Rigorous Design of Fault-Tolerant Transactions
for Replicated Database Systems using Event B

Divakar Yadav* and Michael Butler**

School of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ ,U.K
{dsy04r,mjb}@ecs.soton.ac.uk

Abstract. System availability is improved by the replication of data
objects in a distributed database system. However, during updates, the
complexity of keeping replicas identical arises due to failures of sites and
race conditions among conflicting transactions. Fault tolerance and reli-
ability are key issues to be addressed in the design and architecture of
these systems. Event B is a formal technique which provides a framework
for developing mathematical models of distributed systems by rigorous
description of the problem, gradually introducing solutions in refinement
steps, and verification of solutions by discharge of proof obligations. In
this paper, we present a formal development of a distributed system
using Event B that ensures atomic commitment of distributed transac-
tions consisting of communicating transaction components at participat-
ing sites. This formal approach carries the development of the system
from an initial abstract specification of transactional updates on a one
copy database to a detailed design containing replicated databases in re-
finement. Through refinement we verify that the design of the replicated
database confirms to the one copy database abstraction.

1 Introduction

A distributed system is a collection of autonomous computer systems that coop-
erate with each other for successful completion of a distributed computation. A
distributed computation may require access to resources located at participat-
ing sites. A distributed transaction may span several sites reading or updating
data objects. A typical distributed transaction contains a sequence of database
operations which must be processed at all of the participating sites or none of
the sites to maintain the integrity of the database [29]. Assuming that each site
maintains a log and a recovery procedure, commit protocols [17,29] ensure that
all sites abort or commit a transaction unanimously despite multiple failures.
Several versions of commit protocols were proposed to improve performance

* Divakar Yadav is a Commonwealth Scholar supported by the Commonwealth Schol-
arship Commission in the United Kingdom.
** Michael Butler’s contribution is part of the IST project IST 511599 RODIN (Rigor-
ous Open Development Environment for Complex Systems).

dealing with various aspects such as site failures, blocking and even compensa-
tion. Distributed transaction execution within the framework of commit proto-
cols ensures consistency and provides fault tolerance. There exist a number of
broadcast-based communication paradigms, e.g., centralized two phase commit,
nested two phase commit, distributed two phase commit [24] in which commit
protocols are implemented.

Replication improves availability in a distributed database system. It is
advantageous to replicate data objects when the transaction workload is predom-
inantly read only. However, during updates, the complexity of keeping replicas
identical arises due to site failures and conflicting transactions. The algorithms
ensuring globally ordered delivery of messages may be coupled with the provi-
sions to provide fault tolerance in the event of failures. Several approaches has
been proposed for management of replicated data using group communication
primitives [5, 18, 20,26, 30]. The application of formal methods to a replication
algorithm is considered in [16]. Group communication has also been investigated
in Isis [8], Totem [23] and Trans [22]. The protocols in these system use varying
broadcast primitives and address group maintenance, fault tolerance and consis-
tency services. The transaction semantics in the management of replicated data
is also considered in [5,6,26]. In addition to providing fault tolerance, one of
the important issues to be addressed in the design of replica control protocols is
consistency. The One Copy Equivalence [7,24] criteria requires that a replicated
database is in a mutually consistent state only if all copies of data objects logi-
cally have the same identical value.

The One Copy Serializability [7] is the highest correctness criterion for
replica control protocols. It is achieved by coupling consistency criteria of one
copy equivalence and providing serializable execution of transactions. In order
to achieve this correctness criterion, it is required that interleaved execution of
transactions on replicas be equivalent to serial execution of those transactions
on one copy of a database. The one copy equivalence and serial execution to-
gether provide one copy serializability which is supported in a read anywhere
write everywhere approach [27]. For example, consider any serial execution of a
transaction produced by system in the read anywhere write everywhere replica
control. A transaction which writes to a data item does so by writing data ev-
erywhere. Thus from the view point of a transaction which reads the values
produced by an earlier transaction, all copies were written simultaneously. So no
matter which copy a transaction reads, it reads the same value written by an
earlier transaction [7]. Though serializability is the highest correctness criteria, it
is too restrictive in practice. Various degrees of isolation to address this problem
has been studied in [20].

Our focus in this paper is on data replication. An update transaction
which spans several sites issuing a series of read/write operations is executed in
isolation at a given site. The basic idea used in this paper is to allow update
transactions to be submitted at any site. This site, called the coordinating site,
broadcasts update messages to replicas at participating sites. Upon receipt of
update requests, each site starts a sub transaction if it does not conflict with
any other active transactions at that site. The coordinating site decides to com-
mit if a transaction commits at all participating sites. Atomic broadcast is a

powerful service in the design of distributed applications. We assume that sites
communicate by broadcasting messages following globally ordered delivery of
messages [14, 32]. Advantages of group communication in varying degree of iso-
lation can be found in [15].

The reliability of distributed systems is an important design criterion for
developing new distributed services or updating existing ones. Reliability refers
to both resilience of a system to various type of failures and its capability to
recover from them [24]. These issues must be addressed in design, architecture
and in the component infrastructure itself. It is not possible to simply add a
fault tolerance module later on to make the system fault tolerant [19]. A system
can be designed to be fault tolerant by exhibiting well defined behavior which
facilitates the action suitable for recovery. For example, in replicated data up-
dates, the effect of an update transaction must not be visible until it commits at
all sites containing replicas and a replica should receive the updates in the same
order they were sent.

Formal methods provide a systematic approach to the development of
dependable complex systems. They use mathematical notations to describe and
reason about systems. Event B is a formal technique developed by Abrial [3, 2]
for distributed systems. In this paper we formally develop a model of transac-
tions in B for a one copy database. In the refinement, the notion of replicated
database is introduced. We address the one copy equivalence consistency crite-
rion through this refinement. We also address the issues of fault tolerance and
reliability of the system by allowing for transaction failure at sites in our refine-
ment. By verifying the refinement, we verify that the design of the replicated
database confirms to the one copy database abstraction.

