Correcting Automatic Speech Recognition Errors in Real Time

Mike Wald

John-Mark Bell

Philip Boulain

Karl Doody

Jim Gerrard

School of Electronics and Computer Science

University of Southampton

SO171BJ

United Kingdom

M.Wald@soton.ac.uk

Abstract: Lectures can be digitally recorded and replayed to provide multimedia revision material for students who attended the class and a substitute learning experience for students unable to attend. Deaf and hard of hearing people can find it difficult to follow speech through hearing alone or to take notes while they are lip-reading or watching a sign-language interpreter. Synchronising the speech with text captions can ensure deaf students are not disadvantaged and assist all learners to search for relevant specific parts of the multimedia recording by means of the synchronised text. Automatic Speech Recognition has been used to provide real-time captioning directly from lecturers’ speech in classrooms but it has proved difficult to obtain accuracy comparable to stenography. This paper describes the development, testing and evaluation of a system that enables editors to correct errors in the captions as they are created by Automatic Speech Recognition and makes suggestions for future possible improvements.
Keywords: accessibility, multimedia, automatic speech recognition, captioning, real-time editing

1.
Introduction

UK Disability Discrimination Legislation states that reasonable adjustments should be made to ensure that disabled students are not disadvantaged (SENDA 2001) and so it would appear reasonable to expect that adjustments should be made to ensure that multimedia materials including speech are accessible for both live and recorded presentations if a cost effective method to achieve this was available.

Many systems have been developed to digitally record and replay multimedia face to face lecture content to provide revision material for students who attended the class or to provide a substitute learning experience for students unable to attend the lecture (Baecker et al. 2004, Brotherton & Abowd 2004) and a growing number of universities are supporting the downloading of recorded lectures onto students’ iPods or MP3 players (Tyre 2005).

As video and speech become more common components of online learning materials, the need for captioned multimedia with synchronised speech and text, as recommended by the Web Accessibility Guidelines (WAI 2005), can be expected to increase and so finding an affordable method of captioning will become more important to help support a reasonable adjustment.

It is difficult to search multimedia materials (e.g. speech, video, PowerPoint files) and synchronising the speech with transcribed text captions would assist learners and teachers to search for relevant multimedia resources by means of the synchronised text (Baecker et al. 2004, Dufour et al. 2004).

Speech, text, and images have communication qualities and strengths that may be appropriate for different content, tasks, learning styles and preferences. By combining these modalities in synchronised multimedia, learners can select whichever is the most appropriate. The low reliability and poor validity of learning style instruments (Coffield et al. 2004) suggests that students should be given the choice of media rather than a system attempting to predict their preferred media and so text captions should always be available

Automatic Speech Recognition (ASR) can be used to create synchronised captions for multimedia material (Bain et al 2005) and this paper will describe the development, testing and evaluation of a system to overcome existing accuracy limitations by correcting errors in real time.

2.
Use of Captions and Transcription in Education

Deaf and hard of hearing people can find it difficult to follow speech through hearing alone or to take notes while they are lip-reading or watching a sign-language interpreter. Although summarised notetaking and sign language interpreting is currently available, notetakers can only record a small fraction of what is being said while qualified sign language interpreters with a good understanding of the relevant higher education subject content are in very scarce supply (RNID 2005):

‘There will never be enough sign language interpreters to meet the needs of deaf and hard of hearing people, and those who work with them.’

Some deaf and hard of hearing students may also not have the necessary higher education subject specific sign language skills. Students may consequently find it difficult to study in a higher education environment or to obtain the qualifications required to enter higher education.

Stinson (Stinson et al 1988) reported that deaf or hard of hearing students at Rochester Institute of Technology who had good reading and writing proficiency preferred real-time verbatim transcribed text displays (i.e. similar to television subtitles/captions) using trained stenographers to interpreting and/or notetaking. Although UK Government funding is available to deaf and hard of hearing students in higher education for interpreting or notetaking services, real-time captioning has not been used because of the shortage of trained stenographers wishing to work in universities rather than in court reporting.
An experienced trained ‘re-voicer’ using ASR by repeating very carefully and clearly what has been said can improve accuracy over the original speaker using ASR where the original speech is not of sufficient volume or quality or when the system is not trained (e.g. live television subtitling (Lambourne at al. 2004), meetings or telephone calls (Teletec International 2005), courtrooms and classrooms in the US (Francis & Stinson 2003) using a mask to reduce background noise and disturbance to others.)

Real-time television subtitling has also been implemented using two typists working together to overcome the difficulties involved in training and obtaining stenographers who use a phonetic keyboard or syllabic keyboard (Softel 2001, NCAM 2000). The two typists can develop an understanding to be able to transcribe alternate sentences, however only stenography using phonetic keyboards is capable of real-time verbatim transcription at speeds of 240 words per minute.
ASR offers the potential to provide automatic real-time verbatim captioning for deaf and hard of hearing students or any student who may find it easier to follow the captions and transcript than to follow the speech of the lecturer who may have a dialect, accent or not have English as their first language. Robison (Robison et al 1996) identified the value of ASR to overcome the difficulties sign language interpreting had with fingerspelling foreign languages and specialist subject vocabulary for which there are no signs.

In lectures/classes students can spend much of their time and mental effort trying to take notes. This is a very difficult skill to master for any student or notetaker, especially if the material is new and they are unsure of the key points, as it is difficult to simultaneously listen to what the lecturer is saying, read what is on the screen, think carefully about it and write concise and useful notes.

The automatic provision of a live verbatim displayed transcript of what the teacher is saying, archived as accessible lecture notes would therefore enable students to concentrate on learning (e.g. students could be asked searching questions in the knowledge that they had the time to think) as well as benefiting students who find it difficult or impossible to take notes at the same time as listening, watching and thinking or those who are unable to attend the lecture (e.g. for mental or physical health reasons). Lecturers would also have the flexibility to stray from a pre-prepared ‘script’, safe in the knowledge that their spontaneous communications will be ‘captured’ permanently.

