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ABSTRACT
This work proposes a novel algorithm for the numerical computation of the solution of ordinary differential equations, particularly for the case of ‘stiff’ equations.

Existing methods such as implicit Euler and implicit Trapezoidal algorithms, and backward difference formulas, are effective but do not integrate the fast modes correctly and at each timestep must undertake a Newtonian search to get the next solution value. 

Here we present the QUAM algorithm which advances to the next time step Xr+1 by making a first order Taylor expansion of gradient function F(x,t) about the current value Xr, and uses exact analytical expressions to derive Xr+1. Two analytic approaches are possible. One either derives an analytic matrix expression requiring the inverse of the gradient matrix A, or one performs an eigendecomposition of A to get the same result. An adaptive procedure with relatively low overheads, that adjusts timestep to keep one step error within bounds, is integrated into the algorithm.

The algorithm was first tested on a stiff linear problem, and error analysis confirmed that

the method is basically second order accurate. Next the adaptive QUAM algorithm was tested on the classic Robertson problem, where its performance compared very favourably with the MATLAB routine ode23s. The algorithm is particularly fast when the gradient matrix is either slowly varying or even constant.

[1] Introduction
When describing physical, biological or chemical phenomena, one of the most common results of the modeling process is a system of ordinary differential equations (ode’s). Numerical modeling is required to solve these equations when no analytic solution exists. In this paper, we attempt to find a numerical solution X(T) to the equation
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where X(T) is a column vector and F a given vector function, both of dimension n. Situations in which higher order derivatives with respect to time exist can be readily reduced to the above by a well known process known as reduction to first order in time. 

For well behaved ode’s, there are effective and simple classical techniques such as Runge-Kutta algorithms that perform well. However, in some cases, a problem known as stiffness may arise. When X is a vector of dimensionality n, there are n separate timescales associated with the solution. In the case of explicit algorithms such as Runge-Kutta, the simulation time step must be set to less than the shortest timescale in order for the algorithm to be stable. If the timescales vary widely, the simulation time will be increased greatly, often by a factor of millions. This paper introduces a novel algorithm, termed QUAM or Quasi Analytic Method, that is able to solve such stiff problems accurately and efficiently.
[2] Previous Techniques
There are a number of well known implicit methods that can be used to solve stiff ode’s.[5] A few are described below.
2.1 The Implicit Euler and Trapezoidal Methods
Given a step point Xr and a time step h, the next co-ordinate Xr+1 is given by

Xr+1 = Xr + hF(Xr+1,Tr+1)
(Implicit Euler)
[2]
Xr+1 = Xr + 0.5h[F(Xr,Tr) +F(Xr+1,Tr+1)]
(Implicit Trapezoidal)
[3]
These two methods have 1st and 2nd order accuracy, i.e. the local one-step errors are O(h2) and O(h3) respectively, and are implemented as follows:

At each step r in the integration, given Xr and using the chosen equation, we use a search procedure to find Xr+1, starting the search at a reasonable estimated value (usually the last available value Xr). Two advantages of both these methods are that they are easy to implement and are absolutely stable (A-stable) for all values of time step h. However these algorithms will often neglect the fast modes and fail to integrate them correctly. If these are of interest and to be considered, the time step must then be set to be very small, typically about 10-2 times the timescale of the fastest mode of interest.
2.2 Backward Difference Formulas (BDF’s)   
These represent a very popular technique for the numerical integration of stiff ode’s [1].
We define first the backward difference operator 
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[4]
and in general, 
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For a constant step size h, and starting from the point Xr, we have the following implicit algorithm:
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This is the BDF of order n. It involves finding an nth order approximant of 
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 at time step r+1 using backward difference formulas. This approximant is equated to F at the same time step. The equation is solved by using a Newton chord iteration, starting with the predicted value 
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. There is an error that occurs when truncating the series which can be conveniently approximated as
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where 
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 denotes the (n+1)th differential of X with respect to T.

