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Key developments in computational electromagnetics are proposed. Historical highlights are summarized concentrating on the two
main approaches of differential and integral methods. This is seen as timely as a retrospective analysis is needed to minimize duplication

and to help settle questions of attribution.
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1. INTRODUCTION

ETTING the record straight should be perceived as a sub-
S jective exercise and therefore highly personal. The authors’
excuse is that they have a very long view of the work of the
community and one of them has been actively involved since
the earliest days of the digital computer evolution, 1957. This
survey concentrates in the main on methods for field compu-
tation and ignores the very important developments in design
optimization.

II. HISTORICAL ORIGINS

The art of field computation gathered momentum in the latter
part of the twentieth century with the ever increasing power of
the digital computers; though it must be said that the develop-
ments are firmly rooted in the past, e.g., the use of pencil and
paper techniques, analog devices and mechanical machines to
evaluate fields mapped onto meshes. Indeed, many of the ground
rules can be found in the distant past culminating in the work of
Southwell using finite differences in the 1940s [1].

The research activity in CEM has evolved alongside the
modern developments in the digital computing hardware, and
the primary motivation—quite properly—has been to serve
the requirement of engineering in the production of useful
devices of benefit to society. Governments and industry have
been the providers of funds for this research—a fact often
overlooked by those whose motivation is to develop tools for
their own sake. However, we must not deny that CEM is also
a scientific discipline that is capable of sustaining itself and
producing new and far reaching ideas. As an example, consider
the development of the finite element method (FEM) which
grew out of the structural mechanics community serving the
aircraft industry [2]. Its development, though based on classical
principles, was driven by the needs of the industries involved
and was only much later studied by mathematicians who made
the connections with mainstream theory which led to a deeper
understanding [3]. Thus, we had an extremely successful
empirical technique, innovated and developed by engineers,
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exploiting analogs between real discrete elements and finite
regions of the continuum.

III. PIONEERING DEVELOPMENTS

In the meantime electrical engineers had, in the main, fol-
lowed and applied the advances in finite differences (FD), a
highly developed discipline of mathematics, and were able to
write elegant computer codes particularly for simple static two
dimensional configurations with linear media—for example, the
work of Trutt at Delaware [4], Erdelyi et al. at Colorado [5], and
Viviani [6] et al. in Genoa, eddy current applications by Stoll in
Southampton [7], and in three dimensions by Muller and Wolf
at AEG Telefunken, Germany [8]. A major difficulty with FD,
in its classical form, is that the discretization schemes (mesh,
grids, etc) have a fixed topology (order and arrangement) al-
though the actual geometric distributions of mesh lines can be
irregular. A further limitation arises when it is required to intro-
duce higher order terms for the basic Taylor’s series to improve
the accuracy of approximation. All of these difficulties were el-
egantly surmounted by the finite element approach but it must
be noted that FD continued to be used particularly for high fre-
quency time domain problems in the explicit form (FDTD) first
proposed by Yee [9] (1966) and later generalized by Weiland
[10] (1977).

An important milestone in the solution of electromagnetics
field problems came in 1963 with the seminal work of Winslow
[11] at the Lawrence Livermore Laboratory California, as
Winslow’s papers make clear his developments were built
on even earlier work by NacNeal [12] and Leith [13], they
developed a discretization scheme based on an irregular grid of
plane triangles, not only by using a generalized finite difference
scheme but also by introducing a variational principle which
led to the same result. This latter approach can be seen as being
equivalent to the FEM and is accordingly one of the earliest
examples of this technique used for electromagnetics. The key
idea was to construct a secondary mesh of, in the case illustrated
shaded in Fig. 1(a), twelve-sided figures whose vertices are
alternately the centroids of the six adjacent triangles and the
midpoints of the six adjacent sides. With this mesh discretized
equations were readily obtained by applying gauss’ theorem (fi-
nite difference approximation) or the variational principle (finite
elements). In fact the work is in the spirit of the “edge” element
or “Whitney forms” approach applied several years later by
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Fig. 1. Irregular triangular discretization.

