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INTRODUCTION

Over the past decade, a number of neural network researchers have used the term computational
neuroethology to describe a specific approach to neuroethology. Neuroethology is the study of
the neural mechanisms underlying the generation of behavior in animals, and hence it lies at the
intersection of neuroscience (the study of nervous systems) and ethology (the study of animal
behavior); for an introduction to neuroethology, see Simmons and Young (1999). The definition
of computational neuroethology is very similar, but is not quite so dependent on studying
animals: animals just happen to be biological autonomous agents. But there are also non-
biological autonomous agents such as some types of robots, and some types of simulated
embodied agents operating in virtual worlds. In this context, autonomous agents are self-
governing entities capable of operating (i.e., coordinating perception and action) for extended
periods of time in environments that are complex, uncertain, and dynamic. Thus, computational
neuroethology can be characterised as the attempt to analyze the computational principles
underlying the generation of behavior in animals and in artificial autonomous agents. For the
sake of brevity in the rest of this article, autonomous agents will be referred to simply as

““agents", and computational neuroethology will be abbreviated to CNE.

CNE can be distinguished from classical computational neuroscience by its increased emphasis
on studying the neural control of behavior within the context of neural systems that are both
embodied and situated within an environment. The “computational” nature of CNE comes not so

much from treating neural systems as inherently computational devices, but rather in the use of
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sophisticated computer-based simulation and visualization tools for exploring issues in

neuroethology.

Put most simply, CNE involves the use of computational modelling in trying to understand the
neural mechanisms responsible for generating "useful' behaviors in an agent. The word “useful' is
rather imprecise: it is more common to talk of adaptive behaviors. In the ethology literature, an
adaptive behavior is usually defined as a behavior that increases the likelihood that an animal
will survive long enough to produce viable offspring. Often implicit in this definition is the
assumption that the animal's environment is sufficiently unforgiving (or hostile) that if the
animal does nothing, it will die before it can reproduce. In studying artificial agents, the utility of
behavior is frequently evaluated by less harsh criteria, such as scoring observed behaviors
according to some metric that indicates how close they come to satisfying some set of

performance objectives or criteria.

Neural networks that generate adaptive behavior should not be confused with adaptive neural
networks, where connection strengths may alter as a result of experience. Adaptation or plasticity
may itself give rise to new or improved adaptive behaviors, but there are many cases of adaptive
behaviors that are genetically determined (e.g., *“hard-wired" behaviors such as reflexes and

instincts).

When CNE is approached in the context of adaptive behavior research, it becomes clear that the
neural system is just one component in the action-perception cycle, where an agent’s actions

may alter what information it perceives concerning its environment, and where those alterations
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in perceived information may lead to changes in the agent's internal state, and where those
changes in state may in turn affect further actions, thereby affecting what information is
subsequently perceived, and so on. Thus, crucially, the agent’s nervous system and body and
environment all combine to form a tightly coupled dynamical system. This is a notion long

stressed by Arbib:

“'In speaking of human perception, we often talk as if a purely passive process of classification
were involved -- of being able, when shown an object, to respond by naming it correctly.
However, for most of the perception of most animals and much of human behavior, it is more
appropriate to say that the animal perceives its environment to the extent that it is prepared to
interact with that environment in some reasonably structured fashion."

(Arbib, 1972, p.16)

As defined thus far, CNE may not seem to be particularly distinguishable from most work in
neural network research. After all, many people in computational neural network research might
argue that their work will, ultimately, lead to understanding of the neural mechanisms underlying
the generation of (some) adaptive behaviors. For example, face recognition is an adaptive
behavior in humans, and could probably be classed as an adaptive behavior in, say, a security
robot. So why can't a back-propagation network that learns to distinguish between photographs

of human faces (for example) be classed as work in CNE?
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MOTIVATIONS

