
Support for Arbitrary Regions in XSL-FO

A proposal for extending XSL-FO semantics and processing model

Ana Cristina B. da Silva
Joao B. S. de Oliveira

-
PUCRS/FACIN

{benso,oliveira}
@inf.pucrs.br

Fernando T. M. Mano
Thiago B. Silva

Leonardo L. Meirelles
PUCRS/CPSE

{fernando@cpts.pucrs.br}

Felipe R. Meneguzzi
Fabio Giannetti

-
Hewlett-Packard

{felipe.meneguzzi,
fabio.giannetti}

@hp.com

ABSTRACT
This paper proposes an extension of the XSL-FO standard
which allows the specification of an unlimited number of
arbitrarily shaped page regions. These extensions are built
on top of XSL-FO 1.1 to enable flow content to be laid out
into arbitrary shapes and allowing for page layouts currently
available only to desktop publishing software. Such a pro-
posal is expected to leverage XSL-FO towards usage as an
enabling technology in the generation of content intended
for personalized printing.
Categories and Subject Descriptors: I.7.2 [Document
and Text Processing]: Desktop publishing, Format and no-
tation, Markup languages, Photocomposition/typesetting
General Terms: Arbitrary Shapes, Typesetting, Digital
Publishing
Keywords: XSL-FO, XML, LATEX, SVG, Arbitrary Shapes

1. INTRODUCTION
The XSL-FO standard [13] describes XML documents

separating content and layout information. This has led
it to be considered an interesting alternative for publishing
workflows [8]. One of the main advantages of using XSL-
FO in publishing lies in it being an open standard based on
XML. Moreover, the processing of a document based on this
standard can be logically broken down into multiple stages
that can be distributed among specialized service providers.
From a formatting point of view, the XSL-FO format pro-

vides constructs for specifying page layouts in which con-
tent flows can be positioned automatically. Such capability
is important as it eases the process of paginating complex
content. Nevertheless the current version of the standard
has limitations regarding the type of layout over which flow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’05,November 2–4, 2005, Bristol, United Kingdom.
Copyright 2005 ACM 1-59593-240-2/05/0011 ...$5.00.

content can be placed. In particular, XSL-FO version 1.0
[13] defines five possible regions within a page, only one
of which can be used for the disposition of flow content.
Such limitation is overcome in version1 1.1 [14] through a
construct called fo:flow−map, which allows multiple content
flows to be mapped into specific regions within a page.
Despite such improvements in version 1.1, the current

page model allows only rectangular regions in which con-
tent is laid out. If XSL-FO is to be used as the base format
for a Digital Printing workflow, more flexibility in the defi-
nition of content holding regions is required. Therefore, we
propose to define regions using arbitrary shapes as a means
to allow for more flexible content layout within XSL-FO.
This article describes an extension of XSL-FO 1.1 [14]

that allows the definition of an unlimited number of page
regions, each one having arbitrary geometric shape. Such
an extension empowers the standard with document type-
setting capabilities with complex graphical compositions.
In the related work section we provide a brief overview

of the related work used in the conception of this proposal;
Section 3 lays out the set of representational possibilities
intended for the arbitrary regions and define the new for-
matting objects that will be used to that end; Section 4
describes the extensions required by the area tree model to
accommodate the new rendering possibilities; in Section 5
we briefly describe an implementation of an XSL-FO ren-
dering engine that supports the proposed extensions, and
finally, Section 6 discusses the proposal and its implementa-
tion so as to provide the basis for its refinement and further
development.

2. RELATED WORK
In the following sections we discuss a series of document

description languages, with a special emphasis on those that
decouple content and presentation details (Sections 2.1, 2.2,
2.3 and 2.4). Such languages are of particular interest in the
context of Digital Publishing and the production of high
quality personalized documents, as that separation allows
a seamless integration between user specific content, docu-
ment content templates and styling information.

1A W3C working draft at the time of this writing.

64

2.1 XSL and Formatting Objects
Extensible Stylesheet Language (XSL) is a standard devel-

oped and maintained by the World Wide Web Consortium
(W3C) whose main purpose is to provide a means through
which XML data can be formatted for presentation in mul-
tiple media types [13]. The standard itself is divided into
two XML vocabularies: XSL itself, and the XSL-Formatting
Objects (XSL-FO). Each one of these vocabularies is associ-
ated with a distinct process during the conversion of XML
data into a presentation in the output media.
The stylesheet language included in the standard is in-

tended to provide a mechanism to modify an arbitrary XML
tree into one described in terms of elements within the
XSL-FO namespace. Such a process is performed by an
XSL processor and is called Tree Transformation. The re-
sulting XSL-FO tree represents non-paginated content with
formatting instructions, which can be formatted into a spe-
cific presentation format and medium (e.g. PDF [3], PS [2],
. . .), following the formatting semantics described in XSL-
FO. The specification of a document using FO directives is
composed of three top-level sections (Figure 1):

• An fo:layout−master−set element holding the geomet-
ric definitions of the FO regions used throughout the
document as well as contexts in which these definitions
are used;

• An fo:declarations element holding global declarations
for the document, and;

• An fo:page−sequence element holding the specification
of sequences of content that will be distributed in
pages within a document. Content for these page se-
quences is specified as either fo:static−content for con-
tent that is not intended to be broken down into mul-
tiple pages or fo:flow elements for content that spans
across multiple pages.

fo:root

fo:layout−master−set
fo:simple−page−master

fo:region−before

fo:region−body

fo:region−start

fo:region−after

fo:region−end

fo:page−sequence−master

fo:single−page−master−reference

fo:repeatable−page−master−reference

fo:repeatable−page−master−alternatives

fo:conditional−page−master−reference

fo:declarations

fo:color−profile

fo:page−sequence

fo:title

fo:static−content

fo:flow

Figure 1: Sections of an XSL-FO Document.

