deciding whether there exists a (consistent) assignment to the variables such
that all the constraints are satisfied, i.e. no c ∈ C is violated.

In tree search algorithms for CSP the variables are incrementally instantiated
with values from their respective domains. In chronological backtrack (CB), when
a value is assigned to a variable, consistency checking is performed backwards
against the already instantiated variables. If a conflict (dead-end) is reached,
the algorithm backtracks to the most recent (not wiped-out1) assigned variable,
changes its assignment and continues from there.

Trying to improve the performance of backtrack search entails deciding how
far to backtrack and also recording the reasons for the dead-end in the form of
new constraints (nogoods). The idea of going back several levels in a dead-end
situation, rather than going back to the chronologically most recent decision, was
exploited independently in [9], where the term backjumping (BJ) was introduced,
and in [23] as a part of the dependency-directed backtracking algorithm. Another
example is Dechter’s graph-based backjumping (GBJ) [8] that proposes to jump
back to the source of the failure by using knowledge extracted from the constraint
graph. In addition, conflict-directed backjumping (CBJ) [19] consists of keeping
a set of past variables that failed consistency checks with each variable, based
on dependencies from the constraints.

Arc-consistency (AC) [15] is a polynomial propagation algorithm commonly
used in CSP. A state is arc-consistent if every variable has a value in its domain
that is consistent with each of the constraints on that variable. Arc consistency
can be achieved by successive deletion of values that are inconsistent with some
constraint. As values are deleted, other values may become inconsistent because
they relied on the deleted values. Arc consistency therefore exhibits a form of
constraint propagation, as choices are gradually narrowed down. Furthermore,
maintaining arc consistency (MAC) [21] is a solution procedure which incorpo-
rates and further maintains arc consistency during backtrack search. In addition,
MAC can be improved by adding conflict-directed backjumping (CBJ), thus ob-
taining the algorithm MAC-CBJ [20].

2.2 SAT

In a SAT problem, propositional variables are denoted x1, . . . , xn, and can be
assigned truth values 0 (or F) or 1 (or T). The truth value assigned to a variable x

1 A variable domain is wiped-out when all values have been tried for that variable
without success.

The Effect of Nogood Recording in DPLL-CBJ SAT Algorithms 147

is denoted by ν(x). (When clear from context we use x = νx, where νx ∈ {0, 1}).
A literal l is either a variable xi or its negation ¬xi. A clause ω is a disjunction
of literals and a CNF formula ϕ is a conjunction of clauses. A clause is said to
be satisfied if at least one of its literals assumes value 1, unsatisfied if all of its
literals assume value 0, unit if all but one literal assume value 0, and unresolved
otherwise. Literals with no assigned truth value are said to be free literals. A
formula is said to be satisfied if all its clauses are satisfied, and is unsatisfied if
at least one clause is unsatisfied. A truth assignment A for a formula is a set
of assigned variables and their corresponding truth values. The SAT problem
consists of deciding whether there exists a truth assignment to the variables
such that the formula becomes satisfied.

Over the years a large number of algorithms has been proposed for SAT,
from the original Davis-Putnam procedure (DP) [7], to recent backtrack search
algorithms [3,12,16,17,26], to local search algorithms [22], among many others.
Among the different algorithms, we believe backtrack search to be the most ro-
bust approach for solving hard, structured, real-world instances of SAT. Observe
that only complete algorithms can establish unsatisfiability if given enough CPU
time, which is often a requirement when considering real-world instances.

The vast majority of backtrack search SAT algorithms build upon the orig-
inal backtrack search algorithm of Davis, Logemann and Loveland (DPLL) [6].
Moreover, non-chronological backtracking strategies (NCB) attempt to identify
the variable assignments causing a conflict and backtrack directly to a point so
that at least one of those variable assignments is modified. GRASP [16] and rel-
sat [3] are examples of SAT solvers that successfully implement non-chronological
backtracking.