Bossavit [32], but was far less general. The discretized form for
the magnetostatic problem derived by Winslow using the vector
potential A is Z? w;(A; — Ag) = I, where [ is the total current
flowing through the dodecagon surrounding the point at which
Ay is defined and w; = 1/2(X\;11 cot(6;41) + Ai—1 cot(bi—1))
and couple two adjacent triangles, see Fig. 1(b), cyclically
around the pivot node of the mesh cell, the quantities 6,1 and
;1 are the included angles subtended at the vertices of mesh
points ¢ + 1 and ¢ — 1 respectively and ) is the corresponding
reluctivity.! A further innovation in this work was the automatic
mesh generator in which an irregular triangular mesh was con-
structed by solving Laplace’s equation, i.e., a regular hexagonal
lattice is distorted to conform to the interfaces and boundaries
of the problem, thus eliminating the need for special equations
at these places.

The important advantages of finite elements were now being
exploited, i.e., the ease of modeling complicated boundaries
and the extendibility to higher order approximations [14],
and then, in 1970, came the first application of the method
to rotational electrical machines by Chari and Silvester [15]
(see Fig. 2). Silvester and his co-workers at McGill University
developed the method in a more general way using unstructured
meshes and generic higher order elements. The polynomials
introduced by Silvester [16] using simplex coordinates allowed
most of the mathematical formulation to be accomplished once
and for all for a prototypal triangle. It is interesting to note
that expressions similar to the above, involving the cotangents
of the included angle at the vertices, enter the finite element
matrices as weighting factors. From this time the method be-
came widespread leading to generalized applications for time
dependent and 3-D problems [17]-[20]. A parallel development
to the above has been with integral methods; these integral
formulations, unlike differential formulations which solve the
defining partial differential equations, use the corresponding
integral equation forms. These techniques became known as
“the moment method” and were described theoretically by
Harrington in 1968 [21]. In this context the pioneering work of
Halacsy based on a point dipole approximation must be cited
[22], indeed he gathered together many of the early pioneers at a
series of small conferences held at Reno, Nevada (1968—-1973).
This approach was later generalized to include 3-D modeling
and non linear materials by the Rutherford Laboratory group
[23].

Yet another class of integral procedures is the so called
boundary element methods [24], [25] based on applications of

Notation as in original paper, (2) is also given in terms of edge vectors.
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Fig. 2. Flux plots and test comparisions of a turbo generator [15].

Green’s integral theorems. Whilst these methods are often diffi-
cult to apply they can produce accurate economic solutions and
have been used extensively in both static and time dependent
problems.

In the 1970s the various strands that made up the CEM
community came together at conferences designed to exchange
ideas between researchers in academia, national laboratories,
and industry. The year 1976 was especially significant as in
April the first Compumag Conference was held in Oxford. In
that year a remarkable meeting took place in Sta Margherita
under the auspices of University of Genoa and the International
Journal for Numerical Methods in Engineering. Many of the
leading developers of the day were present and a special book
was later published [26] which summarized the status of field
computation in the late 1970s.

IV. OUTSTANDING ACHEIVEMENTS

There have been many achievements over the last thirty years
including the following.

A. ICCG Method

Pre-conditioned conjugate gradient method known as incom-
plete Cholesky conjugate gradient method (ICCG) when used
for solving large sparse systems of equations. In this approach
the operation count goes approximately n log n and is largely
independent of bandwidth. This method was first introduced by
Meijerink and Van der Vorst in 1977 [27] and, though not com-
pletely general as the algorithm is limited to system matrices
having “property M,”2 however for the discretized electromag-
netic equations this condition is usually satisfied. In this context
the method was first tried in solution of 3-D magnetostatics with
remarkable success [19] and rapidly taken up by most groups.

B. Delaunay Meshing

Another breakthrough has been in the now widespread use of
the “Delaunay” method of generating triangular meshes [28].
The original algorithm dates from as long go as 1934 but the idea
was taken up by Cendes in 1983 [29] and successfully applied
to 2-D problems with mesh adaption; the Delaunay method was

2A matrix A = a,; is an M-matrix if a;; < 0 fori # j, A is nonsingular
and A—! > 0.
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soon generalized to 3-D using tetrahedral elements with error
analysis [30].