The remainder of this paper is organized as follows: section 2 provides an
introduction to the B Method, section 3 describes the system model informally,
section 4 presents an abstract B model of transactions considering the database
as single logical entity, section 5 presents a refinement of the abstract B model
introducing details of replicated database, section 6 present some properties of
system given as invariants and lastly section 7 concludes the paper.

2 B Method

The B Method [1, 12] is a model oriented state based method developed by Abrial
for specifying, designing and coding software systems. The B Method provides
a state based formal notation based on set theory for writing abstract models of
systems. A system may be defined as an abstract machine. Abstract machines
contains sets, variables, invariants, initialization and a set of operations defined
on variables. The sets clause contains user defined sets that can be used in the
rest of the machine. The variables describe the state of machine. The invariants
are first order predicates and these invariants are to be preserved while updating
the variables through the operations. The operations can have input and output
parameters. Operation of machines are defined through generalized substitution
which allow both non deterministic and deterministic assignments.

2.1 Event B

Event B [2,3] is an event driven approach to system modelling based on B for
developing distributed systems. This formal technique consists of the following
steps :

- Rigorous description of abstract problem.

- Introduce solutions or details in refinement steps to obtain more concrete
specifications.

- Verifying that proposed refinements are valid.

In Event B operations are referred to as events which occur spontaneously rather
then being invoked. The events are guarded by predicates and these guards may
be strengthened at each refinement step. The state variables are modified by a
set of events. The invariants state properties that must be satisfied by variables
and maintained by activation of events.

The development methodology supported in B Method is stepwise refine-
ment. This is done by defining an abstract formal specification and successively
refining it to an implementable specification through a number of correctness
preserving steps. At each refinement step more concrete specifications of a sys-
tem are obtained. The B Method requires the discharge of proof obligations
for consistency checking and refinement checking. The B Tools Atelier B [31],
Click’'n’Prove [4], B-Toolkit [13] provide an environment for generation and dis-
charge of proof obligations required for consistency checking and refinement
checking. Applications of the B method to distributed system may be found
in [3,9-11, 25, 32]. In this work we have used Click’n’Prove.

2.2 B Notations

In this section we present some B notation frequently used in our model (Table-
1). A more detailed explanation of these may be found in [1,28]. Let A and B
be two sets, then notation < defines the set of relations between A and B as
A~ B= P(A X B)
where x is cartesian product of A and B. A mapping of element a € A and b €
B in a relation R € A < B is written as a — b. The domain of a relation R € A
< B is the set of elements of A that R relates to some elements in B defined as
dom(R)={alac AATb.(beBAa—beR)}
Similarly, the range of relation R € A < B is defined as set of elements in B
related to some element in A :
ran(R)={b|beBAJa. (acANa—DbeR)}
A relation R € A «— B can be projected on a domain U C A called domain
restriction(<1) defined as
U<«<R={a—bla—rbeRAacU}
A domain anti-restriction U < R removes all mappings whose first element is in
U. The domain anti-restriction is defined as
UgR={a—bla—beRAagU}
The Relational image R[U] where UCA is defined as
R[U]J={bla—beRAacU}

dom(R)|domain of relation R ran(R)|range of relation R
< |domain restriction — |mapping
< |relational overide operator| R[A] |relational image of R over set A
Py |non empty power set P |power set
-+ |partial function — |total function

Table 1. Some frequently used B Notations

If R € A —~ B and Ry € A «— B are relations defined on set A and B, the
relational over-ride operator (Rg < Rp) replaces mappings in relation Ry by
those in relation R;.

Ro <+ R = (dom(Rl) g Ro) U Ry
A function is a relation having some special properties. A Partial Function from
set A to B (A + B) is a relation which relates an element in A to at most one
element in B. A partial function f € A +— B satisfies

V(a,bl,bg).(aGA/\bl eBAb, €B
:>((al—>b1€f/\a*—>b2Gf)ﬁblibg)).

Similarly a Total Function f € A — B is a partial function where dom(f)=A.

3 System Model

In this section we present an informal model of a distributed database. Our sys-
tem model consist of a sets of sites and data objects. The distributed database
consists of sets of objects stored at different sites. Users interact with the database
by starting transactions. The data objects are assumed to be replicated across
all sites. The Read Anywhere Write Everywhere [7,24] replica control mecha-
nism is considered for updating replicas. We consider the case of full replication
and assume all data objects are updateable. A transaction is considered as a
sequence of read/write operations executed atomically, i.e., a transaction either
commit or abort the effect of all database operations. The one copy equivalence
requires that multiple copies of object must appear logically as a single object
to a transaction, i.e., from the users perspective, using the replicated database
must behave as a centralized database [7].

3.1 Transaction Types

The following types of transactions are considered for this model of replicated
database.

- Read-Only Transactions : These transaction are submitted locally to the site
and commit after reading the requested data object locally.

- Update Transactions : These transactions update the requested data objects.
The effect of update transactions are global, thus when committed, all repli-
cas of data objects maintained at all sites must be updated. In case of abort,
none of the sites update the data object.

To illustrate the two cases, consider Read Only transaction 77 and Update trans-
action Ty defined over set of data object O; and Oy respectively. The read-only
transaction 77 issues a sequence of read operations over data objects in O; and
update T5 issues a sequence of read or write operation over data objects in Os.
A transaction is termed an update transaction if it issues at least one write
operation.