2.2 TEX and LATEX
TEX [7] (and its variants) is a typesetting system devel-

oped by Donald Knuth aiming at the production of high-
quality documents for press printing. TEX document pro-
duction is driven by a document class which specifies the
general document structure as well as presentation details.
Coupled with a content file, it generates a formatted ver-
sion of such content according to the instructions of the
document class. LATEX is a document preparation system
that builds over TEX typesetting language aiming to decou-
ple formatting from content, facilitating the production of
a large volume of consistent high-quality output.
With regards to document layout specification, TEX uses

a set of imperative primitives to define rectangular areas in
which content is laid out. Commands for specifying com-
plex layouts are usually defined in terms of the low-level
primitives included in the native TEX implementation and
incorporated into a given document through macro pack-
ages, such as the one used in LATEX.
Considering that the native layout model is based in rect-

angular areas, the inclusion of complete arbitrary shapes
processing capabilities cannot be easily included using its
original layout primitives. In particular, TEX low-level com-
mands can be used in the creation of arbitrarily shaped
paragraphs or even pages for the layout of a single flow of
content, but this is not a trivial task and would push the
TEX interpreter model to its limits. In this respect, a set of
macros called shapepar [12] partially provides such a func-
tionality enabling the layout of single-paragraphs within a
given shape. Nevertheless, such macros do not allow flowing
text to be laid out throughout multiple pages, or the specifi-
cation of multiple arbitrary content regions within the same
page. Moreover, LATEX also includes a parshape command,
which given a set of constraints to line indentation, size and
number, can generate shaped paragraphs. Again, such a
command requires the involved constraints to be calculated
outside LATEX in a non-trivial process.

2.3 Scalable Vector Graphics (SVG)
Scalable Vector Graphics (SVG) is a language for de-

scribing two-dimensional graphics in XML [16] developed
jointly by the W3C, Adobe, Canon among other contribu-
tors and maintained by the W3C. Version 1.1 of this stan-
dard specifies primitives for drawing vector graphics, raster
images and non-paginated text. SVG is loosely related to
PostScript in its graphical primitives, as their specification
is very similar to this language.
Even though the current SVG specification does not aim

to provide a complete document description and printing
language such as PostScript or PDF, the working draft of
SVG 1.2 [15] shows a clear tendency towards turning SVG
into a full-fledged printing vocabulary. Evidence of such
direction is the inclusion of primitives for the specification
of paginated content, as well as for flow content and line-
breaking capabilities. Moreover, SVG 1.2 text-handling ca-
pabilities will be extended to allow the rendering of text
paragraphs within arbitrary shapes. In its current form,
however, SVG does not provide mechanisms for content-
flow across multiple pages or multiple regions within the
same viewport.

65

2.4 Other
This section briefly discusses other related languages used

for document description, more specifically PostScript and
PDF. These languages are used extensively as output for-
mats for document generation, but their low-level graphi-
cal primitives prevents them to be useable as user-specified
document languages.

2.4.1 PostScript
The PostScript language is a programming language de-

signed to convey a description of virtually any desired page
to a printer [1]. As a programming language it must be in-
terpreted by an appropriate interpreter program which im-
plements the semantics for its execution environment, which
allows the use of variables and the combination of basic op-
erators into complex functions and procedures. Moreover, it
is essentially a low-level control language for usage directly
at the printer level as an automatically generated format.
Using the features of the language, it is nevertheless pos-
sible to describe shapes (using straight lines or parametric
curves, for example) and provide a set of PostScript proce-
dures to take such shapes and some text, filling the shape
with the text and positioning the text at the proper places.
However, solving the problem with this approach might be
both expensive (as PostScript processing is not as fast as
other languages) and complex (as one has to deal with nu-
merical computations that are sensitive to small differences
between seemingly similar shapes).

2.4.2 Portable Document Format
The Adobe Portable Document Format (PDF) is a file

format for representing documents in a manner indepen-
dent of the application software, hardware, and operating
system used to create them and of the output device on
which they are to be displayed or printed [3]. PDF docu-
ments are described in terms of a stream of objects, be they
static printable content or other kind of electronic content
or metadata. It is generally used as a container for other
content specification formats such as PostScript, raster im-
ages, audio, or other interactive content. Notwithstanding
its extended functionality over lower level formats, it is still
a generally low-level description language employed mainly
as automatically-generated output format, and suffers from
the very same limitations as PostScript as far as arbitrary
content layout representation is concerned.

3. ARBITRARILY-SHAPED
FORMATTING OBJECTS

In this section wea describe an extension to the XSL-
FO standard that allows the specification of any number
of page regions within arbitrarily-shaped page regions. We
therefore propose a conservative extension to XSL-FO 1.1
[14], i.e. a valid XSL-FO document is also a valid document
within our extended semantics. Thus, the relevant aspects
of XSL-FO 1.1 are described in Section 3.1. A modified
page model is described in Section 3.2, whereas the elements
comprising our extension and their associated attributes are
described in Section 3.3. As we describe the new elements,
examples will be provided and the associated attributes will
be introduced as well as their semantics and association to
the geometrical structure of the document.

3.1 XSL-FO Basics
In XSL-FO version 1.0 [13] the only page region in which

flow content could be positioned is the fo:region−body, thus
the content placed on all the other regions was limited to
static headers, footers or similarly constant material. As
a consequence, the number of pages of a given sequence
was dictated by the amount of flow content included within
the body region of such page sequence. Such an associa-
tion of flow content only to the fo:region−body is expected
to be overcome in version 1.1 of the XSL-FO standard [14].
In the current working draft the fo:layout−master−set ele-
ment is augmented with a construct called fo:flow−map. meu
construct describes a mapping between named page regions
and named content flows. In order to maintain compatibil-
ity, a mapping representing the region to flow organization
of XSL-FO 1.0 is assumed as default in case no flow map
is supplied. A flow map example representing the default
mapping is described in Figure 2.

