On-chip high-speed sorting of micron-sized particles
for high-throughput analysis
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Abstract: A new design of particle sorting chip is presented. The device employs a dielectrophoretic
gate that deflects particles into one of two microfluidic channels at high speed. The device operates
by focussing particles into the central streamline of the main flow channel using dielectrophoretic
focussing. At the sorting junction (T- or Y-junction) two sets of electrodes produce a small
dielectrophoretic force that pushes the particle into one or other of the outlet channels, where they
are carried under the pressure-driven fluid flow to the outlet. For a 40 pm wide and high channel, it
is shown that 6 um diameter particles can be deflected at a rate of 300/s. The principle of a fully
automated sorting device is demonstrated by separating fluorescent from non-fluorescent latex

beads.

1 Introduction

The ability to rapidly detect, identify and subsequently sort
particles in fluid suspension has great importance in a wide
variety of fields. Applications include combinatorial chem-
istry, clinical diagnostics, water and food quality monitoring
and biohazard detection. Combinatorial chemistry is often
performed using polymer beads as substrates, onto which a
wide variety of chemical reactions and syntheses are
performed (e.g. gene expression analysis [1]). The ability
to analyse and sort large numbers of beads rapidly and
accurately, is therefore of great importance. Typically,
beads in the 5-10 um diameter size range are used, as they
represent a good surface area to volume ratio on which
to perform the chemistry. Beads can be processed using
commercial flow-cytometers, but these are expensive and a
chip-based platform provides much greater flexibility.

Flow cytometry is also of importance in clinical
diagnostics where the analysis of biological samples is
routinely carried out for the diagnosis of various medical
conditions (e.g. differential blood counts, detection of
pathogenic organisms, etc). Again, commercial flow-cyt-
ometers are used but the cost of running these machines is
high and they require skilled operators.

In recent years a number of groups have developed
prototype microchip-based flowcytometers for both the
detection and sorting of particles [2-7]. These devices have
the potential to substantially reduce the cost of diagnosis, as
the chips could be disposable. They also require much lower
volumes of reagent. Generally, particles are focussed
hydrodynamically so that they all pass through a small
detection region. Sorting is implemented downstream of this
detection region. Hydrodynamic focussing in micro-devices
generally acts only in one dimension, although a number of
complex fabrication schemes have been proposed to achieve
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true two-dimensional focussing [8-9]. Particles move
through the device under an externally applied hydrostatic
pressure gradient, or under electro-osmotic flow (EOF).
Both techniques manipulate the suspended particles indir-
ectly by controlling the movement of the fluid. However,
fluid-based sorting requires complex valving arrangements
whilst EOF devices require high voltages to be switched
between the different channels. In most of these devices, the
sorting rates have been relatively low when compared with
commercially available flow-cytometer systems (tens of
particles per second compared with 10000 particles
per second) [10]. A recent paper by Wolft and co-workers
demonstrated how rare particles could be selected using off-
chip switching of fluid flows [9]; however, the purity of the
sorted sample was low.

An alternative method of particle manipulation is
dielectrophoresis (DEP). This is a non-contact technique
which uses AC voltages to move particles towards or away
from microelectrodes [11, 12] fabricated within the device.
Sorting chips based on DEP particle manipulation techni-
ques do not need complex valve arrangements to control
the fluid and have the potential to produce high-speed
sorting devices, which could be dynamically configured
from a network of fluidic channels by choosing appropriate
electrode combinations. Compared with EOF, the applied
voltages are low (in the region of 1020V at frequencies of
1 MHz), so that there is no need for high-voltage switching
and the problems of bubble generation at the electrodes
surface due to electrolysis are eliminated.