Typically, artificial neural network models employ homogeneous groups of highly idealised and
simplified neuron models (called units), connected in a regular fashion, which exhibit some form
of "learning' or adaptation. The large majority of such models can be described in essence as
mapping or transforming between representations: input data is presented to the network in a
particular format, and the network is judged successful when its outputs can be interpreted as a
correct representation of the results of performing the desired transformation. In almost all cases,
the input and output representation formats are pre-specified by the experimenter (although it
should be acknowledged that this is not entirely true of unsupervised learning networks, and that
there are a number of artificial neural network models that draw inspiration from biological data
in their choice of input and output representations). If such networks are to be employed in
artificial agents, or are to be of use in understanding biological agents, then this can only be so
under the (often unspoken) assumption that, eventually, it will be possible to assemble a
“pipeline' of such input-output transducer networks that links sensory inputs to motor outputs,
and produce adaptive behavior. The most significant issue here is the heavy dependence on a
priori intermediate representations, which may not be justifiable: neural sensory-motor pathways
generating adaptive behaviors might not be neatly partitioned into representation-transforming
modules; such pathways may not exhibit any patterns of activity identifiable as a representation
in the conventional sense, and even if they do, there is no guarantee that they will be in strong

accordance with representations chosen a priori by modellers.
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This should not be mistaken for an argument against representation, nor for a denial of the vital
role played by internal states in the generation of adaptive behaviors: it is simply an awareness of
the dangers of being misled by a priori notions of representation. One of the safest ways of
avoiding these dangers is to model, as far as is possible, entire sensory-motor pathways (i.e., the
complete sequence of neural processing, from sensory input to motor output) involved in the
generation of adaptive behavior. This requires that the agent is studied while situated in an
environment: most sensory-motor processing for adaptive behavior involves dynamic interaction
with the environment; and a situated agent is part of a closed-loop system, because certain
actions can affect subsequent sensory inputs. The sensory-motor pathway should thus not be
viewed as a “pipeline' transforming from a given input representation to a desired output

representation, but rather as one link in the action-perception cycle.

When such an approach is adopted, the true nature of the representations and processing
necessary for the generation of relatively complex adaptive behaviors is more likely to be

revealed, and the validity of any a priori assumptions is clarified.

Naturally, it is beyond the state of the art to attempt to model complete sensory-motor pathways
in humans or other large mammals, but experimental work in the neuroethology literature
provides a wealth of data from less intellectually able animals, such as arthropods (the animal
class which includes insects, spiders, and crustacea), amphibia, and other “simple” vertebrates
such as eels or salamanders. Such animals are used as the domains of study in some CNE
research, but in other work simple idealized models are rigorously studied, in a manner akin to

Galileo’s models of perfect spheres rolling down inclined frictionless planes.
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The argument that a priori commitment to certain representations or architectures for sensory-
motor processing can lead to surprisingly wrong conclusions can be illustrated by reference to a
classic series of thought-experiments devised by Braitenberg (1984). Braitenberg describes
specifications for a series of simple mobile vehicles, operating in a world with simplified
kinematics. The series of vehicles starts with an elementary device that performs primitive heat-
seeking behavior; it progresses through vehicles that exhibit positive or negative taxes (i.e.,
orientation towards or away from a directional stimulus), and primitive forms of learning, pattern
detection, and movement detection; culminating in vehicles that exhibit chaotic dynamics and
predictive behavior. The internal control mechanisms of all the vehicles are rigorously minimal:
the simpler vehicles contain nothing more than wires connecting sensors to actuators; while the
more advanced ones employ nonlinear threshold devices with delays and pseudo-Hebbian

adaptation.

Braitenberg notes that the psychological language indicative of intentional mental states has
compelling intuitive appeal in describing the observed behavior of the vehicles. He ascribes fear,
aggression, love, values and taste, rules, trains of thought, free will, foresight, egotism and
optimism to his vehicles. But he also demonstrates that while such terms may be very useful at
the level of description of an external observer, the internal causal mechanisms could be
surprisingly simple and, crucially, could contain nothing that can meaningfully be said to either
“represent” or “implement” these intentional mental states. That is to say: the intentionality is in
the eye of the beholder, not in the workings of the agent. For further discussion of these issues,

see Cliff and Noble (1997).
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While Braitenberg's vehicles are nothing more than thought-experiments, they provide insight to
possible organisational principles in natural and artificial creatures, and demonstrate the limits of
applicability of intentional terminology. Further discussion of the utility of agent models in

biology can be found in Dean (1998).