<fo:flow−map flow−map−name="default−mapping">
<fo:flow−assignment>
<fo:flow−source−list>
<fo:flow−name−specifier
flow−name−reference="xsl−flow−start"/>
<fo:flow−name−specifier
flow−name−reference="xsl−flow−body"/>

</fo:flow−source−list>
<fo:flow−target−list>
<fo:region−name−specifier
region−name−reference="xsl−region−start"/>
<fo:region−name−specifier
region−name−reference="xsl−region−body"/>

</fo:flow−target−list>
</fo:flow−assignment>
</fo:flow−map>

Figure 2: Flow map within XSL-FO 1.1.

Using a flow map, it is possible to attach content flows
to any one of the XSL-FO page regions. The possibility
of mapping multiple content flows in a page sequence into
multiple page regions represents the possibility of not being
able to determine the definition of the total number of pages
by any particular flow. Thus, depending on the amount of
content within a flow and the size of its encasing page region
a given flow may or may not command the number of pages
generated by a given page sequence.

3.2 Page Model
The new page model for the proposed extensions allows

the specification of any number of content-bearing page re-
gions as well as the five regions specified in XSL-FO 1.1.
These additional regions may possess an arbitrarily com-
plex geometric specification, limited only by the language
chosen for its description. Furthermore, our departure from
the original XSL-FO page-region organization implies that
overlapping of arbitrary portions of multiple adjoining re-
gions is possible. An example of such layout is shown in
Figure 3.
In order to cope with the new possibilities, the proposed

representation allows regions to have depth values so as to
allow region areas to be prioritized. A region can also have
a specific behavior associated to it which is considered when
overlapping with other regions occur, thus allowing a user
to control the interaction among overlapping regions.

66

Flow

Region

me
C, D

in

Flow

Region

non
A, B

in

=+

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
��������������������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
��������������������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������m

em
emem

eemme
mmeme

em em me
emememem

eeeemeem
mmeme

emme
eem
em

m

emee
e em me
em em me
memememe
mm emmeme

mem em em
mememem
mememe
meme
eme
me

onono no onoonono ono no
ono nonoononono on oo

no no ono no ono on
nono ono no o n

onno no no
ononono

ono

nononononnon

ono
nonono

nono no o

non no noo no noo
nonono nono on oonnon
non ononon ononon onno

me em mm me
eeememem

mememememe

em

A

B

C D

Figure 3: Possible page layout in extended XSL-FO.

3.3 New Formatting Objects
The description of arbitrary page regions in the extended

XSL-FO specification is accomplished adopting two mecha-
nisms similar to the currently supported pagination model.
As previously seen there are two ways of mapping a flow
inside a page region, a direct one using the region-name
as referencing attribute and an indirect one using the flow
mapping. The proposed approach accomplishes a similar ef-
fect regarding the association of shapes to regions enabling
the direct embedding of a shape description within a new
region-arbitrary element as well as a region mapping.

3.3.1 Direct Mapping throughfo:region−arbitrary
In the direct mapping approach, an fo:region−arbitrary

element, declared as a child of the fo:simple−page−master
element is introduced. Unlike its XSL-FO 1.1 siblings,

any number of different fo:region−arbitrary elements can be
declared within a given fo:simple−page−master as long as
they are uniquely named. The geometric outline of an ar-
bitrary region is specified using an external vector format.
Such specification is included as a child element of the arbi-
trary region element, in case the format is XML-based or as
CDATA otherwise (e.g. PostScript). Within our proposal
the chosen format is SVG [16] due to its XML nature and
consequent easier adaptation of an XSL-FO parser to cope
with it. For example, an SVG-specified arbitrary region
named Region1 in Figure 4.

<fo:region−arbitrary region−name="Region1" ...>
<svg ...>

...
</svg>

</fo:region−arbitrary>
Figure 4: Arbitrary Region SVG specification.

3.3.2 Indirect Mapping throughfo:shape−map

The support for indirect mapping adds flexibility to the
shape reuse across multiple pages and page sequences. Each
shape will be defined inside an fo:shape element as part of
the layout master set definition. Figure 5 shows the markup
example.
This mapping can be applied over legacy regions to sup-

port non-rectangular shapes in the "border" layout, already
available in XSL-FO 1.1, or in combination with the
fo:region−arbitrary to achieve a "free-form" layout.

<fo:shape−map shape−map−name="document−regions">
<fo:shape−assignment>

<fo:shape−source shape−name−reference="poly1"/>
<fo:region−target region−name−reference="left"/>

</fo:shape−assignment>
<fo:shape−assignment>

<fo:shape−source shape−name−reference="poly2"/>
<fo:region−target region−name−reference="body"/>

</fo:shape−assignment>
</fo:shape−map>

Figure 5: Shape Map specification.

3.3.3 Free-form layout versus Border Layout
In the original XSL-FO model only four regions can be

described (roughly corresponding to the header, footer and
both margins of a page) and all that is not included in one
of these regions comprises the body of the page. A simi-
lar effect can be immediately achieved through the use of
four shapes. Figure 6 shows three page models that could
be obtained through the use of arbitrary shapes. The first
model imitates the standard XSL-FO model, with only four
rectangular regions and the text body being defined as ev-
erything that is not included in those regions. In the sec-
ond page there are two non-rectangular margins and the
remaining area forming the body of the page is shaped as
a Z. In the third page a non-rectangular header frames two
other shapes that can be used as text columns. In this case
the true body of the page is the remaining area around the
columns, and will not have any content.

Page 1 Page 3Page 2

Figure 6: Simple arbitrary shapes.