Previous DEP-based particle sorting schemes have been
implemented by a number of groups [e.g. 3, 5, 11-14]. These
sorters typically use long strip electrodes on the upper and
lower channel surfaces to form negative DEP barriers.
These DEP barriers, inclined at an angle to the fluid flow,
are used to push particles tangentially across the flow
channel and direct them into the desired channel outlet.
This method of particle separation is relatively slow as the
sort region in such configurations may be an appreciable
fraction of the channel width. These DEP-based particle
sorters have been implemented in relatively large micro-
fluidic channels (> 200 pum wide) and have been limited in
speed by the fact that the particles must be moved several
10s to 100s of microns across the channel to allow sorting.
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A consequence of this is that to sort individual particles
accurately (i.e. to achieve high purity in the sorted sample)
the particle concentration in the channel must be low.
Gawad et al [5] suggested a method of temporarily
collecting and holding particles in a negative DEP trap at
the sorting junction, then releasing the particle in a
controlled manner into the desired outlet. This enabled
faster sorting, but at the cost of exposing the cells to the
DEP electric fields for extended periods, with the resulting
potential for cell damage.

In this paper we present a novel device configuration for
high-speed DEP sorting based on the use of microfaricated
electrodes positioned at a Y- or T-junction of a small
microfluidic channel. A particle analysis region is situated
near the sorting junction. Rapid switching of sort pulses
allows precise sorting of individual cell-sized particles. We
describe the principle of this device and demonstrate its
application by automatically sorting latex beads according
to their fluorescent properties.

2  Principle of operation

A schematic diagram of the device is shown in Fig. 1. The
device has three principle components, focussing electrodes,
an analysis region and a sorting region or gate. SEM images
of the device prior to bonding the lid are shown in Fig. 2a
and an optical image with dimensions is shown in Fig. 2b.
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Fig. 1 Diagram of the cell sorting chip comprising focussing
electrodes, detection zone and sorting electrodes. Note that this
diagram shows one half of the device (top or bottom). The full chip is
made from two halves bonded together

The device operates as follows. With reference to Fig. 1,
particles enter the chip suspended in an electrolyte. The fluid
suspension is driven by an external pump. Because the
distribution of particles is random, a set of electrodes is used
to focus particles (by negative DEP) into a beam one
particle wide, thus ensuring that all the particles follow the
same trajectory and travel along the central axis of the main
channel at the same velocity. Precise focussing is important
and ensures that all the particles pass through the detection
region in a reproducible way. It is also critical to the
successful operation of the sorter, as explained below.

Figure 1 shows that immediately after the detection zone,
the flow divides symmetrically into two outlets. Prior to the
outlet, particles move along the central streamline, and
therefore each particle has an equal probability of being
carried by the fluid into either of the two outlets. Deflection
of particles at the junction is achieved using negative DEP
which is generated by three pairs of micro-electrodes (a set
of three on the top and bottom of the channel) fabricated at
the junction as shown in the Figure. As a particle flows into
the junction, a negative DEP force deflects it off the central
streamline. Depending on which electrodes are energised,
particles can be deflected in one of two directions. Unlike
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a SEM images of the DEP particle sorter prior to bonding of the
channel lid. The inlet channel is 150 pm wide by 40 pm high in the
main channel, splitting into two outlet channels 75 pum wide by 40 pm
high

b Optical micrograph of the smaller sorting channel, showing details of
the sorting region giving electrode and channel dimensions

direct hydrodynamic control, the signal applied to the
sorting electrodes can be switched at high speed and deflects
the particle rather than the fluid. Due to the unstable
equilibrium position of the particle at the centre of the
channel, the force required to achieve deflection is small; the
only requirement is that the particle is deflected sufficiently
off the central stream line so that the fluid carries the
particle into the appropriate outlet.

The principle of operation of the gate can be seen by
reference to Fig. 3. This shows a numerical simulation of
the force vectors acting on a particle for an ideal
arrangement of three electrodes as shown in the Figure.
The arrows indicate the net force acting on a particle, i.e.
the sum of the hydrodynamic and dielectrophoretic forces.
The simulation is for the Y-channel geometry shown in
Fig. 1 with three electrodes placed at the corners of the
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Fig. 3 FEM showing the force vectors experienced by particles in
a Y-shaped sorting channel

a With electric field switched off (electrodes at 0 V) only fluid acts on
the particles

b Effect of fluid flow and a 20V peak-to-peak 10 MHz signal applied
to the right-hand electrode, other electrodes are held at 0V

¢ Cross-sectional view vertically through the channel along plane A-B
as shown in Fig. 2b

channel as shown in the diagram. Figure 3a shows the
situation with no applied voltage, the simulation showing
how the fluid velocity is reduced by 50% when it divides
into the two arms of the Y. Figure 3b shows the situation
when a 20V peak-to-peak signal at 10 MHz is applied to
the right-hand electrode, with the other two electrodes
connected to OV. The plot shows how the force on a
particle in the region of the junction pushes it into the
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opposite channel. Figure 3¢ shows the forces acting on the
particle in a cross-section of the device, marked A-B in
Fig. 3b. The electrodes not only push a particle down one or
other arm of the device but also centre the particle (from
top to bottom) within the channel.