2.3 Numerical Differentiation Formulas (NDF’s)
These are derived by making a slight modification to the BDF, namely
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where κ is a chosen constant.[2]  This is the basis for the MATLAB programs ode15s and ode23s [3], the difference between these two programs being that the latter calculates a new Jacobian at every step. This makes it more robust and reliable, but slower to run when the Jacobian varies only slowly over time.
[3] The Quasi Analytic method - QUAM
We now describe the novel QUAM method which is the subject of this paper. The essence of the method is as follows. At each step a first order Taylor expansion is made of F with respect to both X and T. The resulting equation may then be readily integrated forwards in time analytically, in both vector and scalar cases. 
We are required to solve the ordinary differential equation 
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 by successively advancing from time step Tr to Tr+1, the corresponding values of X being Xr and Xr+1. Note that although F and X are usually real, they may be complex with no loss of generality.
Consider now advancing from step r to step r+1.

We first define:    x=X-Xr      t=T-Tr    
h being the time step.

Linearising about Xr using a first order Taylor expansion, we have 
dx/dt=F(Xr,Tr)+Ax+Bt ,
[9]
where the gradient matrix  
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both of dimensionality n.
A problem is stiff if A has at least one eigenvalue with a large magnitude and a wide spread of eigenvalue magnitudes.
There are now two possible approaches. We first note that in most cases equation 9 has an analytic solution, namely
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[10]
where 
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This approach we will refer to as the analytic method. A second method, the eigenanalysis method, is described next. It is especially useful when either A is singular or |A| is very small (<10-6), in which case A-1 cannot be calculated or is calculated inaccurately. Assuming that A has an n dimensional eigenspace, a transformation matrix P can be found such that
P-1AP=Λ
[12]
where Λ is a diagonal matrix whose entries are the eigenvalues λi of A. Note that P is not unique – there exists a whole family of matrices that will diagonalise A, and we can multiply each column of P by a constant with the relation P-1AP=Λ still holding. However, by default P is usually composed of the normalised eigenvectors of A arranged by columns. Also note that λi, and therefore P and P-1, may be complex.
Defining z=P-1x, we have z’=P-1x’. Substituting into the differential equation [9],
dz/dt= Λz+P-1F(Xr,Tr)+ t P-1B.
[13]
Setting Q= P-1F(Xr,Tr) and G= P-1B, we have z’=
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This can be analytically integrated, assuming that Qi and Gi remain constant for the time step, yielding the solution:
zi(t)=
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[15]
zi(t)=
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Then x(h)=Pz(h), and Xr+1=Xr+x(h).
When |A| is not zero, the algorithm can use the analytic method to advance to the next step. The eigenanalysis method can be used when P is non-singular. If both of these conditions are true, which is normally the case, both methods are useable and will furnish the same answer. So equation [9] can be solved accurately and effectively unless both det A is very small and the eigenspace of A has a dimensionality less than n. 
Singularity (the result of one or more zero eigenvalues) of A will occur not uncommonly whenever a pure integration is present. Fortunately the situation where the eigenspace of A has dimensionality less than n (known as the degenerate case) is relatively rare as it requires at least one eigenvalue to be repeated. In practice, one is more likely to come across near degeneracy – where two or more eigenvalues are very close, and this is a case that can be readily dealt with. 
Clearly QUAM will fail if somewhere along the trajectory of a non linear system the A matrix is both singular and has an eigenspace of dimensionality less than n. This scenario would need to be flagged and the code would step through this region with another algorithm. Where the system is linear and the now constant A matrix has eigenspace of dimensionality less than n (i.e. two or more exactly equal eigenvalues) and at least one zero eigenvalue then a solution may be obtained by using the Jordan transformation of A, implemented with the MATLAB program jordan.m. 

We first apply the Jordan transformation to A at the start of the simulation i.e.