For all practical purposes, it is important that the speci-
fied shape is composed solely of closed curves, that is, having
inside and outside regions, possibly having self-intersections.
Figure 8 shows two different shapes and their bounding
boxes; the first shape is composed by a single primitive
whereas the second one by three. Accordingly, the descrip-
tion of the first shape in Figure 8 in SVG would be given
by the specification of Figure 7.
The representation of an unbounded number of page re-

gions whose enclosing area is defined by any kind of closed
curve represents a major departure from the original XSL-
FO model of area overlapping semantics. More precisely,
XSL-FO defines four border page regions, each of which
specified in terms of an extent perpendicularly measured
from the corresponding page border, as well as a body page
region occupying the remainder of the space taken up by
the border regions. As a result, the four border regions
have clearly defined overlapping combinations, i.e. each
border region can overlap one of its two adjacent borders

67

<fo:region−arbitrary region−name="Object1" ...>
<svg:svg width="11.7in" height="8.3in" viewBox="

0 0 20157 13858">
<svg:g style="stroke−width:.025in; stroke:black ; fill:none "

>
<!−− Polygon −−>
<svg:path d="M 3307,1653 2834,1181 2362,1181 2362,944

1889,944 1889,1181 1417,1181 944,1653 1417,1653
1653,2125 1417,2362 1417,2834 1653,2598 2598,2598
2834,2834 2834,2362 2598,2125 2834,1653 3307,1653" /
>

</svg:g>
</svg:svg>
</fo:region−arbitrary>

Figure 7: Specification of Shape 1 in Figure 8.

Shape 1 Shape 2

Figure 8: Two different shapes composed by a different
number of primitives.

(Figure 9).

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Start EndBody

Before

After

Figure 9: Overlapping regions in XSL-FO 1.0 denoted in
dashed areas.

On the other hand, an unlimited number of possibly over-
lapping page regions entails that an unlimited number of re-
gion overlapping combinations may take place. Moreover,
the possibly non-rectangular shape of the overlapping areas
implies that when such an overlapping occurs, the clipping
of areas must be performed through constructive area ge-
ometry instead of simply adjusting the dimensions of a rect-
angle, as is currently done in XSL-FO. We therefore propose
two additional attributes for the arbitrary region element,
which should enable the proper specification of overlapping
behavior for non-rectangular areas. These attributes are
described in Sections 3.3.4 and 3.3.5.

3.3.4 Thelayer attribute
In order to deal with the problem of resolving region-

to-region interaction when overlapping occurs, we propose
a layering approach specified through a mandatory layer
attribute, and associated with the region element. The
rules associated with layer are:

• The layer is a positive integer and provides the or-
der for placing the region contents on a printed page.
Content with the largest layer is placed first, the sec-
ond largest layer is placed on top of the first, and so
forth;

• Every region has a different integer associated to layer
. If a number of disconnected shapes are required to
be at the same layer on a page, they can all be placed
within a single geometric description as in the second
shape of Figure 8 above.

1

2

3

Figure 10: Three different shapes with overlapping regions.

Figure 10 contains an example composed of three regions
placed on a page according to their layer . The number
within each region represents the layer associated to it, but
from that figure it is not clear how the three regions should
interact in the overlapping areas. Figure 11 shows two dif-
ferent ways of resolving the same situation. The main dif-
ference is that the document designer could wish that over-
lapped regions should recede and render their content in
the remaining visible area as in 11(a) or that their content
is to be overlapped as in 11(b). A combination of inter-
actions could also be desirable, with the right vertical bar
receding and the left one being overlapped. To handle such
situations, a second attribute is associated to a region, in-
forming whether that region will recede or not.

2

3
1

2

(a) (b)

3
1

Figure 11: Two possible interactions between overlapping
regions. In (a), the overlapped regions recede and text is
not rendered in the overlapped areas. In (b) there is true
overlapping.

The semantics of the layer attribute is very similar to
that of the z−index attribute, which is already in the XSL-
FO standard. Therefore, modifying the semantics of z−index
and using it instead of layer is also an option.

3.3.5 Therecede attribute
It is also necessary to provide a way of describing whether

a region will recede in case some other region at a higher
layer overlaps it. To store that information, a boolean recede
attribute is also associated to a shape, with the following
semantics:

• recede = false means that its associated region will
keep its original geometry and not be affected by any

68

other region on a layer above it. In this case, its con-
tent will be rendered in the original area.

• recede = true means that the current region will recede
if overlapped by any other region on a layer above it.
In this case, as much of its content as possible will be
rendered in the remaining area, if any.

It is important to point out that the recede attribute only
has meaning with respect to regions placed above the cur-
rent region. As this attribute is not mandatory, an ap-
propriate default value would be recede = false when such
attribute is not declared.

3.3.6 Other Attributes
Beyond the additional attributes described in the pre-

vious sections, some of the attributes currently associated
to region elements within a page master must have their
semantics adapted in order to cope with the notion of ar-
bitrary shapes introduced in this proposal. Therefore we
also provide a set of semantic modifications for the existing
attributes in order to cope with the introduced concepts.
Common Border, Padding and Background -When

a background-image is defined for an arbitrarily-shaped re-
gion, the background-attachment property is always treated
as if being defined as “fixed” as there is no defined method
for scrolling arbitrarily-shaped areas. A tiled background
will be positioned and distributed regarding the virtual rect-
angular area in which the arbitrary shape is inscribed, start-
ing at the before-start corner of the area, and following the
specified reference-orientation and writing-mode, and then
subsequently clipped to the arbitrary shape. When verti-
cal and/or horizontal position of a background is specified,
it will always be calculated relative to the virtual rectan-
gular area in which the arbitrary shape is inscribed, and
the background will be subsequently clipped to the arbi-
trary area (Figure 12). Border color, style and width prop-
erties for specific edges (e.g. before, end, . . .) have no
effect when specified for an arbitrary area. Instead, border-
color/style/width properties are used to specify the same
border behavior for all the edges of arbitrarily-shaped ar-
eas. Padding properties will have no effect for arbitrary
areas, being always considered zero.

Figure 12: Background in Shape 2 of Figure 8.

Layout-related Properties - The clip property is auto-
matically set to auto for regions defined as arbitrary shapes
with a recede property set to true. These attributes remain
unchanged otherwise.
Pagination and Layout Properties - When the over-

flow property is defined for an arbitrarily-shaped region, the

“scroll” value has no effect, as there is no defined semantics
for scrolling such regions. The “visible” and “auto” values
defer region clipping behavior to the recede and layer prop-
erties for arbitrary areas. The “hidden” value automatically
sets the recede property to false for arbitrary areas in case
such property has not been defined, otherwise it has no ef-
fect.