C. Kelvin Transformation

In many situations the far field boundary is at a large distance
from the active region in practical field problems, i.e., bound-
aries at infinity have to be taken into account. Whilst this is
a natural condition with the integral method, for the differen-
tial (FEM) case this poses a difficult problem for which many
methods have been proposed. An elegant solution was reported
by Freeman and Lowther in 1988 [31] and independently, but
in a less developed form, by Xiuying and Guangzheng [32],
using mapping techniques based on the classic Kelvin transfor-
mation in which 77 = a2 where r and 7/ are the inverse points
with respect to a sphere of radius a. An inversion in a sphere is
one-to-one except that the centre of the sphere of inversion has
no corresponding point. The neighborhood of the origin maps
into a set of points at a large distance into an infinite domain.
This transformation has been used in a number of FE systems
to model the infinite domain in which the exterior space to a
sphere (circle) surrounding the actual model is solved as an in-
terior problem. The nodes of the two spaces, now bounded by
circles, are connected by forcing their solution values to be iden-
tical. The method has been modified and extended to 3-D prob-
lems by Imhoff, Meunier and Sabonnadiere (1990) [33].

D. Automatic Cutting of Multiply Connected Regions

To ensure the uniqueness of potentials in FE calculations ap-
propriate cuts have to be introduced to ensure single valued po-
tentials. Developments of automatic algorithms to achieve this
is essential for reliable codes and has been investigated by sev-
eral researchers, e.g., Simkin (1985) [34], Kotiuga (1987) [35],
Kettunen (1998) [36], and Dular (2004) [37].

E. The Introduction of “Edge Elements” and
Differential Forms

Whereby physical conditions are satisfied with respect to
continuity conditions, “curl” and “divergence,” has added to
our understanding of fundamentals. These elements were first
introduced to the CEM community by Bossavit [38], [39] who
has been a prime mover in theoretical developments in the
CEM community, though the fundamental ideas were first in-
troduced by mathematicians, particularly the work of Whitney
in 1957 [40] after whom these elements are named. They were
rediscovered by the finite element community where they were
defined and applied under the category of “mixed elements” by
Nedelec (1980) [41]. Subsequent work by Bossavit and Verite
[38], Mur and de Hoop [42], Biro et al. [43] and Yioultsis
and Tsiboukis [44] demonstrated the effectiveness of these
approaches in solving CEM problems. During this period
1980-1990 serious attention was being given to the role of
differential forms as an alternative to Vector Calculus in formu-
lating field problems [45]. Differential forms have been used
to express Maxwell’s equations since early in the last century,
but many of the advantages of forms as a tool for applied
electromagnetics have only recently been realized. It is claimed
that, relative to the usual vector calculus treatment, differential

forms make elementary electromagnetics clearer, simpler,
and more intuitive. At the same time differential forms are a
powerful tool for research and open the way for the application
of modern differential geometry to electromagnetics. There is
no doubting the economy of the expressions compared to the
customary formulation in terms of vector calculus but there is
also a gain in clarity and physical understanding. For instance
the association of the geometric quantities of length, area and
volume to the forms are compatible with the way quantities
are measured, whereas the corresponding vector quantities are
point densities relying on limits. Thus the essential differences
between B and H are made manifest.

F. Dual Energy Methods

The algebra of differential forms provides a natural math-
ematical language for electromagnetics. The complexity of
Maxwell’s equations is reduced and the relationships can be
illustrated by simple diagrams. These diagrams highlight the
importance of the constitutive equations which are seen to as-
sociate energy density with infinitesimal volumes and therefore
energy with complete electromagnetic systems. This gives rise
to dual energy formulations. There have been several contribu-
tions in this area and one should mention in particular works
by Hammond and Penman [46], Rikabi [47], and Tonti [48].
Variational methods may be applied, based on the equilibrium
energy, providing either a minimum or—through a dual-com-
plementary principle—a maximum for the system energy. This
leads to a very elegant treatment in static fields providing upper
and lower bounds of system parameters such as resistance,
inductance and capacitance. In time-varying fields a symmetry
of electrodynamics known as duality rotation becomes useful.
Dual finite-element formulations are of particular interest to
our community [49] as is the analysis of error bounds [50]. A
geometrical approach known as the method of fubes and slices
[51] is an alternative technique for solving electromagnetic
problems numerically without the need to solve a large system
of simultaneous equations.