Recent state-of-the-art SAT solvers are also characterized by using very effi-
cient data structures, intended to reduce the CPU time required per each node in
the search tree. Examples of efficient lazy data structures include the head/tail
lists used in SATO [26] and the watched literals used in Chaff [17].

3 Chronological Backtrack SAT Algorithms

A backtrack search SAT algorithm is implemented by a search process that im-
plicitly enumerates the space of 2n possible binary assignments to the n problem
variables. Each different truth assignment defines a search path within the search
space. A decision level is associated with each variable selection and assignment.
The first variable selection corresponds to decision level 1, and the decision level
is incremented by 1 for each new variable decision assignment2. When relevant
to the context, we use an assignment notation to indicate the decision level at
which the variable assignment occurred. Thus, x = νx@d reads as ”x is assigned
νx at decision level d”. In addition, and for each decision level, the unit clause
rule [7] is applied. If a clause is unit, then the sole free literal must be assigned
value 1 for the formula to be satisfied. In this case, the value of the literal and of
2 Observe that all the assignments made before the first decision assignment corre-

spond to decision level 0.

148 I. Lynce and J. Marques-Silva

the associated variable are said to be implied. The iterated application of the unit
clause rule is often referred to as Boolean Constraint Propagation (BCP) [25].

In chronological backtracking (CB), the search algorithm keeps track of which
decision assignments have been toggled. Given an unsatisfied clause (i.e. a con-
flict or a dead end) at decision level d, the algorithm checks whether at the
current decision level the corresponding decision variable x has already been
toggled. If not, the algorithm erases the variable assignments which are implied
by the assignment on x, including the assignment on x, assigns the opposite
value to x, and marks decision variable x as toggled. In contrast, if the value of
x has already been toggled, the search backtracks to decision level d − 1.

4 Non-chronological Backtrack SAT Algorithms

All of the most effective recent state-of-the-art SAT solvers [3,11,16,17,26] uti-
lize different forms of non-chronological backtracking (NCB). Non-chronological
backtracking backs up the search tree to one of the identified causes of failure,
skipping over irrelevant variable assignments.

x� � �

x� � �

x� � �

x�

x�

x�x�

x� x�

chronological

backtrack

�

�

�

non�chronological

backtrack

�

�

� �

�

�

�

�

decision tree

solution�

Fig. 1. Non-Chronological Backtracking

For example, let us consider Figure 1, that illustrates non-chronological back-
tracking for a given CNF formula. Once both x1 and x2 are assigned value 0,
there are no possible assignments for the remaining variables x3 and x4 that can
satisfy the formula. In this example, chronological backtracking wastes a poten-
tially significant amount of time exploring a region of the search space without

The Effect of Nogood Recording in DPLL-CBJ SAT Algorithms 149

solutions, only to discover, after potentially much effort, that the region does
not contain any satisfying assignments.

The forms of non-chronological backtracking used in state-of-the-art SAT
solvers are related to dependency-directed backtracking [23], since they are al-
ways associated with learning from conflicts. The incorporation of learning con-
sists of the following: for each identified conflict, its causes are identified, and a
new clause (called nogood) is created to explain and subsequently prevent the
identified conflicting conditions.

In the next section we address conflict-directed backjumping (CBJ) [19], an-
other form of non-chronological backtracking that does not incorporate learning.
Afterwards, we describe the use of conflict-directed backjumping jointly with
learning.

4.1 Conflict-Directed Backjumping

Conflict-directed backjumping (CBJ) [19] is the most accurate form of backjump-
ing, and can be considered a combination of Gaschnig’s backjumping (BJ) [9]
and Dechter’s graph-based backjumping (GBJ) [8].