3.4 Modified Layout Process
Considering the modifications introduced by our extended

XSL-FO model, a number of aspects associated to the lay-
out process described in the standard [13, 16] require adap-
tation. In particular, the process of generating the view-
port/reference pairs for the arbitrary regions defined by
the proposed extensions is modified into a generic model
that also contemplates the standard page regions defined
by the original standard [13]. Furthermore, the processing
of arbitrary areas require different methods than the ones
currently used to handle rectangular geometric constructs,
in particular we chose to use primitives from Constructive
Area Geometry (CAG) [10] to perform such handling.

3.4.1 Region Interaction
The introduction of arbitrary shapes in the description of

page regions led to the region-to-region interaction model
described in Section 3.3. Such interaction model requires
a different process for the definition of the resulting ar-
eas, in particular one that handles the unboundedness of
region overlapping situations while conforming to the lay-
ering and overlapping strategy specified by the user. We
therefore propose Algorithm 1 as a reference for the han-
dling of region-to-region interaction.

Algorithm 1 Region interaction resolution.
Let Ri be a region with layer = i
Let Shi be the shape associated to region Ri

Let \ be the CAG difference operator
Let n be total number of regions within a page master
for i from n to 0 do
if recede = true in Ri then
for j from i-1 to 0 do

Shi = Shi \ Shj

end for
end if

end for

3.4.2 Conversion from standard regions
Besides handling the interaction among arbitrary regions,

the algorithm defined in Section 3.4.1 provides a generic
solution within which the standard XSL-FO rectangular
regions can be handled. Moreover, an implementation of
such standard would also take advantage of a unified region
model as it simplifies the mapping of regions in the FO tree
into elements within the area tree. We therefore define a
mapping from the five regions present in XSL-FO 1.0 into
the proposed arbitrary model.

Definition 1 (XSL-FO Page master). We de-
fine P = 〈Ph,Pw,Pmt,Pmb,Pml,Pmr〉 to be an
fo:simple−page−master such that:

• height = Ph and width = Pw;

69

• margin−top = Pmt and margin−bottom = Pmb;

• margin−left = Pml and margin−right = Pmr.

Definition 2 (Bottommost layer). Let A be the
set of all fo:region−arbitrary elements within a given page
master P, each of which containing a distinct layer = λ
attribute. We define Λ to be the greatest value of λ.

Definition 3 (FO Regions → Arbitrary).
Standard XSL-FO region elements, i.e. fo:region−before
, fo:region−after, fo:region−start , fo:region−end and
fo:region−body, within a page master P, such that
extent = ε and precedence = π (for non-body regions)
generate rectangular arbitrary regions with recede, layer, x,
y, width and height attributes according to Table 1.

An important aspect concerning the definitions of the
start and end regions is that the value of the precedence at-
tribute is assumed to be previously validated with regards
to the precedence defined for the before and after regions.
Another aspect of the proposed mapping refers to the way

in which the body region is converted into a rectangular
area that spans the entire page. In our proposed mapping
we take full advantage of the semantics associated to the
layer and recede attributes to generate a region located at
the bottommost layer, and will recede its area in favor of
all the other regions within the page master.

4. AREA TREE MODEL FOR ARBITRARY
SHAPES

Besides specifying the syntax for formatting objects, XSL-
FO also contains a general area model (area tree) which
comprise the formatted result [14], as well as the interac-
tion among these areas. The model is intended to provide
an abstract framework which is used in describing the se-
mantics of formatting objects.

4.1 Arbitrary Areas
The main modification introduced into the area model is

the introduction of Arbitrary Areas as possible nodes within
the area tree. Arbitrary areas are hierarchically equivalent
to the Rectangular Areas defined in Section 4.2 of the XSL-
FO 1.1 specification. Like its rectangular counterparts, spe-
cialized arbitrary areas can be either block-level or inline-
level. Similarly, child elements of block-level arbitrary areas
are of any type, either rectangular or arbitrary, inline or
block-level, while arbitrary children of inline-level are only
inline-level. Unlike arbitrary areas, child elements of rect-
angular areas can only be rectangular.

4.1.1 Border, Padding and Content
An important set of concepts within the original area

tree model involve the abstract naming of rectangle edges
(i.e. start, end, before, after), which are used as basis for a
language-independent representation of areas. Association
of such naming to the edges of arbitrary areas is clearly not
feasible. We therefore use the minimal bounding box within
which an arbitrary area can be inscribed whenever the ab-
stract edges of a rectangular area are required for writing-
mode or coordinate orientation purposes (Figure 13).
Areas in the original XSL-FO area tree had a series of

optional enclosing rectangles referring to padding, border

Bounding Box

Arbitrary Area

Figure 13: A Bounding Box

and content. Arbitrary areas have no rectangle or other en-
closing shape defining padding space, whereas they enclose
a content shape which coincides with the outline of the area
outline itself. Furthermore, if an arbitrary area has a border
property the corresponding border shape is generated using
the same path outline as its enclosing arbitrary shape.
Nodes within the area tree have a set of associated traits,

which are either directly derived from formatting object
(FO) properties or indirectly derived by one or more of such
properties. Directly derived traits obey the same semantics
as their generating FO properties for arbitrary areas. The
majority of indirectly derived traits also keep their original
semantics with the exception of the is−reference−area and
is−viewport−area traits, and those specifying position and
offset modifications. More precisely:

• Arbitrary viewport areas can never be used for
scrolling content;

• Whenever an arbitrary area is also a reference area,
the coordinate system used by its children is defined
by its bounding box;

• Therefore, whenever child elements of arbitrary refer-
ence areas contain position or offset traits, these are
calculated relative to their parent’s bounding box;

• Arbitrary viewport/reference pairs are always coincid-
ing shapes.

Page Margins

Region Body Resulting Area

Figure 14: Area Clipping.