G. Material Modeling

Of major interest to CEM community is how to model
efficiently and accurately magnetic hysteresis and anisotropy.
Various techniques have been proposed of which the most
widely used are those based on scalar or vector Preisach [52]
models. The fundamental work in this area has been undertaken
by Mayergoyz [53], and Della Torre [54], [55]. The original
vector model introduced in [53] was subsequently generalized
by defining a new type of projection for the applied field vector
on each direction corresponding with one scalar model [56].
Models based on neural networks have also been introduced
more recently (see for example [57]). A very comprehensive
review of past and present modeling techniques may be found
in [58]. But material modeling is not just about magnetic hys-
teresis. New types of materials have emerged in recent years
and require appropriate computational models. Of the many
developments two are mentioned here because of their impact.
The first are soft magnetic composites made from powder
[59]. Advances with bonding agents, pressing technology and
heat treatment have improved the properties to such an extent
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that they are serious contenders for all electrical machine
applications. The benefits are lower cost and faster production,
improved thermal performance, higher frequency capability
leading to either higher speeds or reduced mass, volume and
material requirement. The second recent advances are high
temperature superconductors, which offer tremendous potential
in terms of reducing the size and increasing efficiency of de-
vices. However, they present a significant modeling challenge
because of very high nonlinearity and anisotropic properties
[60].

H. Computation of Electromagnetic Forces

Most commonly used methods for force calculation are based
on either the Maxwell stress tensor (MST) or the virtual work
principle (VWP). MST is classically derived by starting from
the Lorentz force expression, whereas VWP is based on the me-
chanical concepts of forces being related to the change in stored
energy. A comprehensive analysis of force formulations, and
their implications, is given in [61]. The major benefit of MST
is that it requires only a single solution of the problem but there
are severe implementation problems inherent in applications to
real numerical modeling systems. The VWP, on the other hand,
computes the force on a body by a virtual displacement and
the change in the co-energy of the system. However, the gra-
dient of the co-energy function is normally not easily available
and at least two field solutions are required. Variations of the
two approaches have been considered by many authors in an
attempt to improve the accuracy and reduce the computational
effort. Of major note are the works of Coulomb [62], McFee
[63], Kameari [64], and Hameyer ef al. [65]. A recent attempt is
also worth mentioning of a force computation algorithm based
on continuum design sensitivity analysis [66]. The approach can
generate global forces as well as force distributions over the sur-
face of a body, including a case of zero air gap. Moreover, the
force expression clearly indicates the contributions to the global
force from each source of magnetic field. The implementation
is simple and is independent of the numerical analysis approach
taken.

1. Moving Systems

Several attempts have been made to solve the moving mesh
problem that arises when applying FE to dynamical systems.
Special airgap elements have been proposed by Razek et al. [67]
involving the coupling of analytic solutions for the air-gap with
a standard FE solution. A more general technique has been de-
veloped by Rodger ef al. (1990) [68] which use independent FE
meshes that are free to rotate and translate and which are cou-
pled using Lagrange multipliers. The problem of overlapping
meshes have been discussed by Tsukerman [69] and moving
band techniques by Demenko [70].

J. Fast Multipole Methods

In solving integral equations which have an intrinsic com-
putational cost of O(n?) or, if iterative methods are used, of
O(n?) can be made far more efficient by using the “fast multi-
pole method” introduced by Rokhlin ez al. [71]. This approach
tends to O(n log n) and exploits the fact that only matrix-vector
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products are needed in an iterative solution. Many workers see
this development as pivotal in exploiting the advantages of in-
tegral equations at a reasonable computational cost. In the fast
multipole method the system matrix is exactly computed in the
“near field” only. The far field is obtained from the truncated
local expansion in spherical polar coordinates. The terms in
the multipole expansion are computed using an adaptive hier-
archical scheme introduced by Greengard and Roklin [71]. The
method has been applied to several problems in electromag-
netics by Ruckert ef al. [72] including the 3-D magnetostatic
volume integral equation. This equation was first solved for 3-D
problems in 1972 [23] and thus realizing the potential of the in-
tegral approach that motivated the work at Rutherford over 30
years ago.