BJ aims performing higher jumps in the search tree, rather than backtracking
to the most recent yet untoggled decision variable. For each value of a variable
vj , Gaschnig’s algorithm obtains the lowest level for which the considered assign-
ment is inconsistent. In addition, BJ uses a marking technique that maintains,
for each variable vj , a reference to a variable vi with the deepest level of the
different levels with which any value of vj was found to be inconsistent. Hence,
a backjump from vj is to vi. Moreover, if the domain of vi is wiped-out, then
the search must chronologically backtrack to vi−1. q

As an improvement, Dechter’s GBJ extracts knowledge about dependencies
from the constraint graph. CBJ builds upon this idea and, based on dependen-
cies from the constraints, records the set of past variables that failed consistency
checks with each variable v. This set (called conflict set in [8]) allows the algo-
rithm to perform multiple jumps.

4.2 Learning and Conflict-Directed Backjumping

Learning can be combined with CBJ when each identified conflict is analyzed, its
causes are identified, and a nogood is recorded to explain and prevent the iden-
tified conflicting conditions from occurring again during the subsequent search.
Moreover, the newly recorded nogood is then used to compute the backtrack
point as the most recent decision assignment from all the decision assignments
represented in the recorded nogood.

For implementing learning techniques common to some of the most compet-
itive backtrack search SAT algorithms, it is necessary to properly explain the
truth assignments to the propositional variables that are implied by the clauses
of the CNF formula. For example, let x = vx be a truth assignment implied by
applying the unit clause rule to a unit clause ω. Then the explanation for this

150 I. Lynce and J. Marques-Silva

Fig. 2. Example of conflict diagnosis with nogood recording

assignment is the set of assignments associated with the remaining literals of ω,
which are assigned value 0. For example, let ω = (x1 ∨¬x2 ∨x3) be a clause of a
CNF formula ϕ, and assume the truth assignments {x1 = 0, x3 = 0}. For clause ω
to be satisfied we must necessarily have x2 = 0. Hence, we say that the antecedent
assignment of x2, denoted as A(x2), is defined as A(x2) = {x1 = 0, x3 = 0}.

In addition, in order to explain other NCB-related concepts, we shall often
analyze the directed acyclic implication graph created by the sequences of implied
assignments generated by BCP. An implication graph I is defined as follows:

1. Each vertex in I corresponds to a variable assignment at a given decision
level x = ν(x)@d.

2. The predecessors of vertex x = ν(x) in I are the antecedent assignments
A(x) corresponding to the unit clause ω that caused the value of x to be
implied. The directed edges from the vertices in A(x) to vertex x = ν(x) are
all labeled with ω. Vertices that have no predecessors correspond to decision
assignments.

3. Special conflict vertices are added to I to indicate the occurrence of conflicts.
The predecessors of a conflict vertex κ correspond to variable assignments
that force a clause ω to become unsatisfied and are viewed as the antecedent
assignment A(κ). The directed edges from the vertices in A(κ) to κ are all
labeled with ω.

Next, we illustrate nogood recording with the example of Figure 2. A subset
of the CNF formula is shown, and we assume that the current decision level is
6, corresponding to the decision assignment x1 = 1. This assignment yields a
conflict κ involving clause ω6. By inspection of the implication graph, we can
readily conclude that a sufficient condition for this conflict to be identified is,

(x10 = 0) ∧ (x11 = 0) ∧ (x9 = 0) ∧ (x1 = 1) (1)

By creating clause ω10 = (x10 ∨ x11 ∨ x9 ∨ ¬x1) we prevent the same set of
assignments from occurring again during the subsequent search.

The Effect of Nogood Recording in DPLL-CBJ SAT Algorithms 151

Fig. 3. Computing the backtrack decision level

In order to illustrate non-chronological backtracking based on nogood record-
ing, let us now consider the example of Figure 3, which continues the example in
Figure 2, after recording clause ω10 = (x10 ∨ x11 ∨ x9 ∨ ¬x1). At this stage BCP
implies the assignment x1 = 0 because clause ω10 becomes unit at decision level
6. By inspection of the CNF formula (see Figure 2), we can conclude that clauses
ω7 and ω8 imply the assignments shown, and so we obtain a conflict κ′ involving
clause ω9. By creating clause ω11 = (¬x13 ∨¬x12 ∨x11 ∨x10 ∨x9) we prevent the
same conflicting conditions from occurring again. It is straightforward to con-
clude that even though the current decision level is 6, all assignments directly
involved in the conflict are associated with variables assigned at decision levels
less than 6, the highest of which being 3. Hence we can backtrack immediately
to decision level 3.