3.
Development of ASR Classroom System
Feasibility trials using existing commercially available ASR software to provide a real-time verbatim displayed transcript in lectures for deaf students in 1998 by Wald in the UK (Wald 2000) and St Mary’s University, Nova Scotia in Canada identified that standard speech recognition software (e.g. Dragon, ViaVoice (Nuance 2005)) was unsuitable as it required the dictation of punctuation, which does not occur naturally in spontaneous speech in lectures. Without the dictation of punctuation the ASR software produced a continuous unbroken stream of text that was very difficult to read and comprehend. Attempts to insert punctuation by hand in real-time proved unsuccessful as moving the cursor to insert punctuation also moved the ASR text insertion point and so jumbled up the text word order. The trials however showed that reasonable accuracy could be achieved by interested and committed lecturers who spoke very clearly and carefully after extensively training the system to their voice by reading the training scripts and teaching the system any new vocabulary that was not already in the dictionary. Based on these feasibility trials the international Liberated Learning Collaboration was established by Saint Mary’s University, Nova Scotia, Canada in 1999 and since then Wald has continued to work with IBM and Liberated Learning to investigate how ASR can make speech more accessible.

It is very difficult to usefully automatically punctuate transcribed, spontaneous speech as ASR systems can only recognise words and cannot understand the concepts being conveyed. Further investigations and trials demonstrated it was possible to develop an ASR application that automatically formatted the transcription by breaking up the continuous stream of text based on the length of the pauses/silences in the speech stream. Since people do not naturally spontaneously speak in complete sentences attempts to automatically insert conventional punctuation (e.g. a comma for a shorter pause and a full stop for a longer pause) in the same way as normal written text did not provide the most readable and comprehensible display of the speech. A more readable approach was achieved by providing a visual indication of pauses showing how the speaker grouped words together (e.g. one new line for a short pause and two for a long pause: it is however possible to select any symbols as pause markers).
The potential of using ASR to provide automatic captioning of speech in higher education classrooms has now been demonstrated in ‘Liberated Learning’ classrooms in the US, Canada and Australia (Bain et al 2002, Leitch et al 2003, Wald 2002). Lecturers spend time developing their ASR voice profile by training the ASR software to understand the way they speak. This involves speaking the enrolment scripts, adding new vocabulary not in the system’s dictionary and training the system to correct errors it has already made so that it does not make them in the future. Lecturers wear wireless microphones providing the freedom to move around as they are talking, while the text is displayed in real time on a screen using a data projector so students can simultaneously see and hear the lecture as it is delivered. After the lecture the text is edited for errors and made available for students on the Internet.

To make the Liberated Learning vision a reality, the prototype ASR application, Lecturer, developed in 2000 in collaboration with IBM was superseded the following year by IBM ViaScribe. Both applications used the ViaVoice ASR ‘engine’ and its corresponding training of voice and language models and automatically provided text displayed in a window and stored for later reference synchronised with the speech. ViaScribe (IBM 2005, Bain et al 2005) can automatically produce a synchronised captioned transcription of spontaneous speech using automatically triggered formatting from live lectures, or in the office, or from recorded speech files on a website.

4.
Improving Accuracy through Editing in Real Time

Detailed feedback (Leitch et al 2003) from students with a wide range of physical, sensory and cognitive disabilities and interviews with lecturers showed that both students and teachers generally liked the Liberated Learning concept and felt it improved teaching and learning as long as the text was reasonably accurate (e.g. >85%). Although it has proved difficult to obtain an accuracy of over 85% in all higher education classroom environments directly from the speech of all teachers, many students developed strategies to cope with errors in the text and the majority of students used the text as an additional resource to verify and clarify what they heard.

Editing the synchronised transcript after a lecture, involving frequent pausing and replaying sections of the recording, can take over twice as long as the original recording for 15% error rates while for high error rates of 35%, it can take as long as if an audio typist had just completely transcribed the audio recording (Bain et al 2005).
Although it can be expected that developments in ASR will continue to improve accuracy rates (Howard-Spink 2005, IBM 2003, Olavsrud 2002) the use of a human intermediary to improve accuracy through correcting mistakes in real time as they are made by the ASR software could, where necessary, help compensate for some of ASR’s current limitations. The real-time editing system described in this paper can be used both for transcribing live lectures and for making post lecture editing more efficient.
This paper describes research into whether it is feasible to edit recognition errors in real time while keeping the edited text synchronised with the original speech. For example, an ‘editor’ correcting 15 words per minute would improve the accuracy of the transcribed text from 80% to 90% for a speaker talking at 150 words per minute. Since the statistical measurement of recognition accuracy through counting recognition ‘errors’ (i.e. words substituted, inserted or omitted) does not necessarily mean that all errors affected readability or understanding (e.g. substitution of ‘the’ for ‘a’ usually has little effect) and since not all errors are equally important, the person editing can also use their knowledge and experience to prioritise those that most affect readability and understanding.

There would appear to be no published research into real-time editing apart from Lambourne (Lambourne at al. 2004) reporting that although their ASR television subtitling system was designed for use by two operators, one revoicing and one correcting, the real-time correction facility was not used as an experienced speaker could achieve recognition rates without correction that were acceptable for live broadcasts of sports such as golf. Previous research has found that although ASR can transcribe at normal rates of speaking, efficient post-dictation correction of errors can be difficult. Lewis (Lewis 1999) evaluated the performance of participants using a speech recognition dictation system who received training in one of two correction strategies, either voice-only or using voice, keyboard and mouse. In both cases, users spoke at about 105 uncorrected words per minute and the multimodal (voice, keyboard, and mouse) corrections were made three times faster than voice-only corrections, and generated 63% more throughput. Karat (Karat et al 1999) found native ASR users with good typing skills either constantly monitored the display for errors or relied more heavily on proofreading to detect them than when typing without ASR. Users could correct errors by using either voice-only or keyboard and mouse. The dominant technique for keyboard entry was to erase text backwards and retype. The more experienced ASR subjects spoke at an average rate of 107 words per minute but correction on average took them over three times as long as entry time. Karat (Karat et al 2000) found that novice users can generally speak faster than they can type and have similar numbers of speech and typing errors, but take much longer to correct dictation errors than typing errors whereas experienced users of ASR preferred keyboard-mouse techniques rather than speech-based techniques for making error corrections. Suhm (Suhm et al 1999) reported that multimodal speech recognition correction methods using spelling/handwriting/pen ‘gesture’ were of particular value for small mobile devices or users with poor typing skills. Shneiderman (Shneiderman 2000) noted that using a mouse and keyboard for editing required less mental effort than using speech.