3.2 Commitment of Transactions

Transactions in Read Anywhere, Write Everywhere replica control execute as
follows. A read transaction may be submitted at any site and its execution remain
confined to that site. However, an update transaction is executed globally and the
global commit decision of an update transaction is determined by the commit
decisions of the components of the update transaction at participating sites.
Consider an update transaction 7; submitted at a site S; called the coordinator
site. Since T; issues write operations, the coordinator site of T; broadcasts its
operations to all participating sites. Participating site S;, upon receipt of request
from coordinator S;, begins a subtransaction T;;. Each Tj; is executed following
a two phase locking scheme at participating site S;. Coordinating site .S; waits
for the intention to commit or abort from each participating site. An intention
to either commit or abort a sub transaction is sent by S; to coordinator S;.
The decision of a global commit or abort is taken at the coordinator site. Thus
the decision of a global commit or abort of an update transaction is taken in
the framework of a two phase commit protocol. This mechanism ensures atomic
commitment of update transactions even in case of site failures. The commit or
abort decision of an update transaction T; is taken as follows,

- T commits if all T;; commit at S;.
- T; aborts if any T;; aborts at S;.

3.3 Degree of Isolation

We consider the situations where read-only and update transactions may
be submitted to any site. In order to ensure correct serial execution of transac-
tions they must execute in isolation. Various degrees of isolation, e.g., no isola-
tion, read-write isolation and general isolation are discussed in [15] in the context
of replication. In order to meet the strong consistency requirement where each
transaction reads the correct value of a replica, conflicting transactions need to
be executed in general isolation. Two transactions 7; and T} are in conflict if the
sequence of operations issued by T; and T} are defined on set of object O; and
O; respectively and O; N O; # . General isolation between T; and T; means
no operation of T; may be interleaved with operations of T}.

4 Abstract Model of Transactions in B

The abstract data model of transactions is given in Fig.1 as a B machine. The
operations of the machine are shown in Fig.2. The abstract model maintains a

MACHINE replicall

DEFINITIONS Partia DB == (OBJECT -+ VALUE) ;
UPDATE == (Partiad DB — Partia DB) ;
ValidUpdate (update,readset) == (dom(update)= readset — VALUE
A ran(update) c readset — VALUE)

SETS TRANSACTION; SITE; OBJECT; VALUE;
TRANSSTATUS={ COMMIT,ABORT,PENDING}

VARIABLES trans, transstatus, database, transeffect, transobject

INVARIANT transe P(TRANSACTION)
A transstatus e trans — TRANSSTATUS
A database e OBJECT — VALUE
A transeffect e trans — UPDATE
A transobject e trans — P(OBJECT)
AV1.(te trans = ValidUpdate (transeffect(t), transobject(t)))

INITIALISATION trans:= | transstatus:=2 || transeffect := {}
|| transobject :={} || database:e OBJECT — VALUE

Fig. 1. Abstract Model of Transactions in B

notion of a central or one copy database. The abstract database is modelled as
a total function from objects to values :

database € OBJECT — VALUE

In practice a database will be partial, but for simplicity, in this paper,
we avoid dealing with the errors caused by trying to read undefined objects
and instead focus on errors caused by sites failing to commit a transaction. An
individual transaction will involve a set of objects readset C OBJECT. It will
read from a partial projection of the database (pdb) on to readset, i.e.,

pdb = readset < database

If it is an update transaction it will write to a subset of readset and the
new values of the objects to be written may depend on the existing values of the
objects in readset. Let the set of objects to be written be writeset where writeset
C readset. So we model an update to a database as function that takes a partial
database (representing the current values of the objects in readset) and yields
a partial database (representing the new values of the objects in writeset). A
transaction is a read only-transaction if its writeset = @. Thus for a read-only
transaction, its update function maps a partial database defined over readset to
an empty set. The update function is defined as below,

UPDATE £ PartialDB + PartialDB
where PartialDB £ OBJECT - VALUE

An update function update maps a partial database (pdb1) where pdbl = readset
< database to another partial database (pdb2) where dom(pdb2) = writeset. The
update function update updates the database as follows,

database = database < update (pdbl)

We say that an update update is valid w.r.t a set of objects readset whenever,

dom(update) = readset — VALUE
A ran(update) C readset — VALUE

Our model of database updates is sufficiently general to model atomic series of
read-only and update transactions. A brief description of machine is given below.

- TRANSACTION, SITE, OBJECT and VALUE are defined as a deferred
sets. The TRANSSTATUS is an enumerated set containing value COM-
MIT,ABORT and PENDING. These values are used to represent the global
status of transactions.

- The database is represented by a variable database as a total function from
OBJECT to VALUE. A mapping (o — v) € database indicates that object
o has value v in the database.

- The variable trans represents set of started transactions. The variable transsta-
tus maps each started transaction to TRANSSTATUS.

- The variable transobject is a total function which maps a transaction to a
set of objects. The set transobject(t) represents the set of data objects read
or written by a transaction t.

- The variable transeffect is a total function which maps each transaction to
an object update function UPDATE. An object update function f € Par-
tialDB — Partial DB maps data objects and their corresponding value to
updateable objects and update values.

- A transaction ¢ is a read-only transaction if ran(transeffect(t)) = {@}.

- The invariant ¢ € trans = ValidUpdate(transeffect(t),transobject(t)) indicate
that all objects to be updated must be a part of transaction objects.

4.1 Starting a Transaction

The event StartTran(tt), given in Fig.2, models starting a new transaction ¢t. The
guards given in the WHEN statement prevents restarting tt. The ANY state-
ment sets the variables transobject(tt) and transeffect(tt) so that transobject(tt)
is a non empty set of objects and transeffect(tt) is some valid update on the ob-
jects. A transaction tt is considered as read-only if the ran(transeffect(t)) is set
to an empty set and it is considered an update transaction if ran(transeffect(tt))
contains at least one mapping of the form (o—v). The status of transaction tt
is set to PENDING.