Arbitrary areas containing traits that cause child areas to
have smaller rectangular bounds than its parent (e.g. start-

70

Region x y width height recede layer
π ¬π

fo:region-before Pml Pmt Pw − Pml − Pmr ε ¬π Λ + 1 Λ + 3
fo:region-after Pml Ph − ε− Pmb Pw − Pml − Pmr ε ¬π Λ + 1 Λ + 3
fo:region-start Pml Pmt ε Ph −Pmt −Pmb false Λ + 2 Λ + 2
fo:region-end Pw − ε + Pmr Pmt ε Ph −Pmt −Pmb false Λ + 2 Λ + 2
fo:region-body Pml Pmt Pw − Pml − Pmr Ph −Pmt −Pmb true Λ + 4 Λ + 4

Table 1: Region conversion table.

indent, end-indent . . .), generate a clipping rectangle de-
rived from its bounding box and resized accordingly, which
is then used to clip the resulting arbitrary area. An exam-
ple of such operation is the clipping of an arbitrary region
which exceeds the defined page margins (Figure 14).

Allocation Rectangle
C

on
te

nt
 H

ei
gh

t

A
va

ila
bl

e
H

ei
gh

t
Resulting Intersection

Figure 15: Area Allocation.

Moreover allocating new block areas throughout the lay-
out of a page sequence also uses a similar approach. Namely,
the allocation rectangle used to specify the available space
for the line building algorithm is used as a clipping box and
intersected with the parent arbitrary area (Figure 15).

4.2 Line Building
As the formatter populates the area tree through the re-

finement of areas into more specialized block areas in order
to layout content, it reaches a point in which Line Areas
are generated. These areas will provide the line building
algorithm with information regarding contiguous inline pro-
gression space. Such information is used by the formatter to
determine the amount of content that will be placed within
each line of a given document, and drive the actual layout
process.
Arbitrary Line Areas generate inline areas using the same

strategy proposed by SVG 1.2 to calculate text spans [15].
More precisely, line areas are generated as would any other
block-level areas, as described in Section 4.1.1, resulting in
zero or more closed shapes within which content is to be
laid out. Following this process, the layout algorithm must
determine which shapes are actually within the parent line
area. To accomplish that, the algorithm described in [15] is
used, with the following modifications:

• The areas that would generate text regions within
SVG flowing text layout will generate content-bearing
inline child elements;

• All the remaining SVG spans will generate inline spaces
within an arbitrary line area.

The Extensible Markup Language (XML)

is a subset of SGML that is completely de−

scribed in this document. Its goal is to enable

generic SGML to be served, received and pro−

cessed on the Web in the way that is now possible

with HTML. XML has been designed for ease of im−

plementation and for interoperability with both SGML

and HTML. For further information go to normal.pdf.

Line Area Indentation

Line Areas

Figure 16: Line Areas and Indentation.

Some traits within the resulting areas are modified ac-
cording to the alignment and spacing traits defined for its
parent areas. Considering a line area L contained within a
block area B, an inline area I is modified as follows:

• Start indentation for the first I generated for L is mod-
ified by the addition of the space from the start-edge
of content allocation rectangle for B to the start edge
of L (Figure 16);

• End indentation for the last I generated for L is mod-
ified by the addition of the space from the end-edge
of content allocation rectangle for B to the end edge
of L;

• The spacing introduced to enforce a justified align-
ment for a given line area is generated individually for
each inline element I generated for L instead of for
every inline element of L.

5. IMPLEMENTATION
Laying out content in multiple arbitrary regions is by no

means a computationally trivial operation. One of the main
concerns regarding the proposed extensions is the feasibility
of handling multiple arbitrary areas in the source XSL-FO,
as well subsequently breaking down these areas in order
to generate the appropriate sub-areas. A solution to such
question can be provided through an implementation of an
arbitrary shape processor for XSL-FO.
Implementing a full-fledged Formatting Objects Proces-

sor is, nevertheless, a complex task to the point that there is
no open-source implementation of the entire XSL-FO stan-
dard. Furthermore, implementing a limited subset of the
standard plus our extensions would also be a very demand-
ing implementation effort. We therefore chose to modify an
existing implementation to include our extensions, namely

71

Apache Formatting Objects Processor (FOP) [5]. These ex-
tensions are summarized in Section 5.1, while examples of
extended FO documents and the associated results using
the proposed implementation are described in Section 5.2.

5.1 Extended Formatting Objects Processor
Apache FOP is generally recognized as the leading open-

source implementation of the XSL-FO Standard [6, 9], and
was therefore chosen as the basis for the prototype imple-
mentation. Despite of the prototype being developed using
a specific implementation as its starting point, we will at-
tempt to describe the required modifications as generically
as possible, in order to allow the requirements to be used in
the extension of other XSL-FO implementations.
Considering the usage of features from XSL-FO 1.1 and

the new XML elements used by the extension, a 1.0-com-
pliant processor has to have its parser module modified to
include handling of the following elements:

• fo:flow−map - to handle the mapping of content-flows
into its destination regions, as well as its child element
fo:flow−assignment, and its associated flow−map−name
attribute. Also, the fo:page−sequence element will
have to be augmented with the flow−map−reference at-
tribute to allow a page sequence to select which flow
map it will use in the layout process;

• fo:flow−assignment - which holds the association of flows
to regions;

• fo:flow−source−list - which specifies a list of flows that
are associated to regions in the current simple page
master;

• fo:flow−name−specifier - and its associated
flow−name−reference attribute;

• fo:flow−target−list - which specifies the list of corre-
sponding regions into which the flows specified in the
fo:flow−source−list will be laid out;

• fo:region−name−specifier - and its associated
region−name−reference attribute;

• fo:region−arbitrary - to describe the new arbitrary re-
gions that can be used in a document layout, as well
as its associated recede and layer attributes.