4.3 Nogood Deletion Policy

Unrestricted nogood recording can in some cases be impractical. Recorded no-
goods consume memory and repeated recording of nogoods can eventually lead
to the exhaustion of the available memory. Observe that the number of recorded
nogoods grows with the number of conflicts; in the worst case, such growth can be
exponential in the number of variables. Furthermore, large recorded nogoods are
known for not being particularly useful for search pruning purposes [16]. Adding
larger nogoods leads to additional overhead for conducting the search process
and, hence, it eventually costs more than what it saves in terms of backtracks.

As a result, there are three main solutions for guaranteeing the worst case
growth of the recorded nogoods to be polynomial in the number of variables [14]:

1. We may consider n-order learning, that records only nogoods with n or fewer
literals [8].

2. Nogoods can be temporarily recorded while they either imply variable as-
signments or are unit clauses, being discarded as soon as the number of
unassigned literals is greater than an integer m. This technique is named
m-size relevance-based learning [3].

152 I. Lynce and J. Marques-Silva

3. Nogoods with a size less than a threshold k are kept during the subsequent
search, whereas larger nogoods are discarded as soon as the number of unas-
signed literals is greater than one. We refer to this technique as k-bounded
learning [16].

Observe that we can combine k-bounded learning with m-size relevance-based
learning. The search algorithm is organized so that all recorded nogoods of size
no greater than k are kept and larger nogoods are deleted only after m literals
have become unassigned.

More recently, a heuristic nogood deletion policy has been introduced [11].
Basically, the decision whether a nogood should be deleted is based not only on
the number of literals but also on its activity in contributing to conflict making
and on the number of decisions taken since its creation.

5 Experimental Results

In this section we present the obtained experimental results. We start by de-
scribing the experimental setup that has been used for the different results.
Then we analyze the results for the DPLL-CB SAT algorithm, the DPLL-CBJ
SAT algorithm and the DPLL-CBJ SAT algorithm with nogood recording.

5.1 Experimental Setup

In order to experimentally evaluate the different algorithms, in a controlled ex-
periment that ensures that only specific differences are evaluated, a dedicated
SAT solving framework is needed. Consequently, we developed the JQUEST
SAT framework, a Java implementation that can be used to conduct unbiased
experimental evaluations of SAT algorithms and techniques.

This comparison was performed using the JQUEST SAT solver on instances
selected from several classes of instances (see Table 1)3. In all cases, the problem
instances chosen can be solved with several thousands of decisions by the most
effective solvers, usually taking a few tens of seconds, thus being significantly
hard. For this reason, different algorithms can result in significant variations
on the time required for solving a given instance. In addition, we should also
observe that the problem instances selected are intended to be representative,
since each resembles, in terms of hardness for SAT solvers, the typical instance
in each class of problem instances.

For the results shown a P-IV@1.7 GHz Linux machine with 1 GByte of
physical memory was used. The Java Virtual Machine used was SUN’s HotSpot
JVM for JDK1.4. The CPU time was limited to 1500 seconds.

3 All the instances are available from http://www.lri.fr/∼simon/satex/satex.php3
(Sat-Ex web site), with the exception of the superscalar processor verification in-
stances.