5.
Possible Methods for Real-time Editing

Correcting ASR errors in real-time requires the person(s) editing to engage in the following activities:

· Noticing that an error has occurred;

· Moving a cursor into the position required to correct the substitution, omission, or insertion error(s);

· Making the correction;

· Continuing to listen and remember what is being said while searching for and correcting the error. This is made more difficult by the fact that words are not displayed simultaneously with the speech as there is an unpredictable delay of a few seconds after the words have been spoken while the ASR system processes the information before displaying the recognised words.

There are many potential approaches and interfaces for real time editing, and this paper describes how some of these have been investigated to compare their benefits and to identify the knowledge, skills and training required of people who are going to do the editing.

Using the mouse for navigation and error selection and the keyboard for error correction is a method people are used to and has the advantage of not requiring the user to remember which keys to use for navigation. However, using only the keyboard for both navigation and correction might be faster as it does not involve hand movements back and forth between mouse and keyboard.
An ASR editing system that separated out the tasks of typing in the correct word and moving the cursor to the correct position to correct the error would facilitate the use of two people to correct the errors. As soon as one spotted an error they could type the correction into a correction window. The other’s role would be to move a cursor to the correct position to select and replace the errors. For low error rates one person could undertake both tasks.
6.
Experimental Design

6.1
Editing Interfaces

A prototype real-time editing system with four editing interfaces was developed to investigate the most efficient approach to real-time editing.
INSERT FIGURE 1 HERE

The ‘BumpGrid’ (Figure 1) required incorrect words to be selected from a table/grid by row and column positions. Words filled up each row of the grid from the bottom left. When a row was filled that row moved up the grid filling up the window in the normal manner of a word processor display apart from the fact that each word was contained in a cell. Eight columns were used, titled with the characters on the ‘home’ keys on the keyboard. Rows were selected through multiple key presses on the appropriate column home key allowing the subject to keep their fingers on the home keys while navigating to the error, before typing the correction. When an error was spotted the user pressed the key representing the column the error was in and this highlighted the bottom cell of that column. The highlight moved up a row for every subsequent keypress on that column’s home key and back to the bottom of the column after the top most row has been reached. The <BACKSPACE> key moved the highlight down the column while pressing a different column’s home key moved the highlight directly to the bottom cell of that column. The highlight moved with the cell as that row scrolled upwards when it became filled. The user could edit the word in the highlighted cell by pressing the <ENTER> key. Pressing the <SPACE> key merged the word in the highlighted cell with the word in the next cell to the right. Words could then be deleted or overwritten or individual characters added or deleted. Pressing the <ENTER> key again finished editing and unselected the cell. The <DELETE> key enabled the selected word to be deleted without requiring the <ENTER> key to be pressed as well.
INSERT FIGURE 2 HERE

The Inline editor (Figure 2) worked in a similar way to a regular text editor except that the words were in textboxes so that pressing the <TAB> key moved the editing cursor to the next box and pressing <SHIFT> and <TAB> keys together moved to the previous box. Editing was achieved by typing and this replaced the word in that box. No Command Keys were required to begin or end editing.

INSERT FIGURE 3 HERE

The Sequential Editor (Figure 3) has three separate areas or ‘boxes’. The ‘box’ marked 1 shows the words already approved, the box marked 2 contains the word that can be edited, while box 3 contains the words yet to be approved or edited. The leftmost word in box 3 can be moved into box 2 for editing by pressing the <CONTROL> key with the <RIGHT ARROW> key and the word already in the editing box 2 will then be moved to the end of the wordwrapped text in box 1. Words can be moved from box 1 back into box 2 by pressing the <CONTROL> key with the <LEFT ARROW> key and this will also move the word in box 2 back into box 3. If box 3 becomes full the words move to the left to accommodate new words entering from the right and so the leftmost words can disappear from view if box 3 fills up faster than words are moved from box 3 to box 2.
INSERT FIGURE 4 HERE

The Dual Panel editor’s (Figure 4) selection panel (marked 1) acts in a similar way to the Inline editor, except that the mouse is used to select the word to edit, not the <TAB> key. The erroneous word that is selected appears in Panel 2 and the corrected word is typed into the appropriate box in Panel 2. Pressing <ENTER> replaces the original erroneous word in the text box in panel 1 with the corrected word from panel 2. Multiple selection of errors can be made and corrected and this would facilitate operation by two people, one selecting and one correcting.
6.2
Test Subjects
Five test subjects were used and they varied in their occupation, general experience using and navigating a range of software, typing skills, proof reading experience, technical knowledge about the editing system being used, experience of having transcribed speech into text, and experience of audio typing. This information with ratings on a scale from 1 (least) to 5 (most) is shown in Figure 5.
INSERT FIGURE 5 HERE

6.3
Test Material
Sixteen different 2 minute samples of speech were recorded by a male speaker and used in a randomised order with speech rate varying from 105 words per minute to 176 words per minute and error rate varying from 13% to 29%.
6.4
Testing Procedure
Subjects were tested on each of the 4 editors in a randomised order, each editor being used with four randomised samples of 2 minutes of speech, the first of which was used to give the user practice to get used to how each editor functioned. Each subject was tested individually using a headphone to listen to the speech in their own quiet environment. The evaluator sat behind the subject out of sight. Tests took approximately 90 minutes including interviews. The system had a pause button that allowed the subject to halt any test if they wished, but no subject chose to use this, indicating that subjects were relaxed and comfortable with the tasks. The edited transcripts and the logged details of subject keypresses were saved to file for later analysis.

In addition to quantitative data recorded by logging, subjects were interviewed and ask to rate each editor with regard to how easy it was to identify an error, select the error and complete the edit of that error. They were also asked to rate the cognitive load involved when using each editor, to give an overall rating for each editor, whether they thought it was feasible to edit in real time with each editor, what they liked and disliked about each editor, how editors could be improved and which they thought was best suited to the task. Other questions included what qualities would be needed by people in order to use the editors to edit in real time, whether the tests were long enough and how the tests could be improved.