SartTran(tte TRANSACTION) =
WHEN tt ¢ trans
THEN trans:= trans u{tt}
| transstatus(tt) := PENDING
[ANY updates,objects
WHERE updates e UPDATE ~ objects € P; (OBJECT)
A VaidUpdate (updates,objects)
THEN transobject(tt) := objects || transeffect(tt) := updates
END END;

CommitWriteTran(tte TRANSACTION) =
WHEN tt e trans A transstatus(tt) =PENDING A ran(transeffect(tt)) = {<}

THEN transstatus(tt) := COMMIT
|| LET pdb BE pdb = transobject(tt) < database IN
database := database < transeffect(tt)(pdb) END
END;

AbortWriteTran(tt e TRANSACTION) =
WHEN tt e trans A transstatus(tt) = PENDING A ran(transeffect(tt)) = { &}

THEN transstatus(tt) :== ABORT
END;

val < ReadTran (tte TRANSACTION) =
WHEN tt e trans transstatus(tt) = PENDING A ran(transeffect(tt))= { 7}

THEN va :=transobject(tt) <« database
|| transstatus(tt) := COMMIT
END;

Fig. 2. Operations of abstract transaction model

4.2 Commitment and Abortion of Update Transactions

The event CommitWriteTran(tt) models commitment of an update transaction.
As a consequence of the occurrence of this event, the abstract database is updated
with the effects of the transaction and its status is set to commit.

The event Abort WriteTran(tt) models abort of an update transaction. As
a consequence of occurrence of this event, the transaction status is set to abort
and its effects are not written to the database. The B specification of these
operations are given in Fig.2.

4.3 Commitment of Read Only Transactions

The event ReadTran(tt), given in Fig.2, models commitment of a read-only trans-
action tf. The guards of this events ensure that a pending read-only transaction
tt commits after reading the objects from the abstract database defined by vari-
able transobject(tt). A read-only transaction commits by returning the values of
the objects as a partial database.

REFINEMENT replica22
REFINES replicall

SETS SITETRANSSTATUS={ commit,abort,precommit,pending}

VARIABLES trans, transstatus, activetrans, coordinator, sitetransstatus,
transeffect, transobject, freeobject, replica

INVARIANT activetrans e SITE <> trans
A coordinator e TRANSACTION — SITE
A Sitetransstatus e trans — (SITE -»SITETRANSSTATUS)
A replicae SITE — (OBJECT — VALUE)
~ freeobject e SITE <> OBJECT

INITIALISATION trans:= || transstatus: =2 || activetrans :=
|| coordinator :e TRANSACTION — SITE
|| stetransstatus ;= || transeffect :={} || transobject :={}
|| freeobject := SITE * OBJECT
| ANY data WHERE datae OBJECT — VALUE
THEN replica:= SITE *{data} END

Fig. 3. Initial part of Refinement

5 Refinement of Transactional Model

The initial part of the refinement of the abstract model is given in Fig.3. The B
specification of events of the refinement are introduced later in this section. The
abstract B model of a transaction maintains a notion of abstract central database.
In the refinement the notion of replicated database is introduced. It may be
noted that in the abstract model given in Fig.2, an update transaction perform
updates on an abstract central database whereas in the refined model, an update
transaction updates replicas at each sites. Similarly, a read-only transaction reads
the data from the replica at the site of submission of the transaction. A brief
description of the refinement is given below.

- New variables coordinator, replica, activetrans,freeobject and sitetranstatus
are introduced in refinement. The variable coordinator is defined as a to-
tal function from TRANSACTION to SITE. A mapping of form (t—s) €
coordinator imply that site s is a coordinator site for transaction t.

- Each site maintains a replica of the database. The variable replica is ini-
tialized to have the same value of each data object at each site. A mapping
(s—(o—w)) € replica indicate that site s currently has value v for object o.

- Variable activetrans keeps a record of transactions running at various site.
A mapping (s —t) € activetrans indicate that site s is running transaction
t. The variable freeobject keeps a record of objects at various sites which are
free, i.e., those objects which are not locked by any active transaction.

10

Coordinator Cohorts

StartTran

IssueWriteTran
Request

BeginSubTran

: - Vote—Commit/Abort SiteAbortTx
CommitWriteTran SiteCommitTx
AbortWriteTran

Commit/Abort Decision ExeCommitDecision
ExeAbortDecision

Fig. 4. Events of Update Transaction

- The variable sitetransstatus maintains the status of all started transaction at
various sites. A mapping of form (¢ (s—commit))e sitetransstatus indicate
that ¢ has committed at site s.

- The new events such as Issue Write Tran, BeginSubTran, SiteAbortTx, SiteCom-
mitTx, ExeAbortDecision and ExeCommitDecision are introduced in opera-
tions.

An informal logical ordering of the occurrence of various events of the refinement
for an update transaction is given in Fig.4. These events are triggered as given
below.

i The events StartTran(tt) and Issue WriteTran(tt) occur at the coordinating
site of tt. Upon issue of tt at the coordinator, the coordinator broadcast
request messages to all sites to start a subtransaction which updates the
replica at that site.

ii The event BeginSubTran(tt,ss) starts a subtransaction of ¢t at site ss. The
site may independently decide to either commit or abort tt. The events
SiteCommitTx(tt,ss) and SiteAbortTx(tt,ss) are events of commitment or
abortion of an update transaction ¢t at ss. Participating sites communicate
their decision to the coordinator of tt by sending either a Vote-Commit or
Vote-Abort message.

iii Upon receipt of a Vote-Commit/Abort message, the coordinator site triggers
either the event AbortWriteTran(tt) or CommitWrite Tran(tt). The coordi-
nating site communicates its decision by broadcasting a commit/abort de-
cision message. Upon receipt of a commit/abort decision message from the
coordinator, the participating site ss decides to abort or commit ¢t by trig-
gering either ExeAbortDecision(ss,tt) or ExeCommitDecision(ss,tt) event.