To summarise: research in CNE can be characterised as placing increased emphasis on
modelling entire adaptive-behavior-generating sensory-motor pathways in embodied agents,
where those agents are situated in environments that supply sensory-motor feedback. Such an
approach lessens the chances of making untenable assumptions concerning issues of
representation and processing. Moreover, in order to study such pathways where there is reliable
biological data, it may often be necessary to focus attention on relatively simple animals such as
arthropods or amphibia. For further discussion of the rationale for CNE, see Beer (1990), and

CIiff (1990).

It is important to note that there is a tradition of related work in the artificial neural network
literature: research in reinforcement learning for control tasks is most close; see

REINFORCEMENT LEARNING FOR MOTOR CONTROL.
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SELECTED CURRENT RESEARCH PROJECTS

Two specific long-standing CNE research programs are discussed in this section: the work of
Arbib’s research group on visuomotor behavior in simple vertebrates; and Beer’s work on the
neural foundations of adaptive behavior in even simpler agents; i.e. in cockroaches and in
abstract idealized agents. Before delving into these bodies of work, it is useful to consider how

they sit in the CNE canon, and to point to CNE research that resides at other points in that space.

For the purposes of framing, there are three major axes along which work in CNE can be
categorised. In no particular order, they are: the degree of reliance on computer software
simulation; the degree of concentration on a specific animal species or class; and the extent to

which semi-automated design techniques are employed.

The degree of reliance on computer simulation in CNE research projects varies from the
complete, where all work is carried out using software simulations; to the minimal, where the
CNE model takes the form of an operational physical robot, with the model neurons
(individually or at the network level) being constructed from electronic circuits. Examples of the
former include work by Arbib (1987) and Beer (1990) while many examples of the latter are
discussed by Webb (2002). Note also that both Arbib and Beer went on to use robot platforms in
continuations of their work that was initially software-only (Beer et al 1992, Arbib & Liaw

1995). A comprehensive review of the merits of using physical robots (rather than computer
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software) as simulations of animals has recently been published by Webb (2001), which includes

copious references to work in this field; and see also BIOLOGICALLY INSPIRED ROBOTS.

The extent to which CNE research projects concentrate on a specific animal species or class
varies from, at one extreme, CNE studies of one specific species (e.g., Beer, 1990); through
generic CNE studies of several species of animals within the same order (e.g., Arbib’s 1987
work on anuran visual control of action); to the other extreme where neural mechanisms
underlying the generation of adaptive behavior in wholly abstract and idealised agents is

explored within the CNE methodology (e.g., Beer, 2002).

Finally, with the continuing falls in the real cost of processor power and memory and disk
storage, there has been an increased tendency over the past decade to move away from hand-
designed computational/robot models, toward models that are the product of automated or semi-
automated design processes. The use of evolutionary computation techniques such as genetic
algorithms in particular (see EVOLUTION OF ARTIFICIAL NEURAL NETWORKS) has
proved fruitful. At the “hands-on” extreme, there are CNE models where each artificial neuron’s
parameters (e.g. its time constants, thresholds, and connectivity to other components) are
specified by the designer of the model (e.g. Arbib, 1987; Beer, 1990). Whereas at the “hands-
off” extreme the modeller sets up a (usually truly vast) space of possible network designs and
then uses an evolutionary search process to identify points in that design space which best satisfy
some performance metric (i.e., the fitness evaluation function). Examples of this latter approach

include Isjpeert (2001) and Beer (2002).
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Computational Frogs, Toads, and Salamanders

Probably the most mature body of work in CNE is the research program led by Arbib for two
decades on a family of models of visually mediated behavior in simple vertebrates. In the initial
years of this project the focus was on visuomotor activity in frogs and toads: see (Arbib, 1987)
for a review of the project with peer commentary; and Arbib (1997) for discussion of how this
work integrates with studies of monkeys and of rats. Arbib named his simulation model Rana
computatrix, the computational frog, in homage to W. Grey Walter’s seminal Machina

Speculatrix robots from the 1950’s.