7.
Discussion of Results
7.1
Effect of Error and Speaking Rate
The effect of error rate (categorised as low or high) and speaking rate (categorised as slow or fast) on the average number of errors corrected by subjects was calculated for each category (Figure 6).
INSERT FIGURE 6 HERE

.

There appeared to be an effect of error rate and speaking rate on the correction rate as more errors were corrected for faster than lower speaking rates and also for higher than lower error rates, with the largest number of errors being corrected for the fast/high conditions followed by the fast/slow conditions then slow/high conditions and lastly slow/low conditions. This could be related to the time subjects had to wait for the next error to appear.

7.2
Errors Corrected per Minute

The average and maximum number of errors corrected per minute was calculated for each subject and each Editor (Figures 7 & 8).
INSERT FIGURE 7 HERE

INSERT FIGURE 8 HERE

Subjects on average corrected the most errors with the Dual Panel editor with the Sequential editor next best, closely followed by the Inline editor.
7.3
Feasibility of Editing Transcriptions Errors in Real-Time
All 5 subjects believed the task of editing transcription errors in real-time to be feasible (Figure 9), but not with all the editors. The objective results support this as up to 11 errors per minute could be corrected, even with the limited time available to learn how to use the editors, the limitations of the prototype interfaces and the cognitive load of having to learn to use 4 different editors in a very short time. A detailed analysis of the results showed that subjects only obtained their maximum number of errors corrected on their first test with an editor in 3 of the 20 tests and so there appeared to be some learning effect suggesting that continuing to practice with an editor might improve performance. Subject B, a secretary, corrected the fewest number of errors of the five subjects. This suggests that the skills required for editing in real time could be very different than those needed for ‘everyday’ secretarial typing.

INSERT FIGURE 9 HERE

7.4
Editor Interface Preferences
The Dual Panel editing interface was preferred on average and no subject rated any other editing interface higher overall. Thus was probably because using the mouse for navigation required no learning. The Sequential editor was rated equally overall to the Dual Panel by four subjects but only Subject A rated the Sequential editor higher on selection of errors, the others rating it lower. The Inline editor was rated the third best editing interface. The BumpGrid editing interface was the lowest rated on all aspects, probably due to the novel use of home keys as command keys for navigation which was difficult to learn in such a short time.

7.5
Editing Interface Efficiency
The Dual Panel editor achieved the highest subjective rankings and the highest correction rates. It required the lowest number of command keys to be pressed as the mouse was used to select the word to edit. (Figure 10).

INSERT FIGURE 10 HERE

The BumpGrid editor required a maximum of 4 ‘command’ key presses to select one of the 64 words displayed whereas the Sequential and Inline editors required command keys to be pressed to proceed to the next word. The Sequential editor required the <CONTROL> key to be held down while the <ARROW> key was pressed, which explains why it required more command keys that the Inline editor which only required the <TAB> key to be pressed. The Sequential editor and the Inline editor did not require the <ENTER> key to be pressed to complete the edit whereas the BumpGrid and the Dual Panel editors did require the <ENTER> key to complete the edit. This caused some confusion for test subjects who sometimes pressed the <ENTER> key when it was not needed or forgot to press it when it was needed. This was more of a problem for the BumpGrid as the <ENTER> key was required to both start and end an edit, whereas with the Dual Panel the mouse click started the edit and the <ENTER> key ended the edit.
The average edit durations measured between when a word is selected for editing and when that edit is completed, are shown in (Figure 11). The average number of errors corrected per minute averaged over all five subjects and four editing systems was 6.2, giving typically approximately 10 seconds to find and select an error and complete the edit. Test subjects on average spent approximately 25% of their time actually correcting errors and the remaining 75% of their time finding the error and selecting them.
INSERT FIGURE 11 HERE

8.
Theoretical Analysis of Potential Error Correction Rates
The Keystroke-Level Model can be used to estimate execution times using the following typical times (Kieras 2001):
· Time to press a key: 0.12 seconds for an Expert typist (90 wpm), 0.2 seconds for an average skilled typist (55 wpm) and 0.28 seconds for the average nonsecretarial typist (40 wpm)
· Time to point with mouse to a target on the display : 0.8 to 1.5 seconds depending on size and location of target

· Time to press or release mouse button : 0.1 seconds
· Time to move hands from keyboard to mouse or from mouse to keyboard: 0.4 seconds
· Time for each mental act of routine thinking or perception: 0.6 - 1.35 seconds (this is the hardest aspect to analyse and estimate, especially if more complex cognitive processes are involved)
For an average unskilled typist, typing the correction would occur at 0.28 seconds per keystroke whereas Sequential pressing of the same command key does not require keyboard knowledge and so the faster average skilled typist rate of 0.2 seconds per keystroke seems more appropriate.
For an average word length of 7 characters and the average typist taking 0.28 seconds per keystroke, a typical edit duration would be 1.96 seconds which is close to the measured average edit duration of 2.08 seconds for the Sequential editor.
The average time per edit for the Sequential editor was 8.8 seconds and since a typical edit of a word of 7 characters using the Sequential editor would take 5.4 seconds in command key presses and approximately 2 seconds typing the correction this would leave approximately 1.4 seconds to spot the error, which is close to the 1.35 second theoretical time for a mental act of thinking or perception. If we took into account the mental act of checking before each press of the command key that the target had been reached, even with the lower figure of 0.6secs for the mental act and the fastest keypress of 0.12 seconds then 27 keypresses with the Sequential editor would take 21.6 seconds per edit which clearly is much longer than the 1.4 seconds measured. This would appear to be because to move the error to the edit box the user can ‘mechanically’ repeat the keypress without thinking, until the box contains the correct word.

