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BOOLEAN SATISFIABILITY is a widely used model-

ing tool in EDA. Well-known applications of SAT include

test-pattern generation for stuck-at faults, delay and bridg-

ing faults, equivalence checking, redundancy removal,

and logic synthesis.1 More recent applications include

FPGA routing, bounded model checking, and crosstalk

noise analysis. In addition to finding new applications of

SAT to EDA, researchers have strived to propose algo-

rithms for solving instances of the SAT problem that state-

of-the-art EDA tools will have to solve.

Given a Boolean function ψ with n variables, the SAT

problem consists of assigning values to the variables

such that ψ assumes value 1, or prove that no such

assignment exists and the function is equal to 0. A

Boolean product of sums, or conjunctive normal form

formula, is the most often used representation of the

Boolean function. 

A CNF formula is a conjunction of clauses, each of

which is a disjunction of literals. A literal is either a vari-

able or its negation. For example, CNF formula

ψ=(a +b)(b +c + d) contains two clauses, (a +b) and

(b +c + d), and five literals. A clause is satisfied if at

least one of its literals assumes value 1, unsatisfied if all

its literals assume value 0, unit if all but one literal

assume value 0, and unresolved otherwise. Literals with

no assigned Boolean value are free literals. A formula is

satisfied if all its clauses are satisfied, and unsatisfied if

at least one clause is unsatisfied. It is often simpler to

refer to clauses as sets of literals, and to

the CNF formula as a set of clauses.

Here, we review current algorithms

for solving instances of SAT, emphasizing

the algorithms that are particularly sig-

nificant for SAT in combinational cir-

cuits, and the attempts to develop

unified algorithmic frameworks. Con-

sequently, we study the techniques

Marques-Silva et al. proposed,2–4 but also

review techniques by Bayardo and Schrag5 and

Tafertshofer, Ganz, and Henftling.6

Current SAT solvers
Of the many approaches proposed for solving the

SAT problem, the two most widely used are local search

and backtrack search. Local search is seldom used in

EDA, because local search algorithms cannot prove

unsatisfiability. Consequently, backtrack search algo-

rithms are the most promising for solving SAT in EDA.

Most, if not all, backtrack search SAT algorithms apply

the unit clause rule7—that is, if a clause is unit, the formu-

la can be satisfiable only if the sole free literal has value

1. The iterated application of the unit clause rule is often

referred to as Boolean constraint propagation (BCP).

Implementing some of the techniques shared by some

backtrack search algorithms requires explaining the

Boolean variable assignments implied by the CNF formula

clauses. For example, let (w + z +u) be a CNF formula,

and assume variable assignments {w = 0, u = 1}. To satisfy

the clause according to the unit clause rule, the value of z

must be 1. The implied assignment, z = 1, has explanation

{w = 0, u = 1}. A more formal description of explanations

for implied variable assignments in the SAT context, as

well as a description of identification mechanisms, is avail-

able elsewhere.4

Figure 1 illustrates a generic backtrack search SAT

algorithm that captures the organization of several of the
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most competitive algorithms. The algorithm searches the

space of possible assignments for the problem instance

variables. At each stage of the search, the Decide( ) func-

tion selects an assignment. Selected assignments have

no explanation because these assignments are not

implied by a unit clause. The algorithm also associates

a decision level, λ, with each selected assignment.

The Deduce( ) function, which usually corresponds to

the BCP procedure, identifies implied necessary assign-

ments. Whenever a clause becomes unsatisfied, the

Deduce( ) function returns a conflict indication, which

the Diagnose( ) function analyzes. The conflict’s diagno-

sis returns a backtracking decision level, β (the level to

which the search process can provably retrace its steps).

The Backtrack( ) function clears variable assignments

from current decision level λ up to decision level β.

Currently, the most efficient SAT algorithms imple-

ment several key techniques for solving difficult

instances of SAT:

� The algorithms can use conflict analysis to imple-

ment nonchronological backtracking strategies.

Hence, they can skip assignment selections deemed

irrelevant during the search.4,5

� They can also use conflict analysis to identify and

record new clauses that denote implicates of the

Boolean function associated with the CNF formula

(recall that an implicate, α, of Boolean function f is

such that α = 0 ⇒ f = 0). Clause recording plays a key

role in new SAT algorithms, even though most large

recorded clauses will eventually be deleted.4,5

� Relevance-based learning extends the life spans of

large recorded clauses that will eventually be deleted.5

� Conflict-induced necessary assignments4 denote vari-

able assignments that will prevent a given conflict

from recurring during the search.