With reference to update transactions, some of the events are coordinator site
events while others are participating sites event as shown in Fig.4. A brief de-
scription of events of refinement is given below.

11

SartTran(tt) =
WHEN tt e trans
THEN trans:=transu{tt} | transstatus(tt) := PENDING
|| sitetransstatus(tt) (coordinator(tt)) := pending
|| ANY updates,objects
WHERE updates e UPDATE ~ objects € P, (OBJECT)
~ ValidUpdate (updates,objects)
THEN transobject(tt) := objects || transeffect(tt) := updates
END END;

IssueWriteTran(tt) =
WHEN tt e trans A (coordinator(tt) — tt) ¢ activetrans A transstatus(tt)=PENDING
A ran(transeffect(tt))={ &} A transobject(tt) < freeobject[{ coordinator(tt)}]
A Vtz.(tz e trans A (coordinator(tt) —tz)e activetrans
= transobject(tt) N transobject(tz)=2)
THEN activetrans := activetrans u { coordinator(tt)—tt}
|| sitetransstatus(tt) (coordinator(tt)):= precommit
|| freeobject := freeobject - { coordinator(tt)} *transobject(tt)
END;

Fig. 5. Refinement : Coordinator Site Events-I

5.1 Starting and Issuing a Transaction

Submission of a transaction t¢ is modelled by the event StartTran(tt). The event
Issue Write Tran(tt) models of issuing of an update transaction at the coordina-
tor from a set of started transactions which are not in confiict with other issued
transactions at coordinator site. The guard of IssueWriteTran(tt) ensures that
a transaction tt is issued by the coordinator when all active transactions ¢z run-
ning at coordinator site of ¢t are not in conflict with tt,i.e.,
tz € trans A (coordinator(tt) — tz) € activetrans

= transobject(tt) A transobject (tz) = &
The B specification for events StartTran(tt) and Issue WriteTran(tt) of the re-
finement are given in Fig.5.

5.2 Commitment and Abortion of Update Transactions

Refined B specifications for the commit and abort events of update transaction
tt are given in Fig.6. An update transaction ¢t globally commits only if all
participating sites are ready to commit it, i.e., it has pre-committed and active
at all sites. Thus, following conditions must hold for each site s before committing
update transaction tt.

- sitetransstatus(tt)(s)= precommit
- (s +— tt) € activetrans

As a consequence of the occurrence of the commit event at the coordinator,
the replica maintained at the coordinator site is updated with the transaction

12

CommitWriteTran(tt) =
WHEN ttetrans ran(transeffect(tt))={&} A (coordinator(tt) —tt) e activetrans
A transstatus(tt)=PENDING A Vs.(seSITE = sitetransstatus(tt)(s)= precommit)
A VS,0- (SeSITE A 0cOBJECT A Oe transobject(tt) = (s—0) ¢ freeobject)
A VS.(seSITE = (s—tt)eactivetrans)
THEN transstatus(tt) := COMMIT || activetrans := activetrans -{ coordinator(tt) —tt}
|| sitetransstatus(tt) (coordinator(tt)):= commit
|| freeobject := freeobject U { coordinator(tt)} *transobject(tt)
[LET pdb BE pdb = transobject(tt) < replica(coordinator(tt)) IN
replica(coordinator(tt)) := replica(coordinator(tt)) < transeffect(tt)(pdb) END
END;

AbortWriteTran(tt) =
WHEN ttetrans A ran(transeffect(tt))={ &} A (coordinator(it) —tt) e activetrans
A transstatus(tt)=PENDING A 3s. (seSITE ~ sitetransstatus(tt)(s)= abort)
THEN transstatus(tt) := ABORT || activetrans := activetrans -{ coordinator(tt)—tt}
|| sitetransstatus(tt) (coordinator(tt)):= abort
|| freeobject := freeobject U { coordinator(tt)} * transobject(tt)
END;

val < ReadTran(tt,ss) =
WHEN tte trans A transstatus(tt)=PENDING A transobject(tt) e freeobject[{ss}]
A ss = coordinator(tt) A ran(transeffect(tt))={ &}
THEN val :=transobject(tt) < replica(ss) || sitetransstatus(tt)(ss) := commit
|| transstatus(tt):=COMMIT
END

Fig. 6. Refinement : Coordinator Site Events - II

effects, data objects held for transaction tt are declared free and the status of
the transaction at the coordinator site is set to commit. Similarly, the guard of
AbortWriteTran(tt) means that an update will abort if it has aborted at any
participating site,i.e.,

3 s .(s € SITE A sitetransstatus(tt)(s)= abort)

Further Refinement of Commit Event The event CommitWriteTran(tt)
can be further refined under following observations.
- 0 € transobject(t) A sitetransstatus(t)(s)=precommit = (s — o) ¢ freeobject
- sitetransstatus(t)(s)=precommit = (s—t) € activetrans
- 0 € transobject(t) A (s—t) € activetrans = (s — o) ¢ freeobject

These observations can be included as invariants in a further refinement allowing
the guards of the CommitWriteTran(tt) event to be simplified to

tt € trans

A ran(transeffect(tt))# {&}

A transstatus(tt)=PENDING

AV s. (s €SITE A sitetransstatus(tt)(s)= precommit)

13

5.3 Read Only Transaction

The specifications of executing a read-only transaction is given in Fig.6. A pend-
ing read-only transaction ¢t returns the value of objects defined by transobject(tt)
from the replica at its coordinator. The necessary condition for occurrence of this
event is given below,

- transstatus(tt)=PENDING A ran(transeffect(tt))= {@}
- transobject(tt) C freeobject[{ss}]

As a consequence of occurrence of this event, transaction #t read the objects from
replica at site ss as val := transobject(tt) < replica(ss). It may be noted that in
the abstract model given in Fig.2, a read-only transaction read the objects from
abstract database as val := transobject(tt) < database. In refinement checking,
we need to prove that (ss — oo0) € freeobject = database(oo)= replica(ss)(00)
to show that refinement is valid. This is explained further in section 6.