The average time per edit for the Inline editor was 9.3 seconds and since a typical edit of a word of 7 characters using the Inline editor would take 4.2 seconds in command key presses and approximately 2 seconds typing the correction this would leave approximately 3.1 seconds to spot the error, which is a lot longer than the 1.35 theoretical thinking/perception time. The actual average edit duration for the Inline editor was 3.2 seconds rather than 2 seconds and studying the data in detail and the subjective ratings it would appear that subject E really struggled with editing with the Inline editor, taking approximately 6 seconds to edit the text and subject A also found it more difficult than the others taking 3.2 seconds whereas the other three subjects had an average of 2.3 seconds. The first letter of the correction could move out of view in the text box in the Inline editor and the beginnings of subsequent words could also become partially obscured by the text boxes which was disconcerting and so could have been the reason for the increase in editing time. This interpretation is supported by the fact that only Subject E also subjectively rated the Inline editor as much harder than the other four editors to complete the edit and stated that the task was not feasible while all four of the other subjects stated it was feasible. On average the Inline editor was rated as harder than the Sequential editor to identify the error but easier to select the error. This might be explained by the fact that with the Inline editor the editing highlight moved to the error, whereas with the Sequential editor the subject had first to spot the error and then move the error into the editing box while keeping track of where it was, which could involve a higher cognitive load. The incoming text with errors in the Sequential editor was in one continuous horizontal line with no text boxes and so the subjects’ eyes only had to move to the right to identify the error. This appears to have involved less time and mental effort than moving their eyes right and left and down to locate the error in the Inline editor’s text box, wordwrapped display which, as has already been mentioned, could partially obscure the start of some words.
If fixing the bug that removed from view the first character in the edit box in the Inline editor made the editing as easy as the Sequential editor and if removing the text boxes and the bug that obscured the start of some subsequent words made identifying the error as easy as the Sequential editor we can extrapolate the possible execution times shown in figure 12.
INSERT FIGURE 12 HERE
In the present study subjects only corrected 6.79 and 6.42 words per minutes for the Sequential and Inline editors respectively. The number of command keypresses per edit is related to the number of errors corrected as the higher the error correction rate, the fewer the command keypresses that are required to move the correction highlight/cursor to the next error because the subsequent errors will be closer together in the text. The total number of keypresses per minute to navigate to the errors is therefore independent of the number of errors corrected and only dependent on the number of words spoken. This therefore means that a better typist should be able to correct more errors for the Sequential and Inline editors as both the edit duration and the navigation between errors can be speeded up by typing faster and there is also no additional time spent navigating to any extra errors corrected.
For the Dual Panel, the two control key presses required per edit are the mouse click (a press and a release each taking 0.1 seconds) and pressing the enter key and so take 0.32 seconds for an expert typist and 0.4 seconds for the average typist. The average time per edit for the Dual Panel editor was 7.9 seconds and since a typical edit of a word of 7 characters using the Dual Panel editor for an average typist would take 0.4 seconds in command key presses and 2 seconds typing the correction this would leave approximately 5.5 seconds to spot the error and move the mouse to it, which is a longer than the 3.65 seconds calculated from:

· 1.35 seconds thinking/perception

· 0.4 seconds moving hand from keyboard to mouse

· 1.5 seconds pointing with mouse to target

· 0.4 seconds moving hand from mouse to keyboard

This would suggest that there are more acts of mental perception required, perhaps partly due to having to the correction appearing in a separate panel. As with the Inline editor, the Dual Panel editor used text boxes and again this could have made the identification more difficult, although this was not reflected in the subjective ratings. We can speculate that removing the text boxes and getting used to the correction appearing in a separate panel could make the Dual Panel ‘thinking and perception’ time similar to the 1.4 seconds identified for the Sequential editor.
For the BumpGrid the four key presses required per edit take 0.48seconds for an expert typist and 0.8 seconds for an average typist. The average time per edit for the BumpGrid editor was 15.1 seconds and since a typical edit of a word of 7 characters using the BumpGrid editor for an average typist would take 0.8 seconds in command key presses and 2 seconds typing the correction this would leave approximately 12.3 seconds to spot the error which is a lot longer than the 1.35 seconds thinking/perception time. This would suggest that there are a lot more acts of mental perception required, perhaps due to the user having to think about which command key to press and locate the word as they watch the row scroll, as since there are fewer words on the screen and only 8 words in a row, the rows fill up faster than the other editors. It is not obvious how to redesign the BumpGrid to speed this up but we can speculate that with practice subjects may improve their thinking/perception time to take only 1.4 to spot the error and another 1.4 seconds to work out which column it is in and not have to think again to press the appropriate home key. Suggested potential theoretical execution times for the Dual Panel and BumpGrid are shown in Figure 13.
INSERT FIGURE 13 HERE

Since the BumpGrid and Dual Panel interfaces access the errors directly and not sequentially, unlike the Sequential and Inline editors the error rate does not affect how many command keys are required per edit and therefore for each new error corrected there is additional time navigating to that error. A better typist should be able to speed up the edit duration and also the navigation between errors for the BumpGrid.
Using these models approximate possible correction rates are shown in Figure 14.
INSERT FIGURE 14 HERE
These theoretical calculations have not taken into account the fact that the editor has to listen to what is being said and remember it and as more errors are corrected the editor has to remember more corrections. It is unclear how to build this increasing cognitive load into the theoretical model without information about actual correction rates achievable using improved interfaces and expert typists.
The relatively small subject and test sample size, the lack of the test subjects’ practice with the editors and the high cognitive load of having to change to a new and different editor approximately every 20 minutes means that the results, while indicative, are not conclusive but can be helpful in informing the direction of future developments.

9.
Future Developments and Improvements to Real-time Editing System
9.1
Improvements Suggested by Test Subjects

All test subjects thought the structure and length of the tests was good and improvements to the design of the editors suggested by test subjects included:

BumpGrid:
· Enable easy navigation along row as errors often bunched together

· Modify background colour of boxes

· Implement merging of more than two columns to assist editing when one word misrecognised as multiple words
· Easier command key to go down column
Dual Panel:
· Possible simultaneous operation with one handed keyboard and mouse

· Remove requirement to press <ENTER>

· Maximise window and allow more rows
Inline:
· Resemble wordprocessor by removing text boxes and use standard highlighting of selected word

Sequential:
· Move editor box to word instead of word to box and then return automatically to far left when editing

General:
· Select and overwrite multiple words

· Try and use simple editing approaches people are used to so as to reduce cognitive load

· Don’t use dual purpose keys

· Use arrow keys to go up/down/left/right to locate errors
· Option to highlight errors/corrections

9.2 Other Possible Improvements and Developments

It would appear from comparing the theoretical correction rates in figure 14 with the actual maximum rates achieved by subjects shown in figure 8, that the Dual Panel editor offers the least scope for obtaining higher correction rates using expert typists as they would not be any faster using the mouse to navigate. However combining the best features of the Dual Panel, Inline and Sequential editors might be the best approach. Since users expressed preferences for which keys should be used as command keys, it might also be useful to include the option for the user to be able to assign the command keys and set a user adjustable repeat rate when a key is held down. The use of foot operated switches or ‘foot pedals’ to select the error and using the keyboard to correct the error would have the advantage of allowing the hands to concentrate on correction and the feet on navigation and selection, a tried and tested method used by audio typists (Start-Stop Dictation and Transcription Systems 2005). Separating the tasks of selection and correction and making correction the only keyboard task also has the advantage of allowing the subject to begin typing the correct word(s) even before the error selection has been made using the foot pedal.