Before executing the actual search, the SAT algo-

rithm can apply different forms of preprocessing to the

CNF formula.4 In general, a Preprocess( ) function

denotes the desired preprocessing techniques. 

The search-pruning techniques described above rely

extensively on the search algorithm’s ability to explain

the conflicts’ causes. Most approaches to identifying

conflict causes construct a new clause that can subse-

quently prevent the same conflict from recurring. 

The CNF formula in Figure 2 illustrates clause record-

ing. Assume a sequence of decision assignments, {v = 1,

y = 0, x = 1}. The last decision assignment causes clause

(y + w + z) to become unsatisfied. Because this conflict

is due to assignments {v = 1, y = 0, x = 1}, we can say

However, we want the formula to be satisfied 

(ψ = 1), so we must have v = 0∨y = 1∨x = 0 or, in

clausal form (v + y +x). Thus, by identifying the con-

flict’s causes, we can create an implicate of the CNF for-

mula, which we can add to the formula as a new clause.

The most competitive SAT algorithms implement tech-

niques for recording new clauses from conflict causes.4,5

SAT in combinational circuits
The algorithms described in the previous section

have proven to effectively solve real-world instances of

SAT. In particular, using CNF models and SAT algo-

rithms has important advantages:

(   ) ^  (   ) ^  (   )   v y x= = = → =1 0 1 0ψ
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int SAT(ψ)
{

λ = 0;
Preprocess(ψ);
while ( Decide(ψ, λ) == DECISION ) {

if ( Deduce(ψ, λ) == CONFLICT ) {
β = Diagnose(ψ, λ) ;
if ( β == –1 )

return UNSATISFIABLE;
else {

Backtrack(ψ, λ , β);
λ = β;

}
}
λ = λ + 1;

}
return SATISFIABLE;

}

Figure 1. Generic satisfiability algorithm.
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Figure 2. Diagram of the clause recording

example ψ =(y+w+z)(z+x)(w+v+x ). The

assignments v = 1, y = 0, and x = 1 imply a

conflict, creating the new clause (v+y +x).



� Existing and extensively validated SAT algorithms

can replace dedicated algorithms.

� Improvements and new SAT algorithms can be easi-

ly applied to target applications.

However, their use in combinational circuits also has

several drawbacks:

� As Tafertshofer, Ganz, and Henftling observe, the cir-

cuit’s structural information, often crucial, is lost.6

� In many EDA problems, designers must solve numer-

ous instances of SAT for each circuit. Hence, map-

ping a given problem description into SAT can take

a significant percentage of the overall running time.

� Computed input patterns are generally overspecified,

a serious drawback in applications such as circuit

testing and binate constraint solving.

� Powerful circuit-based reasoning techniques, such

as recursive learning,8 cannot easily be applied.

Our approach uses structural information in SAT algo-

rithms. We add a layer that maintains circuit-related

information (fan in and fan out, for example) and value

justification relations to a generic SAT algorithm. (We

can use any SAT algorithm that will accept this layer.) 

This approach eliminates some of the drawbacks of

using CNF models and SAT algorithms in combination-

al circuits—the inaccessibility to structural information

and overspecification of input patterns, for example.

Unlike Tafertshofer, Ganz, and Henftling’s approach,6

ours does not require modifying the data structures

used for SAT, so we can easily augment existing algo-

rithmic SAT solutions with the layer we propose for han-

dling structural information. Moreover, our approach

requires only minor modifications to SAT algorithms,

making it significantly simpler.6

Figure 3 illustrates the proposed unified approach

for solving SAT in combinational circuits. Basically,

adding new layers to an existing SAT algorithm lets us

exploit circuit structure and incorporate search tech-

niques targeted specifically to combinational circuits.

We start by formalizing the Boolean satisfiability prob-

lem in combinational circuits. Assume we want to satis-

fy property Cp of combinational circuit C to objective

value o. We denote this satisfiability problem by 

(Cp, o) and map it into SAT instance ψ. To solve

instances of SAT in combinational circuits, and with the

goal of using structural information in the SAT algorithm,

we associate the following information with each vari-

able x of ψ, which also represents circuit node x of C:

� FI(x) denotes the set of fan-in nodes of x.

� FO(x) denotes the set of fan-out nodes of x.

� υv(x) denotes the threshold value on the number of

suitable assigned inputs of x needed to justify value

v on node x.