A fully automated particle sorter was constructed to sort
particles on the basis of a fluorescence signal. The chip was
mounted in a fluorescence microscope and light was
focussed into a small spot downstream from the focussing
electrodes as shown in Fig. 1. The fluorescence signal from
single particles was measured at high speed using a
photomultiplier, as the particles flowed through the device.
The information was digitised, processed in real time and
used to control the switching of the appropriate voltages to
the sorting electrodes. Further details of the control system
are given below.

3 Experimental

3.1 Particles

10 um diameter FITC-labelled, polystyrene beads (F-8836)
were purchased from Polysciences Inc. and 6 um diameter
LinearFlow™ Cy5-labelled, intensity calibration beads
(L-14819) were purchased from Molecular Probes Inc.
These beads come as a matched set loaded with various well
defined amounts of CyS5 fluorescent probe. Three intensities
of beads were used in this work: 4%, 20% and 100%. The
beads were suspended in phosphate buffered saline (PBS)
diluted with water to a conductivity of 0.3Sm™".

3.2 Channel design and fabrication

Two sizes of device were constructed and tested in this
work; one with an inlet channel 80 um wide and 40 pm high,
dividing into two outlet channels of equal dimensions 40 um
wide and 40 pm high. A second devices was also fabricated
with an inlet channel 150 um wide by 40 um high, splitting
into two channels 75um wide by 40 um high. An SEM
image of the larger of the devices is shown in Fig. 2a. Figure
2b is a photo of the smaller device showing details of the
channel and electrode dimensions. The smaller channels
were used for the majority of the experimental work; the
larger devices was used for automated sorting.

Devices were constructed from 500 pm thick borosilicate
glass slides. Electrodes were fabricated using standard
photolithographic methods and consisted of a Ti/Au/Ti
trilayer (10 nm/100 nm/10 nm). After electrode fabrication a
200nm thick layer of silicon nitride (SiN) was deposited
over the entire substrate using plasma enhanced chemical
vapour deposition (PECVD). The SiN covering the
electrode edges and bonding pads was removed by reactive
ion etching (RIE) in an Oxford Plasmatech BP80 machine
(5min at 100 W, 15mT and 20mlmin~' C,Fg), using S1818
photoresist (Shipley) as an etch mask.

The microfluidic channel was constructed as follows: one
of the substrates (with electrodes) was coated with a 40 um
thick film of Durimide 7020 polyimide (Arch Chemicals
Ltd, UK) and patterned according to the manufacturer’s
guidelines [15] to produce the flow-channel. The two
substrates (one with a polyimide channel and one without)
were aligned and brought into contact using a Canon HTG
mask aligner. A drop of UV-curable glue was placed at the
edge of the aligned substrates, temporarily holding the
aligned chip prior to thermal bonding. The two halves were
thermally bonded by clamping the aligned chip and baking
in a nitrogen-filled oven. The temperature was ramped at a
constant rate from 90 °C to 350 °C over 120 min, then held
at 350°C for 60min, before cooling down to room
temperature. Bonded chips were mounted onto a PCB
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which provided the electrical connections. Inlet and outlet
holes for the fluidics were drilled through one of the
substrates prior to bonding, using diamond tipped drill bits
(Diama Ltd., UK). The particle suspension was passed
through the device using a syringe pump (Cole Palmer,
74900) and flow velocities were in the region of
1-10mms ', Figure 2a shows SEM images of a device
prior to bonding, showing the polyimide channel and DEP
electrodes. The sorting region electrodes and focussing
electrodes can be seen. The SiN layer was opened up over
the edges of the electrodes, ensuring that only that portion
of the electrodes was in contact with the fluid, reducing the
potential for joule heating of the fluid between the
electrodes.