The Effect of Nogood Recording in DPLL-CBJ SAT Algorithms 153

Table 1. Example Instances

Application Domain Selected Instance # Variables #Clauses Satisfiable?
Circuit Testing
(Dimacs)

bf0432-079 1044 3685 N
ssa2670-141 4843 2315 N

Inductive
Inference(Dimacs)

ii16b2 1076 16121 Y
ii16e1 1245 14766 Y

Parity
Learning(Dimacs)

par16-1-c 317 1264 Y
par16-4 1015 3324 Y

Graph Colouring
flat200-39 600 2237 Y
sw100-49 500 3100 Y

Quasigroup
qg3-08 512 10469 Y
qg5-09 729 28540 N

Blocks World
2bitadd 12 708 1702 Y
4blocksb 410 24758 Y

Planning-Sat
logistics.a 828 6718 Y
bw large.c 3016 50457 Y

Planning-Unsat
logistics.c 1027 9507 N
bw large.b 920 11491 N

Bounded Model
Checking

barrel5 1407 5383 N
queueinvar16 1168 6496 N
longmult6 2848 8853 N

Superscalar
Processor
Verification

dlx2 aa 490 2804 N
dlx2 cc a bug17 4847 39184 Y
2dlx cc mc ex bp f2 bug006 4824 48215 Y
2dlx cc mc ex bp f2 bug010 5754 60689 Y

Data Encryption
Standard

cnf-r3-b2-k1.1 5679 17857 Y
cnf-r3-b4-k1.2 2855 35963 Y

5.2 CBJ and Nogood Recording

The first table of results (Table 2) shows the CPU time required to solve each
problem instance4. For the algorithms considered: CB denotes the chronologi-
cal backtracking search SAT algorithm (corresponding to DPLL), CBJ denotes
the DPLL-CBJ SAT algorithm and CBJ+ng denotes the CBJ SAT algorithm
with nogood recording. Moreover, a variety of nogood deletion policies were
considered, depending on the value of k, where k defines the k-bounded learning
procedure used (see Section 4.3). For instance, +ng10 means that recorded no-
goods with size greater than 10 are deleted as soon as they become unresolved
(i.e. not satisfied with more than one unassigned literal), whereas +ngAll means
that all the recorded nogoods are kept.

Table 2 reveals interesting trends, and several conclusions can be drawn:

– Clearly, CB and CBJ have in general similar behavior (except for bf0432-079
and data encryption standard instances, that only CBJ is able to solve).

4 Instances that were not solved in the allowed CPU time are marked with —–.

154 I. Lynce and J. Marques-Silva

Table 2. CPU Time (in seconds)

Instance
CB CBJ

CBJ+ng
+ng0 +ng5 +ng10 +ng20 +ng50 +ng100 +ngAll

bf0432-079 —– 41.74 5.18 2.78 2.97 2.70 1.53 1.44 1.45
ssa2670-141 —– —– 1.21 0.87 0.81 0.52 0.55 0.54 0.56
ii16b2 —– —– —– —– 857.61 302.63 158.63 141.41 141.05
ii16e1 —– —– 20.58 26.75 20.40 12.65 12.89 15.96 11.86
par16-1-c 65.92 77.06 19.91 14.75 16.07 16.78 18.19 18.08 18.13
par16-4 14.88 20.59 11.51 8.49 8.77 9.34 7.16 7.20 7.14
flat200-39 8.44 8.75 97.35 255.04 85.19 114.05 67.55 67.00 67.19
sw100-49 —– —– 1.94 13.48 1.26 2.18 0.73 0.74 0.71
qg3-08 2.29 2.65 0.86 0.88 0.91 1.00 1.07 1.30 1.32
qg5-09 13.28 8.61 1.35 1.29 1.06 1.17 1.16 1.21 1.15
2bitadd 12 —– —– —– —– —– —– 87.68 50.74 50.93
4blocksb —– —– 31.23 30.25 39.62 29.66 16.34 20.33 31.75
logistics.a —– —– 2.98 1.87 1.62 1.65 1.61 1.63 1.68
bw large.c —– —– 76.03 55.13 36.41 38.37 43.71 38.03 38.06
logistics.c —– —– 26.88 7.24 4.60 15.40 10.22 10.23 10.25
bw large.b 8.27 4.78 1.60 0.59 0.61 0.64 0.61 0.62 0.62
barrel5 99.49 132.37 171.94 279.31 36.35 19.80 23.43 24.00 21.99
queueinvar16 —– —– 23.36 21.39 15.74 15.48 8.05 8.08 8.12
longmult6 —– —– 27.66 23.63 26.20 29.16 32.32 31.74 32.02
dlx2 aa —– —– 54.74 36.21 37.96 9.80 6.43 6.62 6.60
dlx2 cc a bug17 —– —– 430.31 —– —– 500.25 220.06 6.48 6.54
2dlx ... bug006 —– —– 17.29 14.32 3.87 2.27 2.27 2.23 2.22
2dlx ... bug010 —– —– 3.32 4.13 3.83 5.31 4.55 2.03 1.93
cnf-r3-b2-k1.1 802.90 19.37 3.05 3.13 2.39 2.58 2.40 2.16 3.90
cnf-r3-b4-k1.2 405.98 12.62 5.42 5.39 5.48 5.12 4.89 4.45 3.91