5.4 Starting a Sub-Transaction

The BeginSubTran(tt,ss) is an event of starting a subtransaction of ¢t at par-
ticipating site ss. The specification of this event is given in Fig.7. The guard of

BeginSubTran(tt,ss) =
WHEN tt e trans A sitetransstatus(tt)(coordinator(tt)) = precommit
A (ss—tt)e activetrans A ss= coordinator(tt) A ran(transeffect(tt))={ &}
A transobject(tt) c freeobject[{ss}] A transstatus(tt)=PENDING
A Vtz.(tz e trans A (Ss —tz)e activetrans = transobject(tt)n transobject(tz)=2)
THEN activetrans := activetrans u { ss—tt}
|| sitetransstatus(tt)(ss) := pending
|| freeobject := freeobject - { ss} *transobject(tt)
END;

SteCommitTx(tt,ss) =
WHEN (ss—tt)e activetrans A sitetransstatus(tt)(ss)= pending
A sszcoordinator(tt) A ran(transeffect(tt))={ &} A transstatus(tt)=PENDING
THEN sitetransstatus(tt)(ss) := precommit
END;

SteAbortTx(tt,ss) =
WHEN (ss—tt)e activetrans A sitetransstatus(tt)(ss)= pending
A ss=coordinator(tt) A ran(transeffect(tt))={<} A transstatus(tt)=PENDING
THEN sitetransstatus(tt)(ss) := abort
|| freeobject := freeobject U { ss} *transobject(tt)
|| activetrans := activetrans -{ ss —tt}
END;

Fig. 7. Refinement : Participating Site Events -I

14

ExeAbortDecision(ss,tt) =

WHEN tte trans A (ss—tt)e activetrans ~ transstatus(tt) =ABORT
A ss # coordinator(tt) A ran(transeffect(tt))={ &}

THEN sitetransstatus(tt)(ss):= abort || activetrans := activetrans -{ ss —tt}
|| freeobject := freeobject U { ss} *transobj ect(tt)

END;

ExeCommitDecision(ss,tt) =
WHEN tte trans ~ (Ss—tt)e activetrans A transstatus(it) =COMMIT
A Ss = coordinator(tt) A ran(transeffect(tt))={ J}
THEN activetrans := activetrans -{ss —tt} || Sitetransstatus(tt)(ss) := commit
|| freeobject := freeobject U { ss} *transobj ect(tt)
|| LET pdb BE pdb = transobject(tt) < replica(ss) IN
replica(ss) := replica(ss) < transeffect(tt)(pdb) END
END;

Fig. 8. Refinement : Participating Site Events -1I

BeginSubTran(tt) ensures that a sub transaction of ¢t is started at site ss when
all active transactions tz running at ss are not in conflict with ¢t and transaction
tt has precommitted at coordinator site of tt.

- (ss — tz) € activetrans = transobject(¢t) A transobject(tz) = @

- sitetransstatus(tt)(coordinator(tt))= precommit
As a consequence of occurrence of this event, transaction ¢t becomes active at
site ss and sitetransstatus of tt at ss is set to pending.

5.5 Pre-Commitment and Abortion of Subtransaction

A participating site ss can independently decide to either pre-commit or abort
a subtransaction. The events SiteCommitTz(tt,ss) and SiteAbortTx(1t,ss), given
in Fig.7, model pre-committing or aborting a subtransaction of ¢t at ss. Pre-
committing a transaction at a participating site is considered as a commit guar-
antee given to the coordinator by a participating site. In the case of abort, a
site set all objects of transaction tt free and a subtransaction is removed from
list of active transactions at that site. On occurrence of both of these events, a
participating site communicates its decision to the coordinating site by sending
a Vote-Abort or Vote-Commit message.

5.6 Implementing Coordinator Decision of Global Commit

A global commit or abort decision of a transaction is communicated by the coor-
dinator site to participating sites. A transaction globally commits if it commits at
all participating site. The event of FreCommitDecision(it,ss) and ExeAbortDe-
cision(tt,ss) given in Fig.8 model commit and abort of ¢ at ss once the decision
of global abort or commit has been taken by the coordinating site. In the case
of global commit, each site updates its replica separately.

15

RT/ST|Read/Start Tran |IWT (IssueWriteTran CWT|CommitWriteTran
AWT |AbortWriteTran| BST |BeginSubTran SAT |SiteAbortTx
SCT |SiteCommitTX |ECT|ExeCommitDecision| EAT |ExeAbortDecision

Table 2. Events Code

In our model messaging among the site is not dealt explicitly. Transaction
may deadlock due to race conditions in replicated database. It is our assumption
that ordered delivery of messages may be used to detect deadlock arising due
to two simultaneous update requests from two different sites. B Specification of
causal ordering of messages for fault tolerant transactions and their implemen-
tation with logical clock has been proposed in [32].

6 Gluing Invariants

The One copy equivalence consistency criterion requires us to prove that the
refinement (replicated database) is a valid refinement of the abstract transac-
tion model (abstract central database), i.e., a read-only transaction submitted at
any site reads the correct value of the abstract database. We have replaced the
abstract variable database in the abstract model by the variable replica in the
refinement. An abstract machine is refined by applying the standard technique
of data refinement. If a statement S that acts on variable a, is refined by another
statement T that acts on variable b under invariants I then we write S T; T.
The invariant I is called the Gluing Invariant and it defines the relationships
between a and b. Replacing the abstract variable database in machine replical 1
by concrete variable replica in refinement replica22 results in proof obligations
generated by B tool. Initially, the only proof obligations that can not be proved
involves the relationship between database and replica. These proof obligations
were associated with the events ReadTrans and Commit WriteTran. In order to
prove these we added the Gluing Invariants-I shown in Fig.9.