The R. computatrix models are faithful to the known biology, and there is an interplay between
the experimental and theoretical work: an initial first approximation model was extended and

refined in a number of stages, leading to a family of models.

Arbib's approach involves the definition of a number of functional schemas: schemas can be
modelled by interacting layers of neuron-like elements, or by nets of intermediate-level units; the
network models can be related to experimental data concerning neural circuitry, and the
development process iterates (Arbib, 1987, p.411 ff.). Further details can be found in SCHEMA

THEORY.
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The primary focus in the R. computatrix models has been on how frogs and toads use vision to
detect and catch prey, in environments that include obstacles and barriers. Arbib has developed a
series of schema-based models that account for depth perception as interaction between
accommodation and binocular clues, and at the lowest level the schemas are plausibly based on

known details of the relevant neurological data.

One of the more striking results from this work, with reference to Marr's well-known theory of
vision, is the indication that (in frogs and toads at least) there are different perceptual
mechanisms for different visual stimuli. That is, the depths to prey and to barriers are extracted
from the optic array by different processing channels, and are integrated in the sensorimotor
pathways much later than Marr's theory might suggest. Arbib and Liaw (1995) went on to
demonstrate how lessons learned from the R. computatrix project could inform the design of

visually-guided robot systems.

In more recent work, Ijspeert and Arbib (2000) have reported on experiments where a
sophisticated simulation of a 3-D multi-segmented bio-mechanical model of a salamander’s body
is controlled by a complex neural network model. The network is composed of separate central
pattern generators (CPGs —see LOCOMOTION, VERTEBRATE) for the body and the limbs,
each of which may be activated and modulated by descending tonic inputs. Ijspeert and Arbib
use this simulation system to explore the neural circuitry underlying the generation of visually
steerable salamander locomotion behaviors in water and on land. One notable aspect of this work
in relation to the earlier studies of anuran circuitry is that, while the gross morphology of the

CPQG circuits is decided by the experimenters, a genetic algorithm is used to determine: the fine
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details of the CPG circuits’ internal connectivity and parameter values; the intersegmental
coupling; and the coupling between the limb CPG and the body CPG. Thus, unlike the hands-on
incremental modelling employed in the R. computatrix models, the salamander model is the

product of a semi-automatic evolutionary design process.

Computational Cockroaches, and Vehicles Redux

Beer's (1990) book contains both methodological arguments for CNE, and also details of
experimental work on his model of a computational cockroach, Periplaneta computatrix, which
is a simulated hexapod agent embedded in an environment, inspired by neuroethological studies
of the cockroach Periplaneta americana. The real cockroach uses chemotaxis as one of several
strategies to locate food sources. If its path along an odour-gradient is blocked by an obstacle,
then it performs stereotyped “edge-following' behavior. The artificial cockroach is controlled by
a heterogeneous neural network which was inspired by biological data, and has been used to

study issues in locomotion, guidance, and behavioral choice.

The primary external sensory input was simulated chemosensory information: patches of food in
the environment gave off odour gradients detectable under an inverse square law relating
distance to odour intensity. The neural nets also received mechanosensory input from

proprioceptors in the limbs and tactile sensors which signal the presence of food under the
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mouth. The simulation model included elementary kinematics: if the artificial cockroach failed to

adopt a stable position for a sufficient length of time, it fell down.

Results from the simulation sessions demonstrated behavior in the model that was highly similar
to behavior in the real animal, and Beer subsequently performed “lesion” experiments by
selectively deleting connections or units from the P. computatrix control network. Again, the

results from the artificial system were in agreement with the biological data.