3.3 Optical detection system

A diagram of the optical setup is shown in Fig. 4. Two
illumination options were used, a 100 W mercury arc lamp
(Zeiss) and a 10mW HeNe laser (632.8 nm). Both light
sources were coupled into the back port of a Zeiss Axiovert
200 fluorescence microscope via an optical switch (flipper
mirror and mechanical housing), which allowed selection of
one of the two light sources. An optical scrambler
(Technical Video Inc., USA) was used to expand the laser
beam. The optical scrambler consists of a lens for coupling
the laser into a high-numerical aperture-optical fibre, the
output light from the fibre then being passed through a two-
lens beam expander. The excitation light was imaged onto
the chip using a x 20 objective lens (0.75 NA, Zeiss Fluar)
giving an illumination area of approximately 50 um in
diameter. Fluorescence emission from the beads was
collected using the same objective lens. Emitted light was
filtered using either a Cy5 (when using the laser or mercury
lamp) or FITC (when using the mercury lamp) filter set
(Glen Spectra Ltd., UK). The emitted light was spatially
filtered to reduce the noise using a 50 pm diameter pinhole
positioned at the primary focal plane of the microscope
camera port, giving a final detection region of approxi-
mately 3pum diameter. Fluorescence was collected and
quantified using a photomultiplier (H7710-03, Hamamat-
su), with power supply (C7169, Hamamatsu) and amplifier
(C7319, Hamamatsu) fed into a DAQ (NI6040E, National
Instruments). Particles moving through the channel were
simultaneously imaged using a high-sensitivity digital
camera (Orca ER, Hamamatsu) attached to a second port
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Fig. 4 Schematic diagram of the confocal optical detection setup

on the microscope. The frame rate of the camera was set to
42 frames per second.

3.4 Real-time control

The amplified analogue signal from the PMT was digitised
using a National Instruments Real Time card (RT series
plug-in board NI 7030/6040E). The data from the PMT
was processed and used to activate the appropriate sorting
electrodes via a control algorithm written in LabVIEW™.
Sorting was triggered when a fluorescence signal was
measured above a user-defined threshold. The control
program generated a digital output from the RT card which
switched a solid-state analogue switch (DG419, Maxim)
that was used to control the signals applied to the sorting
electrodes. The maximum sample rate of the PCI-7030/
6040E and LabVIEW™ program was approximately 1 kHz.
Control of the sort pulse timing (i.c. delay and duration)
was implemented in the software.

3.5 Numerical simulation

Finite element simulation of the forces on a particle was
carried out using FlexPDE™ [16], a commercial simulation
package. The problem space was defined in three dimen-
sions to be the section of the channel close to the junction
and including sufficient channel length for end -effects
generated by the artificial termination of the channels to
have minimal influence on the solution of the different
parameters around the junction.

The electrical potential was obtained as a solution of
Poisson’s equation over the whole problem space. The
channel walls were assumed to be insulating boundaries and
the electrodes were represented as sections of the base and
top of the channel at fixed potentials or ground. The
solutions were obtained using adaptive mesh refinement
and the electric field and diclectrophoretic force were
calculated from the resulting electrical potential [11, 12]. The
fluid flow was determined by solving the Navier Stokes
equation for the same problem space with a given pressure
drop between the entry channel and the two arms of the
junction. The boundary conditions on the walls, base and
top of the channel were zero flow and Neumann for the
pressure. The entry of the channel was an in-flow condition
at fixed positive pressure and the two exits were outflow and
fixed zero pressure. The fluid problem was again solved
using adaptive mesh refinement.

4 Results and discussion

4.1 DEP focussing and optical detection
The focussing electrodes (on the top and bottom internal
surfaces of the channel) ensured that all the particles were
focussed by negative DEP force as they flowed through the
channel. Two sets of focussing electrodes were fabricated
into the device. The first set of focussing electrodes was
positioned in the tapered section of the inlet channel to
focus the particles prior to entry into the main section of the
microfluidic channel. The second set of focussing electrodes
was positioned just upstream from the detection region and
the sorting electrodes. These precisely focussed all the
incoming particles onto the central streamline ensuring they
all passed through the optical detection region immediately
prior to the sorting electrodes.

