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Abstract

This paper is concerned with a characterization of all symmetric solutions to the discrete-time algebraic
Riccati equation (DARE). Dissipation theory and quadratic difference forms from the behavioral approach
play a central role in this paper. Along the line of the continuous-time results due to Trentelman and Rapisarda
[H.L. Trentelman, P. Rapisarda, Pick matrix conditions for sign-definite solutions of the algebraic Riccati
equation, SIAM J. Contr. Optim. 40 (3) (2001) 969-991], we show that the solvability of the DARE is
equivalent to a certain dissipativity of the associated discrete-time state space system. As a main result, we
characterize all unmixed solutions of the DARE using the Pick matrix obtained from the quadratic difference
forms. This characterization leads to a necessary and sufficient condition for the existence of a non-negative
definite solution. It should be noted that, when we study the DARE and the dissipativity of the discrete-time
system, there exist two difficulties which are not seen in the continuous-time case. One is the existence of
a storage function which is not a quadratic function of state. Another is the cancellation between the zero
and infinite singularities of the dipolynomial spectral matrix associated with the DARE, due to the infinite
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generalized eigenvalues of the associated Hamiltonian pencil. One of the main contributions of this paper is
to demonstrate how to resolve these difficulties.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The algebraic Riccati equation (ARE) plays an important role in many control problems such
as linear quadratic optimal control, H° optimal control, optimal filtering, and so on. Since its
introduction in control theory, the ARE has been studied extensively.

An important problem related to the ARE is to find a necessary and sufficient condition for
the existence of a sign definite solution of the equation. For the continuous-time system, Willems
[1] derived a necessary condition for the existence of a non-positive definite solution. But it
turned out that this result was not a sufficient condition [2]. Molinari [3] derived a necessary and
sufficient condition for the existence of a non-positive definite solution. However, it is impossible
to numerically check this condition because it contains the non-negative definiteness of infinite
number of matrices [4]. Since then, several attempts have been made to this open problem. From
the viewpoint of the behavioral approach, Trentelman and Rapisarda [5] derived a characterization
of all unmixed solutions of the ARE by using quadratic differential forms. Their characterization
results in a necessary and sufficient condition for the existence of a sign definite solution in terms
of a single finite dimensional matrix called the Pick matrix.

The purpose of this paper is to derive a characterization of all symmetric solution to the
discrete-time algebraic Riccati equation (DARE) along the line of [5]. In the discrete-time system,
a necessary and sufficient condition for the existence and uniqueness of an unmixed solution are
obtained by Clements and Wimmer [6]. But, there has never been derived the characterization of
the solutions of the DARE so far.

In order to obtain a characterization of solutions of the DARE, we have to overcome the
following two difficulties which are not seen in the continuous-time case. One difficulty arises in
the construction of a storage function. In the continuous system, since every storage function is
a quadratic function of state [7], a solution of the ARE can be obtained from a weighting matrix
of a storage function. In contrast, in the discrete-time case, a storage function is not necessarily
expressed as a quadratic function of state [8]. Only sufficient conditions have been known so
far [8]. Another difficulty is the cancellation between the zero and infinite singularities of the
dipolynomial spectral matrix associated with the DARE. This cancellation is due to the well-
known fact that the Hamiltonian pencil has zero and infinite generalized eigenvalues [9,10]. We
will show how to resolve the above difficulties by developing a spectral factorization algorithm
satisfying a certain biproperness condition.

This paper is organized as follows. In Section 2, we review the basic definitions and results
from the behavioral system theory. In particular, quadratic difference forms are introduced to
formulate the dissipativity of a linear discrete-time system. We give some results related to storage
functions in terms of quadratic difference forms. In Section 3, we solve the discrete-time problems
as described the above, and derive a necessary and sufficient condition for the existence of a
symmetric solution of the DARE. In Section 4, we obtain a characterization of all unmixed
solutions of the DARE using the Pick matrix as a main result of this paper. As a corollary of this,
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we obtain a necessary and sufficient condition for the existence of a non-negative definite solution
of the DARE. In Section 5, a numerical example is given in order to demonstrate the procedure
for the present characterization of all unmixed solutions. Several preliminary lemmas used in this
paper are collected in Appendix A. The proofs of our results are given in Appendix B.