Being able to highlight an error, even if there was not time to correct it might prove helpful to the reader of the captions or transcript.
For errors that are repeated (e.g. names not in the ASR dictionary) corrections can be offered by the system to the subject, with the option to automatically replace the error.

Shortcuts could be devised to automatically correct some errors (e.g. plurals, possessives, tenses, a/the etc.) although the extra cognitive load of remembering the function of each key may make it easier to actually correct the error directly through typing.

Speech recognition could be used to correct errors, although this introduces another potential error if the speech is not recognised correctly. Using the speech to navigate to the error by speaking the position of the error is a possibility, although again this would involve verbal processing and could overload the subject’s cognitive processing as it would give them even more to think about and remember.

Another possible approach is for the subject to type the correction into a separate display area also visible to the reader of the transcription as soon as they noticed the error had occurred, but without selecting and replacing the error. The section of the transcript the actual error was in could be highlighted automatically, although it would be difficult to do this accurately since the system has no way of knowing the delay between when the error was displayed and when the subject starting correcting .

Current ASR systems normally only use statistical probabilities of word sequences and not syntax or semantics and will attempt to display the ‘most probable’ words in their dictionary based on the speaker’s voice and language models even if the actual words spoken are not in the dictionary (e.g. unusual or foreign names of people and places). Although the system has information about the level of confidence it has about these words (i.e. the probability they have been correctly recognised), this is not usually communicated to the reader of the ASR text whose only clue that an error has occurred will be the context. If the reader knew that the transcribed word was unlikely to be correct, they would be better placed to make an educated guess at what the word should have been from the sound of the word (if they can hear this) and the other words in the sentence. Providing the reader with an indication of the ‘confidence’ the system has in recognition accuracy, can be done in different ways (e.g. colour change and/or displaying the phonetic sounds) and the user could select the confidence threshold. For a reader unable to hear the word, the phonetic display would also give additional clues as to how the word was pronounced and therefore what it might have been. Since a low confidence word will not always be an error and a high confidence word will not always be correct, Suhm (Suhm and Myers 2001) found that highlighting likely errors based on these confidence scores didn’t help speed up correction. Further research is therefore required to improve the value of this feature.

For a speaker speaking at 150 words per minute and an ASR error rate of 10%, every 4 seconds one error in approximately 10 words will need correcting. Phonetic searching (Clements et al 2002) can help find ASR ‘out of vocabulary’ errors that occur when words spoken are not known to the ASR system, as it searches for words based on their phonetic sounds not their spelling. If the system can compare the phonemes of the correct word typed in by the subject, through text to phoneme conversion, with the phonemes of the 10 or so words that contain the error, then, coupled with the confidence scores it may be possible to automatically identify the error and replace it with the typed correction. There could be an option to override the automatic system if it makes a mistake. The system might be able to use word prediction techniques to begin to compare the phonemes of the correct word as it is typed in even before the whole word has been entered. Future research work is required to investigate automatic error correction using phonetic searching and confidence scores.

10.
Methods of Displaying the Edited Text

It is possible to display the output of the editing system on the large screen as corrections are being made so that the reader can see both the errors and their corrections without any further delay being introduced. Liberated Learning’s research has shown that while projecting the text onto a large screen in the classroom has been used successfully it is clear that in many situations an individual personalised and customisable display would be preferable or essential. A client server personal display system has been developed (Wald 2005) to provide users with their own personal display on their own wireless handheld computer systems customised to their preferences (e.g. font, size, colour, text formatting). The real-time editing system described in this paper can integrate with this client server personal display system. If text is displayed on the personal display system after editing, a method must be chosen for deciding how long the editor should ‘hold on’ to the text before it is sent to the display system. The editing system described in this paper has the facility to vary this time. If the editing system held on to the text for 5 seconds after the words were transcribed by the ASR system, this would mean that the subject would only ever have 5 seconds to correct an error. If the speaker was speaking at 150 words per minute with an ASR error rate of 10%, one word would, on average, have to be corrected every 4 seconds. If the 15 errors occurred evenly throughout every minute of speech (i.e. one every 10 words) then correcting one word every 4 seconds might be feasible with the 5 second delay. However if errors were bunched together so that there were 4 errors in the first 5 seconds of speech only 1.25 words will have been able to be corrected before the words are transmitted to the personal display system. If however a variable delay is used then if errors occur consecutively there can be a longer delay before the words are transmitted. If no errors are found in the next 15 seconds of speech then the ‘lost’ time can be regained by passing the text through unedited.
For TV live subtitling a delay is often introduced before the audio is transmitted (e.g. to be able to remove offensive material), and this can provide extra time for the subtitling to occur; but this is not possible for live voice in lectures. Also for TV live subtitling there is a maximum allowable delay for the captions to still synchronise with the video as, for multiple speakers, problems and confusion would result if the delay meant that the speaker had already disappeared from view when the captions appeared. While too long a delay would be unsettling for the reader of the captions in the classroom, the text can still be automatically synchronised with the speech for later online viewing.
11.
Conclusion