The focussing system has been described in detail
elsewhere, [17 19] and will only briefly be discussed here.
A suspens1on of latex beads suspended in dilute PBS
(300mSm ") was passed through the device and effective
focussing with particle velocities of up to 10mms~' was
achieved with voltages of 20V peak-to-peak at 10 MHz
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Fig.5 Plot showing the photomultiplier signal from the detection
of a mixture of 6 um Cy5 labelled fluorescent beads of three
fluorescent intensities. The effect of the DEP focussing is evident by
comparing the two graphs. With no focussing the confocal detection
system does not register the particles, they flow through the channel
at random positions making detection and discrimination of intensity
impossible

applied to two diagonally opposite electrodes with the other
electrodes held at 0 V. The DEP force pushed particles into
the centre of the channel, ensuring that all the particles
passed along the central axis of the flow channel and
through the optical detection zone. For these electrodes and
channel dimensions, the maximum particle velocity for
efficient focussing was 10mms™".

The detection region was illuminated using the 633 nm
laser spot focussed at the centre of the main channel, 50 pm
downstream from the focussing electrode array as shown in
Fig. 1. Data from the optical detection system is shown in
Fig. 5. With the DEP focussing switched, on the system is
capable of accurately discriminating between beads of
differing fluorescence intensities. With the focussing
switched off, the signal drops away as particles no longer
transit the detection region. With the focussing electrodes
energised, three intensities of fluorescent beads are clearly
distinguishable in the data.

4.2 Manual sorting

Figure 6 is a series of consecutive frames from a video
showing Cy5-labelled, 6 pm diameter beads passing through
the DEP gate. The images were obtained at 24 ms intervals
(42 frames per second). Having passed the detection zone,

the particles are focussed by the second set of focussing
electrodes and then deflected into one of the two channels,
depending on the applied voltage. The top row shows a
particle being gated to the left and the bottom row a particle
gated to the right. (The bright image in all the frames is due
to beads which have adhered to the channel wall during
previous experiments.) For applied voltages of 20V peak-
to-pack at 10 MHz (applied to the active electrodes, all
other electrodes held at 0 V) gating into either channel could
be achieved with 100% success at particle velocities up to
1.5mms".

Figure 7 shows a superposition of the video frames
showing the tracks of 200 individual particles within the
device; 100 sorted to the right followed by 100 sorted into
the left channel. The tracks are elongated as the particles
move several tens of microns during each video frame. The
trajectory of the particles is reproducible. They all follow the
same path from the focussing electrodes into the outlet
channels. The asymmetry in the particle trajectories seen in

sorting
electrodes

\ /

focussing
electrodes

Fig. 7 Superimposed images of 200 particles passing through the
sort junction. In this Figure, approximately 100 particles were sorted
to the right and 100 to the left. The image illustrates the reproducible
nature of the particle focussing and the resulting particle trajectories
through the sort region of the device

Fig. 6 Sequence of video frames showing particle deflection. Top row shows a single particle being gated to the left. Bottom row shows a
particle being gated to the right. The particles appear elongated as they move a considerable distance in the 24 ms timeframe of a single video

frame
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the Figure is due to imperfections in the channel after
fabrication, giving an uneven flow in the two outlet
channels. These imperfections were not present in the larger
channels.

It was possible to achieve continuous high-speed stream-
ing of particles into one outlet and then the other, at particle
velocities of 1.5mms™'. Faster sorting would be possible
with better control of channel dimensions and accurate
control of flow rates.

4.3 Automated sorting

The real-time control card was used to control the voltage
sequence applied to the gating electrodes. Mixtures of 6 um
Cy5 and 10um FITC fluorescently labelled latex beads
(ratio of 4:1) were used. The larger device dimensions were
used and particles were illuminated using the mercury lamp.
The system was programmed to sort on the basis of FITC
fluorescence. Any particle with fluorescence emission above
a threshold intensity level triggered a ‘sort’ pulse which was
applied to one set of electrodes. In the ‘no-sort’ state (no
fluorescence) the electrodes on the opposite side of the
channel were permanently energised. The central electrode
in the gate was always connected to ground or zero volts.
The real-time card introduces a small but finite time delay
between the detection of the fluorescence signal (from the
photomultiplier) and triggering of the voltage pulse. The
sorting voltage was 20 V peak-to-peak at 10 MHz, with a
sort pulse duration of 500 ms. All parameters were set in the
control software. To ensure no false gating, a delay of
100ms was introduced between the detection of the
fluorescence signal and the application of the sorting
voltage pulse. With these parameters, particles could be
sorted at velocities of 300 ums~ ' with 100% certainty (no
false positives).