We give the notations used in this paper in the following:

RI*™: the set of m x m real symmetric matrices

R[£]: the set of polynomials with coefficients in R

RM1>m2[£]: the set of m] x my polynomial matrices in the indeterminate &

R™1>™M2 (£): the set of m| x my rational matrices in the indeterminate &

R™1>XM21¢ n]: the set of m; x my polynomial matrices in the indeterminates ¢ and n
R*™[z, n]: the set of m x m real symmetric polynomial matrices in the indeterminates ¢
and n

R[£~!, £]: the set of dipolynomials in the indeterminate &

R™*™[£~1 £]: the set of m x m dipolynomial matrices in the indeterminate &

WT: the set of maps from T to W

B:={we®R)H?| 32 _ lw®|? < oo}

RE)™:=REHT

M () (£): the Ith derivative of the polynomial matrix M (£)

R:= [Ro Ry --- R L]: the coefficient matrix of the polynomial matrix R(§) = Ry +
Ri§ + -+ R

col(Ar, Ay, ..., A =[A] AT o ATl

diag(ay, az, ..., ay) : m x m diagonal matrix with diagonal elements {aj, az, ..., a;}

rowdim (A): the row dimension of a matrix A

A(E, A): the set of the generalized eigenvalues of a square matrix pencil £ E — A. This
set consists of the finite eigenvalues which are the roots of det(§ E — A), and the infinite
eigenvalues which are the reciprocals of the zero eigenvalues of nA — E (see e.g. [9,10,11,
12]).

2. Preliminaries

In this section, we will review the basic definitions and results from the behavioral system
theory.

2.1. Linear discrete-time system [13,14,20]

In the behavioral system theory, a dynamical system is defined as a triple 2 = (T, W, B),
where T is the time axis, and W is the signal space in which the trajectories take their values
on. The behavior B € W is the set of all possible trajectories. In this paper, we will consider a
linear time-invariant discrete-time system whose time axis is T = Z and signal space is W = R?.
Such a 2 is represented by a system of linear constant coefficient difference-algebraic equation
as

Row+R10w+~--+RLoLw=0, (1)
where Rg, R1, ..., Ry € R®*%and L > 0.The variable w € (R?)? is called the manifest variable.

The operator o is called the shift operator defined by (cw)(¢) :=w(t + 1) and (cTw)@) :=w( +
T) forall T € Z. We call (1) a kernel representation of B. A short hand notation for (1) is
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R(o)w =0,
where R(£):=Ro + R1& + --- + Ry &L € R**9[£]. Hence, B is given by
B = {w e (R)” | R(o)w = 0}.

Whenever rank R (%) is constant for all A € C, there exists a polynomial matrix M € R?*™[&]
satisfying R(§)M (§) = 0 with m > rank M = g — rank R [13], where ‘rank M’ is viewed as
the normal rank of a polynomial matrix M (&). Then, for every w € B, there always exists an
¢ € (R™7 such that

w = M(0o)X. ()

The above system representation is called an image representation of B, and ¢ is an auxiliary
variable called a latent variable of B. In terms of the image representation, B can be rewritten as

B ={we (RNH? TR s.t.w=M()l}.

An image representation of B is called observable if M (c)¢ = 0 implies £ = 0. This is the case
if and only if M () is right prime, i.e. M (1) is of full column rank for all A € C [13].

We introduce the notion of state maps [14]. X € R™™[£] is said to induce a state map for X
and a latent variable x = X (0)¥ is called a state variable for X, if x satisfies the axiom of state

{[“”} : [“’2] & Bpuy and x1(0) = X2(0)} — [“’1} A ['jj] & Brun, 3)

X1 X2 X1
where By is a full behavior defined by
B = {col(w, x) € (RIT)Z 3¢ € (R™) s.t. w = M(o)l, x = X (0)}.

In (3), (v1 A v2)(¢) denotes (v A v2)(t) = v1(t) fort < 0 and (vi A v2)(t) = va(¢) fort > 0. It
is easily seen that the state map X (o) is not unique. A state map X (o) is said to be minimal, if
rowdim(X) < rowdim(X’) for any other X’ € R xm [£] which induces a state map for X [14].

If w = M (o ){is an observable image representation, there exists a partition M (§) = col(Y (§),
U (&)) satisfying U € R™*™[£] is non-singular, and Y (§)U (£) ! is proper, possibly after permut-
ing the components of w appropriately and, accordingly, the rows of M (£) [8]. Such a partition
is called a proper input—output partition of M(£). We canregard u = U(o)f and y = Y (0)£ as
input and output, respectively.

Let X € R"*™[&] induce a minimal state map for X, and let x = X (o)£. Then, there exist
matrices A € R"*" and B € R"*™ satisfying x(t + 1) = Ax(¢) + Bu(t) from Proposition IX.2
in [13]. Also, we have the next lemma.

Lemma 1 [7,15]. Suppose that X € R*"*™[&] induces a minimal state map for X represented
by the observable image representation w = M (0 )£. Let M (§) = col(Y (§), U(§)) be a proper
input—output partition. We introduce a new polynomial matrix F € RP*™ [£]. Then, the following
statements (1)—(iii) hold.