Invariants Required By

[*Inv-1*/ (ss—00) < freeobject = database(00) = replica(ss)(00) RT,CWT

Fig. 9. Gluing Invariants-I

The invariant Inv-1 means that a free object oo at site ss represents the value
of oo in the abstract database. When invariant Inv-1 is added to the refined ma-
chine, the B tool generates further proof obligations associated with several other
events. Discharging these additional proof obligations required further invariants
given at Invariants-IT shown in Fig.10. A brief description of these invariants is
given in following steps.

16

Invariants Required By

[*Inv-2*/ (coordinator(t) — t) e activetrans A Oe transobject(t) AWT,CWT,EAD,ECD
= database(o) = replica(coordinator(t))(0)

[*Inv-3*/ (s~ tl) e activetrans A (s— t2) e activetrans ST,IWT,BST
A transobject(tl) N transobject(t2)= & = t1=t2
[*Inv-4*/ transstatus(t)= COMMIT A (s—t)e activetrans CWT,AWT,RT,SCT

A 0e dom(transeffect(t)(transobject(t)< replica(s)))
= database(0)= transeffect(t)(transobject(t) < replica(s))(0))

Fig. 10. Invariants -II

- If a transaction t is active at its coordinator then all transaction objects o
€ transobject(t) in the abstract database have the same value in the replica
at coordinator(Inv-2).

- If two conflicting transaction ¢; and t, are active at a site s, they must
represent the same transaction, i.e., t;=t3 (Inv-3). This also implies that
two different conflicting transaction can not be active at the same time at
the same site s.

- For a committed transaction ¢ which is active at one of the site s, the new
values of objects defined by transeffect(t) reflects the value of those objects
in the abstract database(Inv-4).

Following a similar approach, in order to preserve the Invariants in Fig.10, we
have to prove another set of invariants given by Invariants-III in Fig.11. The
brief description of invariants in Fig.11 are given below.

- For a committed transaction ¢ which is active at any participating site s,
the value of the objects which are given in set transobject(t) but not to be
updated by ¢, the site s reflects the value of those objects as in abstract
database(Inv-5).

Invariants Required By
[*Inv-5*/ transstatus(t)= COMMIT CWT,AWT,BST,ECD
A 0 e transobject(t) A (s—t)eactivetrans SAT,SCT

A og dom(transeffect(t)(transobject(t) < replica(s)))
= database(0)= replica(s)(0)

[*Inv-6*/ transstatus(t)=ABORT AWT,EAD,ECD,ST
= ditetransstatus(t)(coordinator(t))= abort
[*Inv-7*/ transstatus(t)= COMMIT CWT,AWT,EAD,ECD,ST

= ditetransstatus(t)(coordinator(t))= commit

Fig. 11. Invariants -I1T

17

- If a transaction ¢t commits or aborts globally, it must have either committed
or aborted locally at its coordinator as the case may be (Inv-6,7).

Finally the B tools generate more proof obligations to preserve Invariant-IIT
which in turns requires Invariants-IV shown in Fig.12. The brief description of
Invariants-IV is given below.

Invariants Required By

[*Inv-8*/ transstatus(t)=COMMIT A (s—t)eactivetrans CWT,AWT,EAD,
A Oe transobject(t) = database(o)=replica(s)(0) ECD,RT

[*Inv-9*/ transstatus(t)= PENDING A ran(transeffect(t))={ &} ST,IWT, SAT,SCT
= (coordinator(t) — t) ¢ activetrans

Fig. 12. Invariants -IV

- A transaction ¢t which has not globally committed but is still active at some
site s, then for all objects o € transobject(t), value of object o at replica of
s represent its value in abstract database(Inv-8).

- The Inv-8 refers to situations where a transaction is not committed. There-
fore, it also involves situations where the transaction global status is either
PENDING or ABORT.

- An update transaction whose status is not PENDING must not be active at
its coordinator site(Inv-9). This refers to situations where the global status
of an update transaction is either COMMIT or ABORT.

We observe that at every stage new proof obligations are generated by B tool due
to the addition of new invariants. In this process at every stage we also discover
further invariants to be expressed in our model. After four iterations of invariant
strengthening, we arrive at an invariant that is sufficient to discharge all proof
obligations. By discharging the proof obligations we ensure that refinement is a
valid refinement of the abstract specification.

7 Conclusions

In this paper we have presented a formal approach to the modelling and ana-
lyzing a distributed transaction mechanism for replicated databases using Event
B. The abstract model of transactions is based on the notion of a single copy
database. In the refinement of the abstract model, we introduced the notion
of replicated database. The replica control mechanism presented in the paper
allows an update transaction to be submitted at any site. An update transac-
tion commits atomically updating all copies at commit or none when it aborts.
A read-only transaction may perform read operations on any one replica. The
various events given in the B refinement are triggered within the framework of

18

commit protocols which ensure global atomicity of update transactions despite
site or transaction failures. The system allows the sites to abort a transaction
independently and keeps the replicated database in a consistent state.

Distributed algorithms [21] are difficult to verify and their verification
has long been an issue of study. The work reported in [16] applies formal mod-
elling to a replica control strategy and considers proof of correctness. They use
I/O automata to model an algorithm and then prove properties about all trace
behaviors of the automation. Instead of proving trace properties, we prove that
our model of the algorithm is a correct refinement of a abstract model of single
copy database. Also [16] does not consider transaction failures at sites.