� ιv(x) denotes the actual number of assigned inputs

of x that are involved in justifying value v on node x.

According to these definitions, each circuit node x with

assigned value v becomes justified whenever ιv(x) ≥ υv(x).

Table 1 lists example threshold values on the num-

ber of assigned inputs required for justifying a given

node. For example, an AND gate needs at least one

input assigned value 0 to justify assigning 0 to x, where-

as to assign value 1 to x, all inputs must be assigned 1.

Hence, υ0(x) = 1 and υ1(x) = |FI(x)|. As another exam-

ple, an XOR gate justification of any assigned value

requires assignments to all gate inputs; hence, υ0(x) =

υ1(x) = |FI(x)|. This information is easy to derive for

other simple gates as well, and in all cases we have

υ0(x), υ0(x) ∈ {1, FI(x)}.

For any simple gate with output x, we can associate

each fan-in node w with the counters to be updated as

a result of assigning value v to w. For an AND gate, for

example, assigning 0 to fan-in node w increments ι0(x)
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Figure 3. Proposed layered approach for solving

SAT.

Table 1. Threshold values on justification counters.

Gate υ0(x) υ1(x)

AND/NAND 1 |FI(x)|

OR/NOR |FI(x)| 1

BUFF/NOT |FI(x)| |FI(x)|

XOR/XNOR |FI(x)| |FI(x)|



by 1, and assigning 1 to node w incre-

ments ι1(x) by 1. For an XOR gate, assign-

ing an input node updates both counters.

Standard search algorithms in combi-

national circuits9 maintain a justification

frontier, denoting the sets of variables and

nodes that require justification. The con-

dition indicating the need for node justi-

fication is (v(x) = v) ∧ (ιv(x) < υv(x)),

where v ∈ {0, 1}.

Given these definitions, we can adapt

a SAT algorithm to allow proper maintenance of justifi-

cation information. Moreover, we can use the fan-in

information to implement structure-based heuristic

decision-making procedures, such as simple or multi-

ple backtracing.9

In Figure 1, functions Deduce( ) and Diagnose( )

must invoke dedicated procedures for updating node

justification information. Additionally, Decide( ) now

tests for satisfiability by checking for an empty justifi-

cation frontier instead of checking whether all clauses

are satisfied. These are the only required modifications

to the general SAT algorithm. Observe that the

Decide( ) function can be adapted to perform back-

tracing, given the fan-in information associated with

each variable.

The data structures described above operate in

much the same way as justification works in combina-

tional circuits.9 The main difference is that in our

approach, justification and value consistency are for-

mally dissociated: The SAT algorithm handles value

consistency, and the added layer handles justification.

Consider the example circuit in Figure 4, assuming

the first assignment is y = 0. The justification frontier

becomes {y}. We assume that the next assignment is e =

0. Because this assignment justifies y = 0, the justifica-

tion frontier becomes {e}. After assigning e = 0, we have

υ0(y) = ι0(y) = 1, υ0(e) = 1, and ι0(e) = 0, causing y to be

justified and e to enter the justification frontier. Finally,

we consider primary input assignment a = 1, which

causes e to be justified and leaves the justification fron-

tier empty.

Recursive learning
Recursive learning has been used extensively to

solve Boolean satisfiability in combinational circuits.8

Recursive-learning applications include test pattern gen-

eration, combinational equivalence checking, and logic

synthesis. We can also apply recursive learning to CNF

formulas.

Combinational circuits
Consider the example in Figure 5, in which output

value y = 1 of gate G7 is not justified. Recursive learning

analyzes the justifications for each unjustified gate out-

put value, trying to identify common necessary assign-

ments. The gate justification analysis process continues

recursively until a predefined depth limit is reached.

Assume that for our example the depth limit is 2. The

possible justifications for assignment y = 1 are c = 0 and

f = 0. Hence, we start with depth 1 of the recursive-learn-

ing procedure by considering c = 0, which does not

imply additional assignments. Next, we go to depth 2

and consider the possible justifications for gate G5 with

output c = 0. In this case, the possible justifications are 

a = 0 and b = 0. The first justification, a = 0, implies

assignment x = 1 (due to v = 1). Because the second jus-

tification, b = 0, also implies assignment x = 1, we can

conclude that assignment c = 0 implies x = 1.

The other justification at depth 1 of the recursive-

learning procedure is f = 0. Using the same reasoning we

used previously, we can readily conclude that this

assignment also implies x = 1. It is straightforward to
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Figure 5. Recursive learning on combinational
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conclude that any justification for assignment y = 1

implies assignment x = 1. Hence, x = 1 is a necessary

assignment, given assignment y = 1.