Understanding speech and notetaking in lectures can be very difficult, particularly for deaf students and non-native speakers and so using ASR could be very useful to assist students. Improving the accuracy of the ASR transcript and developing faster editing methods is important because editing is difficult and slow. Some ASR errors may have a negligible effect on readability and knowledge of this would enable subjects to prioritise correction for those errors most affecting readability. Further research is required to investigate the importance of punctuation, segmentation and errors on readability. The results of this study suggest real-time editing is feasible and indicate possible improvements to the editing system, but the maximum achievable correction rate and the qualities of the people best suited to undertake real-time editing have still to be determined. The optimal system to digitally record and replay multimedia face to face lecture content would automatically create an error free transcript of spoken language synchronised with audio, video, and any on-screen information (e.g. PowerPoint) and enable this to be displayed in different ways in different devices. Continued research is needed to improve the accuracy of ASR and develop efficient methods of editing errors in real time before this vision can become an everyday reality.
12.
References

Baecker, R. M., Wolf, P., Rankin, K. (2004). The ePresence Interactive Webcasting System: Technology Overview and Current Research Issues. Proceedings of Elearn 2004, 2396-3069

Bain, K., Basson, S., A., Faisman, A., Kanevsky, D. (2005). Accessibility, transcription, and access everywhere, IBM Systems Journal, Vol 44, no 3, pp. 589-603 Retrieved December 12, 2005, from

http://www.research.ibm.com/journal/sj/443/bain.pdf
Bain, K., Basson, S., Wald, M. (2002). Speech recognition in university classrooms, Proceedings of the Fifth International ACM SIGCAPH Conference on Assistive Technologies, ACM Press, 192-196.

Brotherton, J. A., Abowd., G. D. (2004) Lessons Learned From eClass: Assessing Automated Capture and Access in the Classroom, ACM Transactions on Computer-Human Interaction, Vol. 11, No. 2.

Clements, M., Robertson, S., Miller, M. S. (2002). Phonetic Searching Applied to On-Line Distance Learning Modules. Retrieved December 8, 2005, from http://www.imtc.gatech.edu/news/multimedia/spe2002_paper.pdf

Coffield, F., Moseley, D., Hall, E., Ecclestone, K. (2004) Learning styles and pedagogy in post-16 learning: A systematic and critical review, Learning and Skills Research Centre

Dufour, C., Toms, E. G., Bartlett. J., Ferenbok, J., Baecker, R. M. (2004). Exploring User Interaction with Digital Videos Proceedings of Graphics Interface
Francis, P.M. Stinson, M. (2003). The C-Print Speech-to-Text System for Communication Access and Learning, Proceedings of CSUN Conference Technology and Persons with Disabilities, California State University Northridge. Retrieved December 12, 2005, from http://www.csun.edu/cod/conf/2003/proceedings/157.htm

Howard-Spink, S. (2005). IBM's Superhuman Speech initiative clears conversational confusion.

Retrieved December 12, 2005, from

http://www.research.ibm.com/thinkresearch/pages/2002/20020918_speech.shtml

IBM. (2003). The Superhuman Speech Recognition Project Retrieved December 12, 2005, from http://www.research.ibm.com/superhuman/superhuman.htm

IBM (2005). Retrieved December 12, 2005, from http://www-306.ibm.com/able/solution_offerings/ViaScribe.html

Karat, C.M., Halverson, C., Horn, D. and Karat, J. (1999) Patterns of Entry and Correction in Large Vocabulary Continuous Speech Recognition Systems, CHI 99 Conference Proceedings, 568-575.

Karat, J., Horn, D., Halverson, C. A., Karat, C.M. (2000). Overcoming unusability: developing efficient strategies in speech recognition systems, Conference on Human Factors in Computing Systems CHI ‘00 extended abstracts, 141-142.

Kieras, D. (2001) Using the Keystroke-Level Model to Estimate Execution Times
Retrieved February 23, 2006, from
 ftp://www.eecs.umich.edu/people/kieras/GOMS/KLM.pdf

Lambourne, A., Hewitt, J., Lyon, C., Warren, S. (2004). Speech-Based Real-Time Subtitling Service, International Journal of Speech Technology, 7, 269-279.

Leitch, D., MacMillan, T. (2003). Liberated Learning Initiative Innovative Technology and Inclusion: Current Issues and Future Directions for Liberated Learning Research. Year III Report. Saint Mary's University, Nova Scotia.

Lewis, J.R. (1999). Effect of Error Correction Strategy on Speech Dictation Throughput, Proceedings of the Human Factors and Ergonomics Society, 457-461

NCAM. (2000) International Captioning Project

Retrieved December 12, 2005, from

http://ncam.wgbh.org/resources/icr/europe.html

Nuance (2005). Retrieved December 12, 2005, from http://www.nuance.com/

Olavsrud, T. (2002). IBM Wants You to Talk to Your Devices

Retrieved December 12, 2005, from

http://www.internetnews.com/ent-news/article.php/1004901

Robison, J., Jensema, C. (1996). Computer Speech Recognition as an Assistive Device for Deaf and Hard of Hearing People, Challenge of Change: Beyond the Horizon, Proceedings from Seventh Biennial Conference on Postsecondary Education for Persons who are Deaf or Hard of Hearing. April, 1996.
Retrieved November 8, 2005, from http://sunsite.utk.edu/cod/pec/1996/robison.pdf

RNID (2005). Retrieved December 12, 2005, from http://www.rnid.org.uk/howwehelp/research_and_technology/communication_and_broadcasting/virtual_signing/

SENDA (2001). Retrieved December 12, 2005, from http://www.opsi.gov.uk/acts/acts2001/20010010.htm

Shneiderman, B. (2000). The Limits Of Speech Recognition, Communications Of The ACM September 2000, Vol. 43(9), 63-65

Softel. (2001) FAQ Live or ‘Real-time’ Subtitling

Retrieved December 12, 2005, from
http://www.softel-usa.com/downloads/Softel_Live_Subtitling_FAQ.pdf

Start-Stop Dictation and Transcription Systems (2005). Retrieved December 27, 2005, from http://www.startstop.com/sst2.asp

Stinson. M., Stuckless, E., Henderson, J., Miller, L. (1988). Perceptions of Hearing-Impaired College Students towards real-time speech to print: Real time Graphic display and other educational support services, The Volta Review.