P. computatrix was inspired by biological data, but was not intended as a biological model. The
various behaviors were generated by heterogeneous neural networks. The neuron model
employed by Beer was more faithful to biology than many of the “formal neurons” used in
conventional artificial neural network research: the units involved differential equations
modelling membrane potentials, which gave his model neural assemblies a rich intrinsic

dynamics. For further details, see LOCOMOTION, INVERTEBRATE.

The central focus in Beer’s (1990) work was on designing architectures composed from such
neural units that could act as controllers for the various behaviors that P. computatrix should

exhibit. Thus, there was no treatment of learning in the initial body of work on the cockroach.
Subsequently, Beer reported on work that extended the original P. computatrix simulation

model, testing it by allowing it to control walking in a real hexapod robot (Beer et al.1992).

In the robot implementation, the control network was still simulated (i.e., the units in the neural

network were not realised physically) but the sensorimotor connections to the artificial neural
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network were interfaced to physical sensors and actuators by means of analogue-digital and
digital-analogue converters. Beer et al. report that in all cases, the response of the physical robot
was highly similar to that previously observed in simulation. The implementation did however
reveal one problem in the controller which had not been examined in the simulation. This
problem (involving disturbances in the crossbody phasing of the legs) was easily rectified, but
nevertheless this demonstrates that simulation models cannot be trusted as perfectly replicating

any physical implementation they may ultimately be intended for.

For a wider unified perspective on this work, see LOCOMOTION, INVERTEBRATE;
VISUOMOTOR COORDINATION IN FROG AND TOAD; and LOCOMOTION,

VERTEBRATE.

Subsequent to his work on P. computatrix, one line of research that Beer has pursued is in
comparison radically simplified, divorced from any specific animal; and yet in its simplicity it
reaches to the core of fundamental issues in cognitive science and adaptive behavior research.
Rather than be constrained (and potentially confused) by biology, Beer (2002) developed a series
of simple idealised embodied and embedded model agents, each of which is capable of
“minimally cognitive” behaviours. Beer defines a minimally cognitive behavior as one that is
just above the threshold for raising issues of genuine interest to cognitive science (see also
COGNITIVE MODELLING: PSYCHOLOGY AND CONNECTIONISM.)

Beer’s minimal agents exist in a two-dimensional world, but can only move along a bounded
horizontal base-line. Various geometric shapes such as circles or diamonds drop from above,

toward the agent’s base-line. In each experiment, the intention is that the minimal agents use
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their sensors to detect the nature of whatever geometric shape or shapes is or are currently falling
toward it, and thereby generate behavior “appropriate” to the current situation. The definition of
appropriate behavior depends on the experiment, but may for example be as apparently trivial as
“intercept circular objects and avoid diamond-shaped ones”. To achieve this sensorimotor
coordination, each minimal agent is equipped with a small continuous-time recurrent neural

network (CTRNN) — see RECURRENT NETWORKS: SUPERVISED LEARNING.

The CTRNN for each minimal agent has a small number (e.g., seven) of fixed-orientation ray-
casting “visual” proximity sensors (that each send a straight limited-length ray out at a particular
angle to the agent’s body and report on how far the ray travelled before it intercepted an object,
if at all). Each sensor feeds onto a small number (e.g., five) of fully interconnected
“interneurons”, and all of these in turn feed onto a small number (e.g., two) of “output” neurons:
one for moving to the left and one for moving to the right. Thus, a typical minimal agent may

have fourteen units and perhaps seventy connection-weights in its CTRNN.

Any particular design for a CTRNN sensorimotor controller for one of Beer’s minimal agents
specifies the time-constant, bias, gain, and input weights for each neuron. Rather than design
appropriate networks by hand, Beer employs a “hands-off” genetic algorithm to explore a very
large space of possible network designs, evaluating each design on a measure of its observed
behavior. To halve the size of the search space, Beer imposed a bilateral symmetry requirement.
Other than this enforcement of symmetry, there is very little a priori commitment to any
particular CTRNN solution. Over a reasonably small evolutionary experiment (e.g. 2000

generations with a population size of 100), minimal agents evolve that reliably score well on the
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experiment’s evaluation function, and that also generalise well to situations not encountered in

the evolutionary adaptation period.