The system development approach considered is based on Event B, which
facilitates incremental development of dependable systems. The work was carried
out on the B4Free tool. The tool generates the proof obligations for refinement
and consistency checking. The majority of proofs were discharged using the au-
tomatic prover of the tool, however one third of the complex proofs required use
of the interactive prover. These proofs helped us to understand the complexity
of problem and the correctness of the solutions. They also helped us to discover
new system invariants providing a clear insight to the system. Our experience
with this case study strengthens our believe that abstraction and refinement are
valuable technique for modelling complex distributed system.

References

1. J R Abrial. The B Book : Assigning Programs to Meaning, Cambridge University
Press,1996.
2. J R Abrial. Extending B without changing it. (For Distributed System).Proc. of
1st Conf. on B Method, pp 169-191, 1996
3. JR Abrial, D Cansell, D Mery. A Mechanically Proved and Incremetal development
of IEEE139/ Tree Identify Protocol. Formal Aspect of Computing, Vol 14, PP215-
227, 2003
4. J R Abrial, D Cansell : Click’n’Prove - Interactive Proofs within Set Theory,2003
5. D Agrawal, G Alonso, I Stanoi. FExploiting Atomic Broadcast in Replicated
Database. Proc. of Europar97, 1997
6. O Babaoglu, A Bartoli, G Dini. Replicated file management in large scale distributed
system. Proc. of 8th Intl. workshop on Distributed Algorithms. WDAG94,ppl-
16,LNCS,Springer,1994
7. P A Bernstein, V Hadzilacos, N Goodman. Concurrency Control and Recovery in
Database System. Addision Wesley,1987
8. K P Birman, A Schiper, P Stephenson. Lighweight causal and atomic group mul-
ticast. ACM Transaction on Computer System,Vol9,No 3,pp 272-314, 1991.
9. M Butler. On the use of Data Refinement in the Development of Secure Commu-
nications Systems. Formal Aspects of Computing, 14 : 2-34,2002
10. M Butler. An Approach to Design of Distributed Systems with B AMN. Proc. 10th
Int. Conf. of Z Users: The Z Formal Specification Notation (ZUM), LNCS 1212,
pp. 223-241,1997
11. M Butler, M Walden. Distributed System Development in B. Proc. of Ist Conf. in
B Method, Nantes, pp155-168,1996
12. D Cansell, D Mery. Foundations of B Method. Computing and Informatics, Vol
22,1-31,2003

19

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

B Core UK Ltd. B-Toolkit Manuals, 1999

X Défago, A Schiper, Péter Urban. Total order broadcast and multicast algorithms:
Tazonomy and survey. ACM Computing Surveys (CSUR), Volume 36, Issue 4, pp
372-421, Dec 2004.

R Ekwall, A Schiper. Replication : Understanding the advantage of atomic broad-
cast over quorum systems. Journal of Universal Computer Science, Vol 11, No 5,
pp 703-711, 2005

A Fekete, M Frans Kaashoek, N Lynch. Implementing Sequentially Consistent
Shared Objects using Broadcast and Point-To-Point Communication. 15th IEEE
Conf.Distributed Computing System, JICDCS95, 1995.

J Gray, A Reuter. Transaction Processing : Concepts and Technique, Morgan Kauf-
mann, 1993.

J Holliday. Replicated Database Recovery using Multicast Communication. IEEE
Intl. Symposium on Network Computing and Application,NCA2001, pp 104-
107,2001

M Jandl, A Szep, R Smeikal, K M Goeschka. Increasing avialability by sacrificing
data integrity. Proc. 38 Hawaii Intl. Conf. on System Sciences, 2005

B Kemme, G Alonso. A New Approach to developing and implementing eager
database replication protocols. ACM Transaction on Database System, Vol 25, Issue
3, pp 333-379, 2000.

Nancy A Lynch. Distributed Algorithms, Morgan Kaughman,1996

P Melliar, Y Amir, L. Moser, V Agrawala. Broadcast protocols for Distributed Sys-
tems, IEEE Transactions on Parallel and Distributed System,1(1), pp17-25,1990
L Moser, P Mellier, D Agrawal, R Budhia, C Papadopoulos, TOTEM : A fault
tolerant multicast group communication, Communication of ACM,39,4, PP 54-63,
1996

M T Ozsu, P Valduriez. Principles of Distribted Database Systems. Prentice Hall,
1999

A Rezazadeh, M Butler. Some Guidelines for formal developement of web based
application in B Method. Proc. of 4th Intl. Conf. of B and Z users, Guildford,
LNCS, Springer, pp 472-491, April 2005.

M. Patino-Martinez, R. Jimenez-Peris, B. Kemme, G. Alonso. Consistent Database
Replication at the Middleware Level. ACM Transactions on Computer Systems
(TOCS).no. 4, vol. 23, pp. 375-423, Nov. 2005

B Silaghi, P Keleher, B Bhattacharjee. Multi-Dimensional Quorum Sets for Red-
Few Write-Many Replica Control Protocols. In Proc. of the 4th CCGRID/GP2PC
Chicago, IL, April 2004.

S Schneider. The B-Method. Palgrave Publications, 2001.

A Silberschatz, H Korth, S Sudarshan . Database System Concepts, McGrawHill,
2001

I Stanoi, D Agrawal , A.El Abbadi. Using Broadbast Primitives in Replicated Data.
Proceddings of 18 IEEE Intl. Conf. on Distributed Computing System, ICDCS98,pp
148-155,1998

Steria- Atelier-B User and Reference Manuals, 1997

D Yadav, M Butler. Application of Event B to Global Causal Ordering for Fault
Tolerant Transactions. Proc. of REFT 2005, Newcastle upon Tyne, pp 93-103,
2005.

20