(i) There exists a matrix C € RP*" satisfying F (&) = CX(£) if and only if F(§)U (€)™ is
strictly proper.
(ii) There exist C € RP*" and D € RP*™ satisfying F(§) = CX(§) + DU (&) if and only if
F(E)U (&)™ is proper.
(iii) In the case of p = m, there exist a matrix C € R™*" and a non-singular matrix D € R™*™
satisfying F(§) = CX (&) + DU (§) if and only if F(£)U ()~ is biproper.
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2.2. Quadratic difference forms and dissipativity

Consider a two-variable polynomial matrix in R™!1*™2[¢, n] described by

N N
EES I I )
i=0 j=0
where @;; € R™1>™M2 and N > 0. This @(¢, n) induces a bilinear difference form
N N
Lo : (R™)" x (R™)” - R, Lo, £2)(1):=Y > £a(t + ) @i la(t + ).
i=0 j=0

This means that ¢ and 5 correspond to the shift operations on £1(¢) and £,(¢), respectively.
We call (¢, n) symmetric whenm| = my =: m and @(¢, n)T = ®(n, ¢).Inthis case, P(¢, n)
induces a quadratic difference form (QDF)

Qs : (RMF — RE, Qa(0)(t):=La(L, O)(1).

A QDF Qg (®) is called the rate of change of Qy(£) if Qu()(t + 1) — Qp(£)(t) = Qo(£)(2).
In terms of two-variable polynomial matrices, this relationship is expressed equivalently as

En—DYE, n =P, n).
With every @ € R"™[¢, n] in (4), we define its coefficient matrix by

D9 Do -+ Doy
&= P Pu e Py e RIVADmX(N+Dm
. . . . . S .
Pyo DPyn1 - DPyn

For @ € R"*™[¢, n], a QDF Q¢ (¢) is called non-negative if Q¢(£)(t) > 0 for all £ € (R™)?
and t € Z. If Q¢ (€) is non-negative, and if Q4(£) = 0 implies £ = 0, then Q¢(¥) is said to be
positive. Clearly, Q¢(£) is non-negative if and only if @ >0.

For @ € RI"™[¢, n], its coefficient matrix can be factored as ® = M"XsM, where Xp €
Rgank‘p”ank‘p, M e Rrank @x(N+Dm 3¢ of 1] row rank, and det ¢ #+ 0, i.e. rank X ¢ = rank ®.
With such a factorization of @, we obtain a canonical factorization of ®(¢,n) as D(¢, n) =
M(¢)TZeM(n), where M(£):= Mcol(Ly, €Ly, ..., EV1,) € RAK&xm[g],

The map 0O associates a dipolynomial matrix with a two-variable polynomial matrix as follows.
Given @ € RV ™[¢, n], we define the map

ORI, ) - R™METL €L 00() =D, §).
A QDF Q4 (?) is called average non-negative, if Z;’i_oo Qo()(t) = Oforallf € l;”. Then, from
Proposition 3.1 in [16], Q¢(£) is average non-negative if and only if AP (el®) > 0 holds for all
w € [0, 2m).
Here, we introduce the notion of dissipativity.

Definition 1[8]. Let IT € R? [z, n]. A system X = (Z, R?, B) is called dissipative with respect
to the supply rate Q7 (w) if Z;’i_oo QOn(w)(t) > 0holds for all w € lg N Y.

We can think of Qp(w) as the power delivered to the system 2. The dissipativity implies that
the net flow of energy into the system is non-negative, i.e. the system dissipates energy. Hence,
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the rate of increase of the energy stored inside of the system does not exceed the power supplied
to it.

In the remainder of this section, we assume that B has an observable image representation w =
M(o)e, M € RT*™[£]. Then, X is dissipative with respect to the supply rate Q(w) if and only
if the QDF Q¢ (¢) induced by ®(¢, n) = M(;)Tﬂ(z, n)M (n) is average non-negative. Hence,
we can describe any claims on the dissipativity with a general QDF in terms of a latent variable.

Definition 2 [8,15]. Let @ € R [¢, n].

(i) The QDF Qy(¢) induced by ¥ € R**™[¢, n] is a storage function for Q¢ (£) if

Qu)( +1) = Qu()() < Qa(£)(1) &)

holds for all t € Z and £ € (R™)%. We call (5) the dissipation inequality.
(ii) The QDF Q 4(¢) induced by 4 € Ry *™[¢, n] is a dissipation rate for Q¢ (€) if

Y 00 =Y 04O ©)

t=—00 t=—00

and Q4(£)(t) > Oholdforallr € Zand £ € I7'.