– The CBJ+ng algorithms are in general clearly more efficient than the other
algorithms. Indeed, for almost all the instances CBJ+ng achieves remarkable
improvements, when compared with CB or with CBJ. Instances flat200-39
and barrel5 are the only exceptions. (For instance barrel5, this is only true
for CBJ+ng with small values of k.)

– Some of the instances that are not solved by CBJ in the allowed CPU time
(e.g ii16b2 and dlx2 cc a bug17), also need a significant amount of time to
be solved by k-bounded learning with a small value of k.

– For instance flat200-39, recorded nogoods result in an additional search effort
to find a solution.

– From a practical perspective, unrestricted nogood recording is not necessarily
a bad approach.

The Effect of Nogood Recording in DPLL-CBJ SAT Algorithms 155

Table 3. Searched nodes

Instance
CB CBJ

CBJ+ng
+ng0 +ng5 +ng10 +ng20 +ng50 +ng100 +ngAll

bf0432-079 —– 98824 3939 1950 2010 1600 1168 1188 1188
ssa2670-141 —– —– 2882 1988 1480 806 736 698 698
ii16b2 —– —– —– —– 101451 32923 12188 10573 10573
ii16e1 —– —– 20872 24714 17271 13869 8117 8442 7869
par16-1-c 52800 52800 11307 7249 7524 5255 5364 5364 5364
par16-4 10673 10246 4157 2676 2745 2467 1919 1919 1919
flat200-39 6286 5427 139264 287983 51308 40888 26428 25738 25738
sw100-49 —– —– 4596 44247 2370 3748 1450 1450 1450
qg3-08 703 703 220 220 242 214 222 282 282
qg5-09 1578 1547 373 329 318 337 337 337 337
2bitadd 12 —– —– —– —– —– —– 21244 11238 11238
4blocksb —– —– 5559 5007 6205 5009 2618 2491 3363
logistics.a —– —– 32872 16999 14899 15185 15185 15185 15185
bw large.c —– —– 6137 5132 2763 2878 3000 2783 2783
logistics.c —– —– 55721 18839 14520 16444 15441 15441 15441
bw large.b 1431 1112 293 128 195 195 195 195 195
barrel5 24727 24664 90115 141953 14684 8731 10396 12315 5985
queueinvar16 —– —– 45053 41510 24842 19557 8460 8506 8083
longmult6 —– —– 7407 5482 5666 5507 5019 4729 4725
dlx2 aa —– —– 319120 204995 208725 21036 10062 10035 10035
dlx2 cc a bug17 —– —– 446626 —– —– 212816 85713 3383 3383
2dlx ... bug006 —– —– 32297 25259 7775 3288 3227 3123 3123
2dlx ... bug010 —– —– 10086 19002 14358 13229 8533 3547 3522
cnf-r3-b2-k1.1 219037 6273 1168 1138 872 942 825 667 1221
cnf-r3-b4-k1.2 57843 2216 1011 1012 1010 943 910 776 729

It is interesting to observe that the uselessness of CBJ-related algorithms
w.r.t. CB-related algorithms has been experienced in the past [4,18]. CBJ, when
applied jointly with a domain filtering procedure (e.g. AC) and an accurate vari-
able ordering heuristic, has been considered an expensive approach that almost
always slows down the search, even when it saves a few constraint checks5.