C-1 A C = J ; z = C-1 x                                                                                                                     [17]
For simplicity, considering here a degeneracy of two, the eigenvalues are ordered { λ1  λ1  0…. λ2 λ3….. }
Hence

z’= Jz+C-1F(Xr,Tr)+ t C-1B.                                                                                       [18]
Setting Q= C-1F(Xr,Tr) and G= C-1B, we have z’=
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For the non repeated eigenvalues we have in suffix notation for i>2
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whose solution is easily found as before in the eigenanalysis method. If we now define yT = [z1 z2] , Jo is the 2x2 Jordan block, and QoT = [ q1 q2 ] and GoT = [ g1 g2 ] we have 
y’=
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whose solution is
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In the above expression note that in MATLAB notation
exp(Jt)= [ exp(λt)   t exp(λt) ; 0  exp(λt) ]                                                                                       [22]
and J-1 = [ 1/λ  -1/λ2 ; 0  1/λ  ]                                                                                                         [23]
We then evaluate, somewhat tediously, y(h), reconstruct z(h) and derive Xr+1 from  

Xr+1=Xr+C z(h)                                                                                                                               [24]
For more than two equal eigenvalues a similar development may be undertaken.
Under general circumstances, when the two methods are both useable and produce the same solution, we look to compare the time each takes to implement, although this will depend on the problem.  Later in this paper we shall be considering an adaptive QUAM algorithm in which timestep h is varied. In this case it will turn out that the run time is shortest when a combination of these two methods is used.

The advantage of QUAM is that it takes care of the fast modes analytically and explicitly, unlike the implicit trapezoidal method for example, which does not handle the fast modes correctly. The method is also efficient, not requiring a numerical search at each step. However, at each step an eigenanalysis or matrix inversion must be performed, and this represents the major computational workload. This is reduced greatly in the case of linear systems, i.e. when A is constant. Also, when A is varying very slowly in time, the eigenanalysis/inverse could be performed less frequently than once per time step. The leading error terms derive from the first neglected terms in the Taylor expansion, namely 
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. In other words the one-step error arises from assuming that A and B are constant throughout the time step. Hence if the gradient matrices A and B change rapidly, a very small time step will be required to maintain accuracy. The QUAM method tends to lose its efficacy if the eigenstructure of the gradient matrix itself changes on the same timescale as the fastest modes of the system.
 [4] Initial testing of the QUAM algorithm
4.1 A stiff two dimensional linear problem

Consider first the linear problem
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where gradient matrix A has eigenvalues -999 and -3 and thus represents a stiff problem. This has the analytic solution 
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where I is the identity matrix.

The Taylor expansion [9] is correct to first order. We then integrate x’, noting that the local one-step error should be O(h3). Running the algorithm with various step lengths and keeping the endpoint constant in each experiment should therefore produce a global error Eglobal order h2. Here Eglobal is the rms error within the time window. Either the eigenanalysis or the analytic method can be used – recall that they produce the same result. Fig 1 is a graph of log(Eglobal) for a runtime window of 1 second, against log(h).
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FIG 1

Using a linear regression, an approximate equation for the line is given by:
log(Eglobal) = 2.001log(h)-1.471,
[27]
yielding a functional dependence Eglobal 
[image: image34.wmf]»

 0.230h2, as expected.
[28]
Interestingly, setting k=0 yields an exact solution (assuming round-off error) since in this case, the Taylor expansion is exact.

The algorithm was also tested for cases where the eigenvalues λi of A are 0 or contain complex conjugate pairs. This was done by specifying λi to construct Λ, then choosing a constant P at random. We then set A=PΛP-1. When these tests were run, much the same behavior was exhibited. The numerical solution still had a global error of order h2.
[5] Further algorithm developments
5.1 Finite Differencing    
Where F is analytic, its derivatives with respect to Xi or T should be derived analytically, and their values at (Xr, Tr) computed using these differential expressions. However, in cases where F is numerical, its derivatives must be estimated by finite differencing. If A and B are not available, we can use a finite differencing method to determine them approximately at (Xr,Tr). The approximation used is second order and is as follows [Koch 1997]:
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[30]
Numerical tests have indicated that dXj and dT may be set at ~ 10-6 times the characteristic scale lengths of X and time.
5.2 Adaptive timestep