Figure 8 shows an image of FITC-labelled beads moving
in one channel of the device with 6 um beads moving into
the other. The device was operated at a throughput of two
particles per second, and for a representative sample of 100
beads the number of missed events (i.e. lost fluorescent
beads) was zero. Four non-fluorescent beads were incor-
rectly gated. The optimal results using automated control
were obtained with a low density of fluorescent particles,
allowing the non-fluorescent particles to be sorted at
10 per second. The automated sorting rate is very slow,
but demonstrates the potential of the device. The speed is
limited by a number of parameters, such as the processing
speed of the real-time card and software (sample rate

I

non-fluorescent

fluorescent

Fig. 8 Video images showing automated sorting of fluorescent
from non-fluorescent beads. Fluorescent beads are sorted into the
lower channel, non-fluorescent the upper

6

<1kHz). Optimisation of the particle concentration,
sorting signal pulse (i.e. delay and duration of the pulse)
and the applied flow rates and voltages is required to
enable faster sorting. The inclusion of electrodes that would
spatially separate particles along the channel axis, as
described by Fiedler et al [3], would also improve the
sorting speed and efficiency.

5 Conclusions

We have demonstrated a device that can sort particles in a
fluid stream. The device operates by combining a
dielectrophoretic force with a hydrodynamic force. Particles
such as latex beads and cells can be manipulated using
relatively low voltages at high transit speeds. Owing to the
small size of the sorting junction, the probability of two
particles being gated at the same time is reduced, which
means that the particle concentrations can be relatively
high, giving increased throughput.

We are currently investigating higher-speed electronics
and improved device designs to optimise the sorting rate of
the device. Implementation of faster electronic control
systems and fine-tuning of the control signal delays
and durations should result in a significant increase in
the particle-sorting throughput. Channel shape and size
and electrode placements are all adjustable parameters. We
estimate that sort rates up to 1000 particles per second
should be achievable with further refinement.

6 Acknowledgments

This research was supported by the Emerging and Under-
pinning Technologies Domain of the UK MoD Corporate
Research Programme and EPSRC Grant GR/R28942/01.

7 References

1 Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H.,
Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R.,
George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S.R.,
Moon, K., Burcham, T., Pallas, M., DuBridge, R.B., Kirchner, J.,
Fearon, K., Mao, J., and Corcoran, K.: ‘Gene expression analysis by
massively parallel signature sequencing (MPSS) on microbead arrays’,
Nat. Biotech., 2000, 18, pp. 630-634

2 Lee, G.-W., Hung, C.-1., Ke, B.-J., Huang, G.-R., Hwei, G.-R., Hwei,
B.-H., and Lai, H.-F.: ‘Hydrodynamic focussing for a micromachined
flow cytometer’, Trans. ASME, 2001, 123, pp. 62-679

3 Fiedler, S., Shirley, S.G., Schnelle, T., and Fuhr, G.: ‘Dielectrophoretic
sorting of particles and cells in a microsystem’, Anal. Chem., 1998, 70,
pp. 1909-1915

4 Fu, AY., Spence, C., Scherer, A., Arnold, F.H., and Quake, S.R.: ‘A
microfabricated fluorescence-activated cell sorter’, Nat. Biotech., 1999,
17, p. 1109

5 Gawad, S., Schild, L., and Renaud, P.: ‘Micromachined impedance
spectroscopy flow cytometer for cell analysis and particle sizing’, Lab
Chip, 2001, 1, p. 76

6 Kruger, J., Singh, K., O’'Neill, A., Jackson, C., Morrison, A., and
O’Brien, P.: ‘Development of a microfluidic device for fluorescence
activated cell sorting’, Journal of Micromech. Microeng., 2002, 12,
p. 486