So far, so simple. Yet, in a series of papers published since 1996, Beer and his colleagues have
reported on the evolution of CTRNNs for sensorimotor control in minimally cognitive agents
that have been evaluated on the basis of their ability to perform a variety of increasingly
sophisticated behaviors. These behaviors include: orientating toward and reaching for objects;
discrimination between objects; judging the passability of openings relative to the agent’s own
body size; discriminating between visible parts of the agent’s body and other objects in the
agent’s environment; predicting and remembering the future location of falling objects so that
they can later be intercepted “blind”; and switching attention between multiple objects as they

fall. All with the same simple agent CTRNN architecture outlined above.

This array of cognitively interesting behaviors achieved by Beer’s minimally cognitive agents
prompts the question of what, precisely, is happening at the mechanistic level within the evolved
CTRNNS s to generate these behaviors. And at this point we return to the arguments and issues
explored in the opening sections of this article. Beer presents concrete analyses of the CTRNNs
of these agents, demonstrating a full understanding of their mechanistic activity from a
dynamical systems perspective; and yet, as he points out, this analysis is of little or no use in
attempts at elucidating an understanding from a computational (and hence representational)
perspective: there is nothing readily identifiable in the CTRNNS that represents a circle or a
diamond, or the action of intercepting or of avoiding. Rather, a full explanation of the behavior

exhibited by one of Beer’s minimally-cognitive agent’s CTRNNs can only be given in the
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context of the dynamics of that agent’s embodiment and of the environment that it is situated

within. See (Beer, 2002; Cliff & Noble 1997) for further details.

DISCUSSION

Computational neuroethology studies neural mechanisms that generate adaptive behaviors, and
hence requires that embodied agents are studied within the situated context of their

environmental and behavioral niches.

From the above descriptions, some patterns emerge: the animal-specific CNE projects mentioned
are dependent on the availability of fairly detailed neuroethological data. Such data invariably
comes from invasive in vivo experimentation, and the neuroanatomy of “simpler” animals such
as arthropods or simpler vertebrates is particularly amenable to such techniques: for arthropods
in particular, certain neurons performing particular functions are readily locatable in different
individual animals of the same species. While there are manifest obstacles preventing the
collection of such data from more complex vertebrate subjects, research in these areas is making
significant progress: see ACTION MONITORING AND FORWARD CONTROL OF
MOVEMENTS; ARM AND HAND MOVEMENT CONTROL; EYE-HAND
COORDINATION IN REACHING MOVEMENTS; MOTOR CORTEX — CODING AND
DECODING OF DIRECTIONAL OPERATIONS; PURSUIT EYE MOVEMENTS;
REACHING MOVEMENTS — IMPLICATIONS FOR CONNECTIONIST MODELS;

SENSORIMOTOR LEARNING; and VESTIBULO-OCULAR REFLEX. Furthermore, by



Dave Cliff Neuroethology, Computational Page 19 of 22

definition, any truly general principles underlying the neural generation of adaptive behaviors
are those which are common to a number of species, so only cross-species studies will help

identify general principles (Clift, 1990, p.37).

Yet surely the most general principles of all are those that apply to all agents within a certain
class of cognitive or behavioral niches, regardless of the hardware (or software) that those agents
are implemented in. In this respect, Beer’s minimally cognitive agents are highly cogent. Until
the representation-manipulating explanatory language that has traditionally been brought to bear
on the supposed neural behavior-generating mechanisms of “complex” animals (including
humans) can be demonstrated to be routinely applicable to “simpler” agents (including Beer’s
Vehicle-like minimal agents), the rigour and limits of that explanatory language will remain in

doubt.
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