FIG 2

We now consider how to devise a version of QUAM in which time step h is adaptively varied such that the one step error is within specified bounds. We proceed in a manner somewhat similar to that employed in the Runge-Kutta-Feldberg method.[5]
The time adaptive QUAM algorithm works as follows (see Fig 2). Say we are at a point Xr. We find two separate possible values for Xr+1 by running the algorithm once with a step length h (giving us Xr+1=Y1), and twice with a step length of h/2 (to produce Xr+1=Y3). We also define two constants εlarge and εsmall. These can be set by the user, provided εlarge > εsmall. Note however that failed time steps represent a loss in computation time, so it is desirable that there is a reasonable difference between εlarge and εsmall – a factor greater than 23=8 will help avoid repeated alteration of time step or jitter. However, if this difference is too large, we may be running the algorithm with a smaller timestep than necessary. This is especially true if the matrices A and B vary little, for example, in the Robertson problem at later times (see section 5.1). In this case, the shortest run time (whilst maintaining a certain one step error ) is obtained when εlarge and εsmall differ only by a factor of 2. Although the optimum ratio between the two values will vary between problems, it is normally advisable to maintain this factor at a value of 8. 
Using the notation in the diagram, we then find |Y1-Y3|. There are three possible cases:
Case A: One step error too large: |Y1-Y3|>εlarge :   We set Y1new=Y2, and run the algorithm twice starting from Xr, this time with a step length of h/4. This gives us values of Y2new and Y3new. We continue until |Y1new-Y3new|< εlarge, at which point we start the process again from Y3, this time beginning with the step length that first allowed the given condition to be met. The accepted step will then have a one step error ~ εlarge/8.
Case B: Error within desired bounds: ε small<|Y1-Y3|= εactual  <εlarge :  Set Xr+1=Y3, and execute the next step from this point with the same time step. The previous two steps then have a one step error

 ~ εactual/8
Case C: Error too small:  |Y1-Y3|< ε small :   Again set Xr+1=Y3, but for the next stage, the step length we start with is increased to 1.5h. This will place the next timestep in the middle of the error acceptance band.
Note that if the band of tolerated errors is set fairly narrow, such as a factor of 2, i.e.  (εlarge /ε small )=2 then the factor by which h is increased should be reduced to [1+0.5(εlarge /ε small )^(1/3)]=1.13 in this case, to prevent jitter and repeated failed timesteps. A narrow acceptance band will prevent the simulation spending a lot of time with one step errors substantially below the maximum acceptable.
The final used solution is always given by {Y2,Y3} and the one step error of this solution will be ~ min{εlarge/8; εactual/8}
We begin by setting a starting value for h, hinitial, and continue until a specified time, Tfinal, is reached. If we should go past this time, the last step is performed again, but with h set so as to end up exactly on Tfinal. This is useful for comparisons with other algorithms.

Recall that, given Xr there are two possible methods to find Xr+1, both yielding the same solution. Normally, the analytic method is faster. However, in the time adaptive process, we note that when using the eigenanalysis method, once the eigenstructure of A has been determined to work out Y1, it can be reused to find Y2, greatly reducing the extra workload. With the analytic method some economies will be apparent, since the inverse of A and its square and its square may be reused, but the matrix exponential will have to be recalculated . It turns out that the algorithm is most efficient if the eigenanalysis method is used to work out Y1 and Y2, and then Y3 is found using the analytic method. In this case the CPU time overhead of the time adaptive process is very small. The greatest overhead would result from having too many failed timesteps. If ‘jitter’ does occur it may be necessary to widen the error acceptance band or possibly turn off the adaptive process for problems where the optimal timestep is fairly static.
A general MATLAB code ‘ode_quam.m’ has been developed and tested to implement the adaptive QUAM algorithm in a general way. The user has to supply the function F as an m-file func.m, the desired time window, initial X(0) and desired error tolerances.

In general, the gradient matrices A and B will be computed using finite differencing (sec 5.1). However, the user will have the option of supplying, as extra m-files funcx.m and funct.m,  the analytic differentials of F with respect to X and T if so desired, which may speed up the run time significantly. Furthermore, by default the time step at each stage of the process will be decided upon using a simple time adaptive process (sec 5.2), but it will be possible to instruct the code to  maintain a constant specified step length throughout if it is known that adaptive modification of h will produce few gains. Finally, when F and X(0) and therefore the solution X(T) are real, but two or more of the λi are complex, the algorithm may produce an answer with a very small imaginary part due to round off error. If the solution is known to be real, only the real part of the answer is returned.