These new elements also require their corresponding class
encoding to handle their associated semantics, according to
the XSL-FO 1.1 specification, or to Section 3 for arbitrary
regions. Furthermore, the possibility of laying out multi-
ple content flows in the same page sequence requires the
layout process to be modified to handle the page-by-page
distribution of parallel content flows.
The usage of a non-rectangular area representation entails

the usage of an encoding capable of keeping track of all the
edges of arbitrary areas. Therefore, the encoding of geo-
metric descriptions within an implementation of arbitrary
shapes is greatly improved when decoupled from the repre-
sentation of area tree objects, in order to allow the Inline or
Block-level behavior to be handled separately from the ge-
ometric calculations. The prototype thus uses Java2D Area
[11] objects to store the geometric definitions for any given

element in the area tree. Such an encoding also allows the
prototype to take advantage of Java constructive geometry
API. In addition to these facilities, the selected object repre-
sentation can be generated from the SVG shape description
in a straightforward way using the Batik [4] toolkit.
Finally, the modified area tree elements must be rendered

into an assortment of target formats and media, which en-
tails modifications into the XSL rendering process. The
usage of Java2D objects is also advantageous in this sit-
uation, as many Java-based XSL rendering APIs rely on
instances of the Graphics2D class, for which many special-
ized implementations intended target formats such as PDF,
PostScript, SVG or JPEG are available.

5.2 Results and Limitations
One of the main new capabilities included in the proto-

type is the possibility to define an arbitrarily-shaped area
for the body region within a page layout. This allows flow
content to be laid out within this arbitrary shape across
multiple pages. The shapes associated to the body region
are currently specified using SVG [16]. The specified SVG
is read by the parser contained in FOP, and the outline of
the resulting picture defines the boundaries for the arbi-
trary area. The prototype uses the latest Batik library to
parse such SVG and convert it into Java2D objects, which
are then used to derive the area shape. For example, an
XSL-FO definition within a simple page master defining an
yin-yang shaped area on top of rectangular area would gen-
erate pages looking like Figure 17.

BR
AVE

NEW
W ORLD -

ALDOUS HUXLEY
Chapter One A SQUAT

grey building of only thirty-
four stories. Over the main

entrance the words, CENT-
RAL LONDON

HATCHERY AND
CONDITIONING

CENTRE, and, in a
shield, the World State's

motto, COMMUNITY, IDEN-
TITY, STABILITY. The enorm-

ous room on the ground floor faced to-
wards thenorth. Cold for all the summer beyond

the panes,for all the tropical heat of the room it-
self, a harshthin light glared through the windows,

hungrily seekingsome draped lay figure, some pallid
shape of academ-ic goose-flesh, but finding only the

glass and nickeland bleakly shining porcelain of a
laboratory. Wintriness responded to wintriness. The
overalls of the workers were white, their hands gloved
with a pale corpse-coloured rubber. The light was
frozen, dead, a ghost. Only from the yellow bar-
rels of the microscopes did it borrow a certain
rich and living substance, lying along the

polished tubeslike butter, streak after
luscious streak in long re-

cession down the
work

Chapter Two MR.
FOSTER was left in the De-

canting Room. The D.H.C. and his
students stepped into the nearest lift and

were carried up to the fifth floor. INFANT
NURSERIES. NEO PAVLOVIAN CONDITIONING

ROOMS, announced the notice board. The Director
opened a door. They were in a large bare room, very

bright and sunny; for the whole of the southern wall was a
single window. Half a dozen nurses, trousered and jack-

eted in the regulation white viscose linen uniform, their hair
aseptically hidden under white caps, were engaged in set-

ting out bowls of roses in a long row across the floor. Big
bowls, packed tight with blossom. Thousands of petals, ripe

blown and silkily smooth, like the cheeks of innumerable
little cherubs, but of cherubs, in that bright light, not exclus-
ively pink and Aryan, but also luminously Chinese, also
Mexican, also apoplectic with too much blowing of ce-
lestial trumpets, also pale as death, pale with the
posthumous whiteness of marble. The
nurses stiffened to attention as
the D.H.C. came in. "Set out
the books," he said curtly.
In silence the nurses
obeyed his command.
Between the rose
bowls the books
were duly set out a
row of nursery quartos
opened invit- ingly each at
some gaily col- oured image of

beast or fish or bird. "Now
bring in the children." They

hurried out of the room and
returned in a minute

or two, each
push-

ing a
kin

Chapter One A SQUAT grey building of only thirty-four stories. Over the main entrance the words, CENTRAL LONDON HATCHERY AND
CONDITIONING CENTRE, and, in a shield, the World State's motto, COMMUNITY, IDENTITY, STABILITY. The enormous room on the ground
floor faced towards the north. Cold for all the summer beyond the panes, for all the tropical heat of the room itself, a harsh thin light glared
through the windows, hungrily seeking some draped lay figure, some pallid shape of academic goose-flesh, but finding only the glass and nickel
and bleakly shining porcelain of a laboratory. Wintriness responded to wintriness. The overalls of the workers were white, their hands gloved
with a pale corpse-coloured rubber. The light was frozen, dead, a ghost. Only from the yellow barrels of the microscopes did it borrow a certain
rich and living substance, lying along the polished tubes like butter, streak after luscious streak in long recession down the work tables. "And
this," said the Director opening the door, "is the Fertilizing Room." Bent over their instruments, three hundred Fertil-
izers were plunged, as the Director of Hatcheries and Conditioning entered the room, in the scarcely
breathing silence, the absent-minded, soliloquizing hum or whistle, of absorbed concentration. A
troop of newly arrived students, very young, pink and callow, followed nervously, rather
abjectly, at the Director's heels. Each of them carried a notebook, in which,
whenever the great man spoke, he des- perately scribbled. Straight from the
horse's mouth. It was a rare privilege. The D. H. C. for Central London al-
ways made a point of personally con- ducting his new students round
the various departments. "Just to give you a general idea," he
would explain to them. For of course some sort of general
idea they must have, if they were to do their work intelligently
though as little of one, if they were to be good and happy
members of society, as pos- sible. For particulars, as
every one knows, make for vir- ture and happiness; gener-
alities are intellectually neces- sary evils. Not philosoph-
ers but fretsawyers and stamp collectors compose
the backbone of society. "To- morrow," he would add,
smiling at them with a slightly menacing geniality,
"you'll be settling down to serious work. You won't
have time for generalities. Meanwhile " Meanwhile,
it was a privilege. Straight from the horse's mouth
into the notebook. The boys scribbled like mad. Tall
and rather thin but upright, the Director advanced in-
to the room. He had a long chin and big rather prom-
inent teeth, just covered, when he was not talking, by his
full, floridly curved lips. Old, young? Thirty? Fifty? Fifty-
five? It was hard to say. And anyhow the question didn't
arise; in this year of stability, A. F. 632, it didn't occur to you
to ask it. "I shall begin at the be- ginning," said the D.H.C. and
the more zealous students recor- ded his intention in their note-
books: Begin at the beginning. "These," he waved his hand,
"are the incubators." And opening an insulated door he showed them
racks upon racks of numbered test- tubes. "The week's supply of ova.
Kept," he explained, "at blood heat; whereas the male gametes," and here
he opened another door, "they have to be kept at thirty five instead of thirty seven.
Full blood heat sterilizes." Rams wrapped in theremogene beget no lambs. Still leaning
against the incubators he gave them, while the pencils scurried illegibly across the pages, a
brief description of the modern fertilizing process; spoke first, of course, of its surgical introduction