CNF formulas
We can apply similar reasoning to CNF formulas.

We begin by observing that to justify gates (that is, to

identify consistent assignments), we check the possi-

ble justifications for common necessary assignments.

For clause ω with one or more literals assigned value

0, at least one unassigned literal must eventually be

assigned value 1 if the formula is to be satisfiable.

Hence, we assign value 1 to each unassigned literal in

ω and analyze the results. Assignments that are implied

by every such assignment are deemed necessary for the

formula to be satisfiable.

For example, consider the CNF formula and assign-

ments in Figure 6. Our objective is to analyze how we

might satisfy ω3. For ω3 to be satisfied, and because z =

1, we must either have w = 1 or y = 1. We consider each

assignment separately.

� Assignment w = 1 implies assignment x = 1, due to

assignment u = 0 and due to ω1.

� Similarly, assignment y = 1 implies assignment x = 1

due to ω2.

We can thus conclude that assignment x = 1 is nec-

essary to satisfy the CNF formula. Moreover, we can con-

clude by inspection that this is true only because z = 1

and u = 0. Thus, (z = 1) ∧ (u = 0) → (x = 1); or, in clausal

form, (z + u + x).

The most significant conclusion is that the recursive-

learning procedure not only identifies necessary assign-

ments but also can help identify new implicates of the

CNF formula that we can add to the original formula as

new clauses. Because this recursive-learning procedure

identifies new clauses, it does not repeat the same rea-

soning process at a later stage in the search to rederive

the same necessary assignment. Moreover, it can facili-

tate identification of other necessary assignments that

would otherwise not be identifiable.

Figure 7 gives a more complete example of the

depth-2 recursive-learning procedure on CNF formulas.

We can initiate the recursive-learning process on ω7

because y = 1. Assignments c = 0 and f = 0 satisfy clause ω7.

The recursive-learning process for depth 1 considers each

of these assignments separately. Assignment c = 0 implies

no assignments. However, clause ω3 now exhibits a new

literal with value 0. Hence, at depth 2 of the recursive-

learning process, we analyze clause ω3. Assignments a =

0 or b = 0 can satisfy ω3. Considering each assignment indi-

vidually yields the implied assignment x = 0. For a = 0, we

get x = 0 from clause ω1; for b = 0, we get the implied

assignment from ω2 because v = 0.

We perform a similar analysis for f = 0. Because f = 0,

clause ω6 exhibits a literal with value 0. Hence, we analyze

ω6 at depth 2 and find that assignments d = 0 and e = 0 can

satisfy it. Both d = 0 and e = 0 imply assignment x = 0. For 

d = 0, we get x = 0 from clause ω4; for e = 0, we get x = 0 from

ω5 because u = 1. Hence, (y = 1) ∧ (v = 0) ∧ (u = 1) →
(x = 0); or in clausal form, (y +v + u +x ). As in the previ-

ous example, the recursive-learning process identifies a new

clause that implies assignment x = 0, and, during the subse-

quent search, it can imply the assignment again.

Extended recursive learning on 
combinational circuits

When solving SAT on a CNF formula derived from a

combinational circuit for which we have structural infor-

mation (using the additional layer described earlier), we

can improve the recursive-learning procedure’s perfor-
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Figure 7. Depth-2 recursive learning on a CNF

formula. x = 0 is a necessary assignment.



mance by restricting it to unjustified node assignments.

In addition, for each unjustified node assignment, y = vy,

we can restrict the reasoning procedure to unresolved

clauses that relate y to immediate fan-in nodes. This

approach yields a significantly faster recursive-learning

procedure, similar to the original procedure for circuits,

and can also identify implicates of the CNF formula.2

SAT SOLVERS have dramatically improved during the

past few years. The most recent generation of SAT solvers

uses well-established techniques—clause recording and

nonchronological backtracking—but it is also based on

search restart strategies,10 new lazy-data structures,11 new

variable-branching heuristics,11 and new recorded-clause-

deletion policies.12 Because these improvements have

been applied solely to SAT solvers operating on CNF for-

mulas, they do not exploit the structural information of

combinational circuits. In the near term, these improve-

ments should be integrated in SAT solvers that exploit the

structural information of combinational circuits. In the

far term, we can expect to see adaptive algorithms that

can be dynamically reconfigured depending on the

search algorithm’s progression. �
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