[6] Testing of the adaptive QUAM algorithm
6.1 The Robertson Problem  
A classic test for codes that solve stiff ode’s is the Robertson problem [4]

It is defined as:
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The solution will eventually progress to (0,0,1)T, where is a steady state, i.e. 
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. A graph of the solution is shown below in Fig 3. Note that X2 is small but non-zero (of order 10-5).
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FIG 3
Noting that
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, which can be used as a check on the results. Although initially the gradient matrix A has eigenvalues {-0.04, 0, 0}, it changes rapidly so that after just 0.002s, the eigenvalues have become {-2124, -0.3, 0}, making this a very stiff problem. A similar spread of eigenvalues is maintained thereafter.
The MATLAB function ode23s has been used in subsequent findings for comparison purposes.

Our general method for comparison is as follows. We run the algorithm and find the error at a certain time Tfinal, where the error is the distance between the analytic solution and the one given by the algorithm. We then run ode23s, adjusting the tolerance conditions (known as ‘AbsTol’) so that a similar error is obtained at Tfinal, and compare run times. This is done for various values of Tfinal. Note that the actual run times themselves are of little importance – their main purpose is for comparison only. Also, the values given vary typically by at most 5%. A summary of the results is shown below for the following choice of adaptive parameters.

hinitial = 10-4
εsmall = 10-6 

εlarge = 2×10-6
	Tfinal(s)
	Error at Tfinal
	Time taken to run (s)

	
	ode23s
	QUAM
	ode23s
	QUAM

	102
	2.73×10-6
	2.43×10-6
	1.23
	0.50

	103
	1.49×10-6
	1.53×10-6
	1.35
	0.60

	104
	2.91×10-6
	1.93×10-6
	1.38
	0.73


The QUAM algorithm using eigenanalysis method is a significant improvement on ode23s. However, there are a few points to note:
1. If the error tolerance is decreased, there is less to choose between the methods.
2. All the terms in F are of second order in Xi or less. Hence the finite difference method employed evaluates the derivative exactly despite being of relatively low order (order 2). This will not be the case in general.

3. Adjusting the values of hinitial, εsmall and εlarge will produce small variations in the time taken.

 [7] Conclusions
The QUAM method for solving ode’s is effective and simple, and can be used to solve almost any ode to any required accuracy. Comparison with MATLAB’s suite of programs to solve stiff ode’s indicated that QUAM’s performance was generally comparable and in some cases much better  Difficulties only arise when the gradient matrix A is singular (having a pure integration) and has an eigenspace of dimensionality less than n. In a non linear system such a condition would only arise in some region along the phase space trajectory, and the algorithm would have to step through this region using an alternative algorithm. QUAM is particularly good when the given problem is stiff. It works well in non-stiff cases too, although it then has less of an advantage over other techniques. Where the gradient matrices are constant or vary slowly QUAM can be very fast indeed easily outperforming other algorithms.  However, there are a number of improvements to be made, mainly to the time adaptive part of the algorithm. The method of comparing two possible values of Xr+1 by using different step lengths is slightly crude, and can often be time consuming, especially when the solution is uniform and requires little change in step length. It is also quite erratic, and running time and accuracy sometimes vary depending on the given initial conditions (hinitial, εsmall and εlarge). Ideally, the procedure might be developed so that εsmall and εlarge could themselves be adjusted over time, for example the width of the acceptance band could be widened if jitter is detected. Another area for flexibility and on line adjustment is the factor by which h is increased when the one-step error is too small. Reducing this will also greatly reduce jitter.
However, under normal circumstances, this algorithm performs at least comparably and very often considerably better than other ode solvers such as ode23s. It is especially good at dealing with fast modes and has numerous advantages in efficiency over other techniques, such as not requiring a numerical search at each step. With some extra research on choosing εsmall and εlarge and on dealing with less standard cases in general, this algorithm could be even further developed. 
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