K. High Frequency Methods

It has to be said that the FEM has not had the same impact for
high frequency problems, at least in its classical form using dif-
ferential operators. Indeed a wide range of methods have been
used to match the broad range of applications encountered. For
instance the method of moments (MOM) [21], based on the in-
tegral operator, is well suited to the open boundary problems
involved in scattering and antenna applications. The advantage
of this method is that meshing is not required in the free space
regions. However, dense sets of equations are involved and, un-
like the FEM, the solution time is of order n>, so we must expect
to see the FMM method discussed above having a strong impact
in this area. One advantage is that the inefficient procedure of
diminishing the mesh size to achieve a desired accuracy as the
wavelength decreases is largely avoided.

L. Transmission Line Matrix Method

Other methods used for high frequency problems include the
circuit analogy method, transmission line matrix (TLM), first
introduced by Johns [73] which in effect is a numerical imple-
mentation of the classical Huygens’s principle for the modeling
of wave propagation and is ideally suited to time discretiza-
tion but not so effective in modeling geometry. Electrical en-
gineers have an intuitive understanding of how electrical cir-
cuits work and are often more comfortable with circuit models
than with the more abstract mathematics normally used to study
electromagnetic fields. TLM is now a well established technique
for modeling EM problems [74], although current implementa-
tions are restricted to structured Cartesian meshes. Unstructured
meshes offer better versatility for mapping complex geometries
and hence current effort is directed to develop TLM algorithms
capable of working with these types of unstructured triangular
meshes [75]. Unstructured meshes are particularly beneficial
where a range of feature sizes need to be accurately modeled
and easily lend them to nonuniform meshing, employing the
necessary computational resources around small features whilst
minimizing computational effort in the empty spaces.

M. Finite Difference Time Domain Methods (FDTD)

One development that has emerged in the last two decades
for high frequency applications has been the success of finite-
difference time-domain method [9] first proposed by Yee in
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1966 which, though theoretically equivalent to the TLM method
[76], is both easier to implement and easier to adapt to complex
boundaries. The classic result achieved by setting cAt/Az = 1
in the time discretization scheme ensures that the second order
FD equations are exactly satisfied. Furthermore stability is guar-
anteed by choosing At < Az /c. The method uses central differ-
ences to evaluate the derivatives in the two first “order” Maxwell
“curl” equations by using two interlacing meshes and obtain a
second order accurate FDTD scheme. The two meshes are offset
by half the grid size for the E and H fields respectively. How-
ever, the method is severely tested when nonorthogonal meshes
are needed to model complex geometries and indeed to deal with
open boundaries. Much of the vast literature in FDTD is con-
cerned with extending the method to deal with these situations
[77], e.g., work of the team at the Warsaw University of Tech-
nology in which “conforming” meshing technique is used which
allows the modeling of curved surfaces without the “staircase”
problem usually encountered in orthogonal grids [78].

N. Finite Integration Method

This approach was introduced by Weiland in 1977 [10] and
developed significantly in the following years [79]. This formu-
lation also utilizes two interlacing grids, one each for the first
and second Maxwell equations respectively. However, the usual
field components are replaced by their exact integrals along lines
or over areas. The interesting feature of the method being that
the set of matrix equations obtained is a consistent represen-
tation of the original field equations when mapping from real
space to the discretized space and thus can be applied to prob-
lems across the frequency spectrum. The discretized approxi-
mation arises only through the constitutive relations rather than
the difference expressions for the derivatives. Various methods
for time discretization have been used including the “leap frog”
scheme which in the case of a regular grid conforms to the Yee
method. There are clear theoretical links between finite integra-
tion and mixed finite element methods [80].

V. CONCLUSION

There is a significant body of publications in the area of CEM
appearing each year in a variety of journals and presented at
many conferences. It is important that effort is not duplicated
and fundamental work is referenced. This contribution is a per-
sonal view of the authors but hopefully goes some small way
toward achieving this goal. We suggest that the International
Compumag Society takes up the challenge of formulating an
objective portfolio of the key developments in the subject to fa-
cilitate further research.
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