Suhm, B., Myers, B., Waibel, A. (1999). Model-Based and Empirical Evaluation of Multimodal Interactive Error Correction, CHI 99 Conference Proceedings, 584-591

Suhm, B., Myers, B. (2001). Multimodal error correction for speech user interfaces,

ACM Transactions on Computer-Human Interaction (TOCHI), Vol. 8(1), 60-98

Teletec International (2005). Retrieved December 27, 2005, from http://www.teletec.co.uk/remote/

Tyre, P. (2005). Professor In Your Pocket, Newsweek MSNBC. Retrieved December 8, 2005, from http://www.msnbc.msn.com/id/10117475/site/newsweek

WAI. (2005). Retrieved December 12, 2005, from http://www.w3.org/WAI

Wald, M. (2000). Developments in technology to increase access to education for deaf and hard of hearing students, Proceedings of CSUN Conference Technology and Persons with Disabilities, California State University, Northridge.

Retrieved December 12, 2005, from http://www.csun.edu/cod/conf/2000/proceedings/0218Wald.htm

Wald, M. (2002). Hearing disability and technology, Phipps, L., Sutherland, A., Seale, J. (Eds) Access All Areas: disability, technology and learning, JISC TechDis and ALT, 19-23.

Wald, M. (2005) Personalised Displays. Speech Technologies: Captioning, Transcription and Beyond, IBM T.J. Watson Research Center New York Retrieved December 27, 2005, from http://www.nynj.avios.org/Proceedings.htm

Whittaker, S., Amento, B., (2004). Semantic speech editing, Proceedings of the SIGCHI conference on Human factors in computing systems (CHI 2004), Vienna, 527-534.
[image: image1.png]A s D F J

« . ;
ErEa oo

[spoken [and |[therefore | viascribe |[can real-time |access |
o Joean [e B Hused]
as an alternative |to note | EERRGIINY because

[‘me ///hDme/ph\\/wurk/e\ecﬁﬂsm" e H co ‘ e

Sound ‘me ///hume/ph\\/wurk/e\ecsﬂsﬂH e H sToP

output: ‘ﬂ\e///dev/shm/uutputxm\ H e ‘Ed\tur ‘DE‘EY‘S““’ o

Figure 1. BumpGrid Editor

[image: image2.png]used [to |automatically [produce | multimedia |synchronised |with | captions
and [Pal | [slides [in [this [Pow [point [slide [you | can [see [how [in [a
classroom [the |professor |can [display [on [the [screen [will [words [for

essay |you |ER |see [the |professor
input: [fle:/jhome] | Browse Go

Sound: [filey/jfhome)| | Browse. STOP.

Delay (s/10):

output: |file ydevist| | Browse. Editor.

Figure 2. Inline editor

[image: image3.png]3.

[system and how it can be used to automatically synchranise

Figure 3. Sequential editor

[image: image4.png]M Real-time Transcript Editor

{fles/D: estatajwald_2

“

==
T
e e |

Figure 4. Dual Panel editor

	Subject
	occupation
	Software experience

1-5
	typing skill

1-5
	proof-reading experience

1-5
	system knowledge

1-5
	transcribing experience

yes/no
	audio typing

yes/no

	A
	Student System Developer
	5
	3
	4
	5
	No
	No

	B
	Secretary
	3
	5
	5
	1
	Yes
	Yes

	C
	Language student
	3
	3
	5
	2
	Yes
	No

	D
	Academic Staff
	5
	3
	4
	5
	Yes
	No

	E
	Language Student
	4
	3
	3
	1
	Yes
	No

Figure 5. Information about test subjects

[image: image5.emf]Effect of speaking rate and recognition rate on

correction rate

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

 slow fast low highslow/lowslow/highfast/low

fast/high

number of errors corrected per

minute

Figure 6. Effect of speaking rate and recognition error rate on correction rate

[image: image6.emf]Average number of errors corrected per minute per

test subject

0.00

2.00

4.00

6.00

8.00

10.00

12.00

A B C D E All

Test subjects

Number of errors

corrected per minute

Dual

Bump

Seq

Inline

Average

Figure 7. Average number of errors corrected per minute per test subject

[image: image7.emf]Maximum number of errors corrected per minute

per subject

0.00

2.00

4.00

6.00

8.00

10.00

12.00

A B C D E All

Test subjects

Number of errors

corrected per

minute

Dual

Bump

Seq

Inline

Average

Figure 8. Maximum number of errors per minute per test subject

[image: image8.emf]Subjective ratings (5 is best)

0

1

2

3

4

5

Identify

Select

Complete LoadRating

Feasible

Not feasible

BumpGrid

Dual Panel

Inline

sequential

Figure 9. Subjective ratings
[image: image9.png]30.00

20.00

15.00

10.00

Command keys per edit

27.00
2131
416
2.00
BumpGrid Dual Inline Sequential

Editor

Figure 10. Command keys per edit for each editor

[image: image10.png]Edit duration (ms)

3500

3000

2500

2000

1500

500

3169
2446
2273
m m mz
BumpGri¢ Dual Iniine sequential

Editor

Figure 11. Edit duration for each editor

	Editor
	Typist
	Spot error (secs)
	Correct error (secs)
	Each command keypress (secs)

	Sequential
	Expert
	1.4
	0.8
	0.12

	Sequential
	Average
	1.4
	2.0
	0.20

	Inline
	Expert
	1.4
	0.8
	0.12

	Inline
	Average
	1.4
	2.0
	0.20

Figure 12. Theoretical execution times for Sequential and Inline editors

	Editor
	Typist
	Spot and move to error (secs)
	Correct error (secs)
	Command keypresses

(secs)

	Dual Panel
	Expert
	3.7
	0.8
	0.32

	Dual Panel
	Average
	3.7
	2.0
	0.4

	Editor
	Typist
	Spot error (secs)
	Correct error (secs)
	Command keypresses

(secs)

	BumpGrid
	Expert
	2.8
	0.8
	0.48

	BumpGrid
	Average
	2.8
	2.0
	0.8

Figure 13. Theoretical execution times for Dual Panel and BumpGrid editors

[image: image11.emf]Potential correction rates

0

2

4

6

8

10

12

14

16

18

20

Dual Bump Seq Inline

Corrected words per minute

expert typist

average typist

Figure 14. Potential correction rates
1