Table 3 gives the results for the number of searched nodes, for each instance
and for the different configurations. It is plain from the results that CB and
CBJ in general need to search more nodes to find a solution than the other
algorithms. This can be explained by the effect of the recorded nogoods. Besides
explaining an identified conflict, nogoods are often re-used, either for yielding
conflicts or for implying variable assignments, introducing significant pruning in

5 However, different conclusions have been obtained for specific classes of instances [5].

156 I. Lynce and J. Marques-Silva

the search tree. Moreover, other conclusions can be established from the results
on the searched nodes:

– For the par instances, CB and CBJ have the same or an approximate number
of search nodes for these instances. This is explained by the fact that there
are none or just a few backjumps during the search.

– For instances logistics.a, bw large.b and qg5-09 the search needs the same
number of nodes for increasing values of k, since only small-size nogoods are
recorded.

– Usually more recorded nogoods imply less searched nodes and less time
needed to find a solution. (Even though the reduction in the number of
nodes is more significant than the reduction in the amount of time, due to
the overhead introduced by the management of nogoods.)

Overall, the effect of nogood recording is clear, and in general dramatic.
The results clearly indicate that nogood recording is an essential component of
current state-of-the-art SAT solvers. Nevertheless, the actual role played by the
value of k is not clear, and subject of additional research.

As a final remark, we evaluated whether a different variable ordering heuristic
could have affected the results6. The intuition was that a more elaborate heuris-
tic could have improved the results obtained for CB and CBJ. Nevertheless, the
experimental results presented in [13] for CB and CBJ, that include a more so-
phisticated heuristic, are still far from being competitive with non-chronological
backtracking with nogood recording.

6 Conclusions and Future Directions

In this paper we address the use of DPLL-CBJ in SAT algorithms. In addition,
we evaluate the effect of nogood recording in DPLL-CBJ SAT algorithms, and
further analyze the effect of different nogood deletion policies. Given the ex-
perimental results, obtained for representative instances from several classes of
problem instances, we conclude that nogood recording is crucial for competi-
tive SAT algorithms. In addition, the results strongly suggest that backjumping
techniques are not enough per se for state-of-the-art SAT solvers.

Moreover, we believe that CSP algorithms may also improve their perfor-
mance by applying both jumping and learning. Interestingly, backjumping tech-
niques and learning have their roots in Truth Maintenance Systems [23] but have
been extensively studied in CSP [8,9,19]; nevertheless, constraint programming
technology appears not to exploit it.

Future research work will extend the results of this paper by considering alter-
native approaches with the goal of optimizing SAT solvers. It is well-known that
6 For the above results, we have applied the variable selection heuristic VSIDS (Vari-

able State Independent Decaying Sum) [17]. It selects the literal that appears most
frequently over all clauses, which means that the metrics only have to be updated
when a new recorded clause is created.

The Effect of Nogood Recording in DPLL-CBJ SAT Algorithms 157

state-of-the-art SAT solvers use nogood recording. On the other hand, DPLL-
CBJ does not incorporate learning, but does consider conflict sets. Hence, we can
envision an algorithm that explores the advantages of CBJ to compensate the
disadvantages of nogood recording. This algorithm can apply nogood recording,
but use conflict sets to avoid recording large nogoods that must be eventually
deleted.

Acknowledgments. We would like to thank Patrick Prosser for the insightful
discussions we had on CBJ. This work is partially supported by the European
research project IST-2001-34607 and by Fundação para a Ciência e Tecnologia
under research projects PRAXIS/C/EEI/11249/98 and POSI/34504/CHS/2000.

References

1. K. Apt. Some remarks on boolean constraint propagation. In New Trends in
Constraints, number 1865 in Lecture Notes in Artificial Intelligence, pages 91–107.
Springer, 2000.