Figure 17: Content laid out over yin-yang symbol.

By using Java2D to perform area calculations, some over-
head is introduced into the implementation. This is due to
the usage of absolute-positioned Shape objects rather than
integer pairs defining the size of the generated areas. Since
area intersection calculations scale on the number of vertices
involved in the computation, one should expect a higher
cost for very complex page regions. We performed a series
of benchmarks in order to assess the overhead of processing
XSL-FO 1.0 documents in the new calculation model, which
showed that the new calculation model scales linearly with
regards to the original calculations (Figure 18).

72

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(m

s)

Document word count

Arbitrary Shapes FOP
Apache FOP 0.20.5

Figure 18: AS-FOP versus Apache FOP.

6. CONCLUDING REMARKS
This paper describes a proposal for the extension of the

XSL-FO standard to be able to layout content into multiple
arbitrarily shaped page regions. The extension is intended
to leverage the XSL standard for usage in the typesetting
of complex document layouts usually found only in expen-
sive desktop publishing applications. An implementation of
such standard enables the generation of personalized docu-
ments in layouts only encountered in one-of-a-kind graphic
presentations.
The proposed extensions reuse many concepts from the

SVG standard, as well as concepts currently being proposed
for its upcoming 1.2 version. Such reuse is not incidental, as
ensuing implementations of the arbitrary layout algorithms
and shape encoding schemes will be able to share many com-
mon components. At some level this sharing of components
is currently being done in the implementation of FOP, as
well as in the extended prototype described in Section 5.
Even with the text-flow enhancements incorporated into

the 1.2 version of SVG, we believe that the two standards
have distinct purposes. SVG is a language for defining two-
dimensional graphics, whereas XSL-FO comprises a style-
sheet and a document formatting language. The authors
believe that while SVG is an appropriate language for defin-
ing the geometric constructs in an FO input, as well as a
complete output format for rendered content, SVG should
remain responsible for the quick visualization of 2D content
without performing complex typesetting processing. XSL-
FO should instead be used for batch processing large vol-
umes of data into formatted and paginated content.
The next step in the development of the arbitrary shapes

extensions of XSL-FO is its analysis by the community.
Such an analysis should uncover potential flaws in the spec-
ification or point out improvements, and potentially lead to
its incorporation into a future version of the standard.

7. REFERENCES
[1] Adobe® Systems. Postscript language tutorial and

cookbook. Addison-Wesley, 1985.
[2] Adobe® Systems. PostScript™ Language Reference

Manual, 2nd ed. Adobe Systems Incorporated, 1990.
[3] Adobe® Systems. PDF Reference, 4th ed. Adobe

Systems Incorporated, 2003.
[4] Apache Software Foundation. Batik SVG

Toolkit. Web Page, September 2004. Extracted from
http://xml.apache.org/batik/.

[5] Apache Software Foundation. Formatting
Objects Processor. Web Page, September 2004.
Extracted from http://xml.apache.org/fop/.

[6] Canfora, G., and Cerulo, L. A visual approach to
define xml to fo transformations. In Proceedings of the
14th international conference on Software engineering
and knowledge engineering (2002), ACM Press,
pp. 563–570.

[7] Knuth, D. E. The TEXbook, vol. A of Computers &
Typesetting. Addison-Wesley, 1986.

[8] Kreulich, K. Publishing Workflows with XSL-FO.
In XML Europe 2003 (London, England, 2003),
International Digital Enterprise Alliance, pp. 1–6.

[9] Pawson, D. XSL-FO: Making XML Look Good in
Print. O’Reilly, United States, 2002.

[10] Shirley, P. Fundamentals of Computer Graphics. A.
K. Peters, Ltd., 2002.

[11] Sun Microsystems Inc. JavaTM 2 platform,
standard edition, v 1.4.2 API specification. Website,
September 2004. Extracted from
http://java.sun.com/j2se/1.4.2/docs/api/index.html.

[12] TEX Users Group. Comprehensive TEX Archive
Network (CTAN). Extracted from
http://www.tug.org/ctan.html, 2004.

[13] W3C, World Wide Web Consortium. Extensible
Stylesheet Language (XSL) Version 1.0. Web, October
2001. Extracted from http://www.w3.org/TR/xsl/.

[14] W3C, World Wide Web Consortium. Extensible
Stylesheet Language (XSL) Version 1.1. W3C
Working Draft, December 2003. Extracted from
http://www.w3.org/TR/2003/WD-xsl11-20031217/.

[15] W3C, World Wide Web Consortium. Scalable
Vector Graphics (SVG) 1.2. W3C Working Draft,
May 2004. Extracted from
http://www.w3.org/TR/SVG12/.

[16] W3C,World Wide Web Consortium . Scalable
Vector Graphics (SVG) 1.1 Specification. W3C
Recommendation, January 2003. Extracted from
http://www.w3.org/TR/SVG11/.

73

