The University of Southampton
University of Southampton Institutional Repository

hpDJ: An automated DJ with floorshow feedback

Cliff, Dave (2006) hpDJ: An automated DJ with floorshow feedback In, O'Hara, Kenton and Brown, Barry (eds.) Consuming Music Together: Social and Collaborative Aspects of Music Consumption Technologies. Kluwer pp. 241-264.

Record type: Book Section


Many radio stations and nightclubs employ Disk-Jockeys (DJs) to provide a continuous uninterrupted stream or “mix” of dance music, built from a sequence of individual song-tracks. In the last decade, commercial pre-recorded compilation CDs of DJ mixes have become a growth market. DJs exercise skill in deciding an appropriate sequence of tracks and in mixing 'seamlessly' from one track to the next. Online access to large-scale archives of digitized music via automated music information retrieval systems offers users the possibility of discovering many songs they like, but the majority of consumers are unlikely to want to learn the DJ skills of sequencing and mixing. This paper describes hpDJ, an automatic method by which compilations of dance-music can be sequenced and seamlessly mixed by computer, with minimal user involvement. The user may specify a selection of tracks, and may give a qualitative indication of the type of mix required. The resultant mix can be presented as a continuous single digital audio file, whether for burning to CD, or for play-out from a personal playback device such as an iPod, or for play-out to rooms full of dancers in a nightclub. Results from an early version of this system have been tested on an audience of patrons in a London nightclub, with very favourable results. Subsequent to that experiment, we designed technologies which allow the hpDJ system to monitor the responses of crowds of dancers/listeners, so that hpDJ can dynamically react to those responses from the crowd. The initial intention was that hpDJ would monitor the crowd’s reaction to the song-track currently being played, and use that response to guide its selection of subsequent song-tracks tracks in the mix. In that version, it’s assumed that all the song-tracks existed in some archive or library of pre-recorded files. However, once reliable crowd-monitoring technology is available, it becomes possible to use the crowd-response data to dynamically “remix” existing song-tracks (i.e, alter the track in some way, tailoring it to the response of the crowd) and even to dynamically “compose” new song-tracks suited to that crowd. Thus, the music played by hpDJ to any particular crowd of listeners on any particular night becomes a direct function of that particular crowd’s particular responses on that particular night. On a different night, the same crowd of people might react in a different way, leading hpDJ to create different music. Thus, the music composed and played by hpDJ could be viewed as an “emergent” property of the dynamic interaction between the computer system and the crowd, and the crowd could then be viewed as having collectively collaborated on composing the music that was played on that night. This en masse collective composition raises some interesting legal issues regarding the ownership of the composition (i.e.: who, exactly, is the author of the work?), but revenue-generating businesses can nevertheless plausibly be built from such technologies.

PDF HPL-2005-88.pdf - Other
Download (490kB)

More information

Published date: 2006
Organisations: Electronics & Computer Science


Local EPrints ID: 262144
PURE UUID: 07461d81-74db-4269-90f0-9f23b4d9733b

Catalogue record

Date deposited: 25 Mar 2006
Last modified: 18 Jul 2017 08:54

Export record


Author: Dave Cliff
Editor: Kenton O'Hara
Editor: Barry Brown

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.