7 Schrum, D.P., Culbertson, C.T., Jacobson, S.C., and Ramsey, J.M.:
‘Microchip flow cytometry using electrokinetic focusing’, Anal. Chem.,
1999, 71, p. 4173

8 Sundararajan, N., Pio, M.S., Lee, L.P.,, and Berlin, A.: ‘Three-
dimensional hydrodynamic focusing in poly(dimethylsiloxane)
(PDMS) microchannels for molecular detection’. Presented at 6th
Annual European Conf. on Micro & Nanoscale Technologies for the
Biosciences, Montreux, Switzerland, 2002

9  Wolff, A., Perch-Nielsen, I.R., Larsen, U.D., Friis, P., Goranovic, G.,
Poulsen, C.R., Kutter, J.P., and Telleman, P.: ‘Integrating advanced
functionality in a microfabricated high-throughput fluorescent-acti-
vated cell sorter’, Lab Chip, 2003, 3, (1), pp. 22-27

10 Shapiro, H.W.: ‘Practical flowcytometry’ (John Wiley and Sons,
New Jersey, 2003, 4th edn.)

11  Morgan, H., and Green, N.G.: ‘AC electrokinetics: colloids and nano-
particles’, in Pethig, R. (Ed.) (Research Studies Press, Baldock, UK,
2003)

IEE Proc.-Nanobiotechnol., Vol. ee, No. o, e e 0 @ e @



12
13

14

15
16

Jones, T.B.: ‘Electromechanics of particles’ (Cambridge University
Press, Cambridge, 1995)

Voldman, J., Gray, M.L., Toner, M., and Schmidt, M.A.: ‘A
microfabrication-based dynamic array cytometer’, Anal. Chem., 2002,
74, pp. 3984-3990

Seger, U., Gawad, S., Johann, R., Bertsch, A., and Renau, P.: ‘Cell
immersion and cell dipping in microfluidic devices’, Lab Chip, 2004, 4,
pp. 148-151

http://www.archmicro.com/products, accessed April 2005
http://pdesolutions.com, accessed April 2005

IEE Proc.-Nanobiotechnol., Vol. ee, No. e, e e e ¢ e e

17

18

19

Morgan, H., Holmes, D., and Green, N.G.: 3D focusing of
nanoparticles in microfluidic channels’, /EE Proc. Nanobiotechnol.,
2003, 150, (2), pp. 76-81

Morgan, H., Holmes, D., and Green, N.G.: ‘AC electrokinetic
focussing in microchannels: micro- and nano-particles’, in Morgan, H.
(Ed.): ‘Electrostatics 2003” (IoP Publications, 2003)

Miiller, T., Gradl, G., Howitz, S., Shirley, S., Schnelle, T.
and Fuhr, G.: ‘3-D microelectrode system for handling and
caging single cells and particles’, Biosens. Bioelectron., 1999, 14,
pp. 247-256



Prof. Hywel Morgan

Department of Electronics & Computer Science
University of Southampton

Highfield

Southampton

United Kingdom

Reference: Item Number 0008M  Ref. 1d: NBT-2005-0008
On-chip high speed sorting of micron-sized particles for high throughput analysis

|EE PROCEEDINGS - PROOFS

Please check the enclosed proofs carefully. The ultimate responsibility for the accuracy of
the information contained within the paper lies with the author.

However, only essential corrections should be made at this stage and the proofs should
not be seen as an opportunity to revise the paper.

Please return all corrections to this office by the date on the proof. Late corrections may
not be included.

OFEPRINTS
When a paper has been published, 50 offprints are presented free of charge. These are

sent, with a copy of the issue, to the corresponding author. Please alow up to 8 weeks
from the date of publication for the offprintsto arrive.



	Abstract
	1 Introduction
	2 Principle of operation
	3 Experimental
	3.1 Particles
	3.2 Channel design and fabrication
	3.3 Optical detection system
	3.4 Real-time control
	3.5 Numerical simulation
	4 Results and discussion
	4.1 DEP focussing and optical detection
	4.2 Manual sorting
	4.3 Automated sorting
	5 Conclusions
	6 Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.2
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