2. R. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve excep-
tionally hard SAT instances. In Proceedings of the International Conference on
Principles and Practice of Constraint Programming, pages 46–60, August 1996.

3. R. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the National Conference on Artificial Intelligence,
pages 203–208, July 1997.

4. C. Bessière and J. C. Régin. MAC and combined heuristics: two reasons to forsake
FC (and CBJ?) on hard problems. In Proceedings of the International Conference
on Principles and Practice of Constraint Programming, pages 61–75, August 1996.

5. X. Chen and P. van Beek. Conflict-directed backjumping revisited. Journal of
Artificial Intelligence Research, 14:53–81, 2001.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the Association for Computing Machinery, 5:394–397,
July 1962.

7. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the Association for Computing Machinery, 7:201–215, July 1960.

8. R. Dechter. Enhancement schemes for constraint processing: backjumping, learn-
ing, and cutset decomposition. Artificial Intelligence, 41(3):273–312, January 1990.

9. J. Gaschnig. Performance Measurement and Analysis of Certain Search Algo-
rithms. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, May 1979.

10. I. Gent. Arc consistency in SAT. In Proceedings of the European Conference on
Artificial Intelligence, pages 121–125, July 2002.

11. E. Goldberg and Y. Novikov. BerkMin: a fast and robust sat-solver. In Proceedings
of the Design and Test in Europe Conference, pages 142–149, March 2002.

12. C. M. Li and Anbulagan. Look-ahead versus look-back for satisfiability problems.
In Proceedings of the International Conference on Principles and Practice of Con-
straint Programming, pages 341–355, October 1997.

13. I. Lynce and J. P. Marques-Silva. The effect of nogood recording in MAC-CBJ
SAT algorithms. Technical Report RT/04/2002, INESC, April 2002.

14. I. Lynce and J. P. Marques-Silva. An overview of backtrack search satisfiability al-
gorithms. Annals of Mathematics and Artificial Intelligence, 37(3):307–326, March
2003.

158 I. Lynce and J. Marques-Silva

15. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

16. J. P. Marques-Silva and K. A. Sakallah. GRASP: A new search algorithm for satis-
fiability. In Proceedings of the ACM/IEEE International Conference on Computer-
Aided Design, pages 220–227, November 1996.

17. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering an
efficient SAT solver. In Proceedings of the Design Automation Conference, pages
530–535, June 2001.

18. P. Prosser. Domain filtering can degrade intelligent backjumping search. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence, pages 262–
267, August 1993.

19. P. Prosser. Hybrid algorithms for the constraint satisfaction problems. Computa-
tional Intelligence, 9(3):268–299, August 1993.

20. P. Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed back-
jumping. Technical Report 177, University of Strathclyde, Glasgow, Scotland,
May 1995.

21. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satis-
faction. In Proceedings of the European Conference on Artificial Intelligence, pages
125–129, August 1994.

22. B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solving large
structured satisfiability problems. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, pages 290–295, August 1993.

23. R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9:135–196, October 1977.

24. T. Walsh. SAT v CSP. In Proceedings of the International Conference on Principles
and Practice of Constraint Programming, pages 441–456, September 2000.

25. R. Zabih and D. A. McAllester. A rearrangement search strategy for determining
propositional satisfiability. In Proceedings of the National Conference on Artificial
Intelligence, pages 155–160, July 1988.

26. H. Zhang. SATO: An efficient propositional prover. In Proceedings of the Interna-
tional Conference on Automated Deduction, pages 272–275, July 1997.

	Introduction
	Background
	CSP
	SAT

	Chronological Backtrack SAT Algorithms
	Non-chronological Backtrack SAT Algorithms
	Conflict-Directed Backjumping
	Learning and Conflict-Directed Backjumping
	Nogood Deletion Policy

	Experimental Results
	Experimental Setup
	CBJ and Nogood Recording

	Conclusions and Future Directions