Moreover, there is a one-to-one relation between a storage function Qw(¢) and a dissipation
rate O 4(¢) defined by

Qu)(t +1) = Quw()(1) = Qo (£)(1) — Q4(O)(1), (N
or equivalently,
&n—=DY (&, n) =P, n) — A, ). ®)

Eq. (7) is called the dissipation equality.

It follows from Lemma 3.1 in [16] that (6) is equivalent to 0®(A) = 04(A) for all non-zero
r e C.

The next theorem gives a characterization of average non-negativity of Q4 (£) in terms of a
storage function and a dissipation rate.

Proposition 1 [8]. Ler @ € RY*™[¢, n]. The following statements (i)—(iii) are equivalent.

(1) Q¢ (@) is average non-negative.
(i1) Q¢(€) admits a storage function.
>iii) Q¢ (£) admits a dissipation rate.

In the rest of this section, we restrict our attention to the case where a supply rate Q(w) for
Y is induced by a symmetric matrix IT € R?™?. Then, a QDF Q4 (£) is induced by a two variable
polynomial matrix defined by

&, n) = M©E) TIM®). )

Let X € R™™[£]induce a minimal state map for X, and define x := X (¢)¢ € (R")?. We factorize
a dissipation rate Q4(£) as A(¢, n) = F(¢) T F(n), F € RPX™[&]. Then, (8) reduces to

&n—DYE,n =M IIM®@m) — F@E)TF®). (10)
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Let M(§) = col(Y(§), U(&)) be a proper input—output partition. Such a partition always exists
by the observability assumption of the image representation w = M (0 )¢. From Lemma 1 and
(10), we obtain the following proposition.

Proposition 2. Let @ € R"™[¢, n] be defined by (9). Let ¥ € R"*™[¢, n] induce a storage
function for Q ¢(£) corresponding to the dissipation rate induced by A(¢, n) = F(()TF(n), F e
RPX™[&]. Then, there exists a symmetric matrix P € RI*" satisfying Y (¢, n) = -X©)TPX (),
i.e. Qp(t) = —x ' Px if and only if F(£)U (&)~ is proper.

Proof. See Appendix B. [J

If a storage function Q(¥) is expressed as ¥Y(¢, n) = —X(;)TPX(n) for some P € RI*",
then Q () is said to be a quadratic function of state, or simply a state function.

Remark 1. In continuous-time systems,! since F(£)U (§)~! is always proper, every storage func-
tion is a state function [7]. On the contrary, in the discrete-time case, the same claim does not hold
in general. Because there exists a dissipation rate induced by 4(¢, n) = F ({)TF (n) for which
FEUE )~ ! is not proper [8]. Only sufficient conditions have been known so far.

We give the following proposition about the smallest storage function under some biproperness
restriction.

Proposition 3. Let ® € RI' [, n] be defined by (9). Assume that 0d(e®) > 0 holds forall w €

[0, 27). Let ¥ € R, n]induces a storage function for Q ¢(£) corresponding to the dissipation
rate induced by F(¢)T F(n) such that F € R™™[£],00(&) = F(§)~F(&) and F(€)U (€)' is
biproper. Let H € R™*"™[&] be a Schur® polynomial matrix such that 9d(&) = H (&)™ H(£) and

H(E)U &)™ is biproper. Then, the storage function induced by W~ (¢, n) = 2@.m—H@O Hw)

satisfies !
Qu-(0) < Qw(0), VreZ tely (11)
for any other Y (¢, n) satisfying the above conditions.
Proof. See Appendix B. [J
3. Solvability condition of the DARE
In this paper, we consider the DARE with the unknown matrix P € R7*"
ATPA—P+Q—-(ATPB+SHV(P) Y(BTPA+S) =0, (12)

V(P)=B'PB+R,

! In the continuous-time case, the dissipation equality of (8) is replaced by (¢ + n) ¥ (¢, n) = @(¢, n) — 4(¢, n). Also,
0d (&) and F (&)™ are defined by 0@ (&) :=P(—£&,&) and F(§)™ := F(-&)T, respectively.

2 Fora polynomial matrix F € R™*"[£], we call it Schur (respectively, anti-Schur) if det F () # 0 for all » € C such
that [A| > 1 (respectively, || < 1).
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where A € R"", B e R"™, Q € R, R € R, and § € R"*™. The DARE (12) is associ-
ated with the linear quadratic optimal control problem of minimizing the quadratic performance
index

A [x0]" L [x0 o sT
J_Z[u(t)} H[u(t)]’ ”'_[s R}

t=0
for the system described by the state space equation
x(t+1)=Ax() + Bu(t), (13)

where x(¢) € R” is a state variable and u(¢) € R™ is an input variable. We assume that (A, B)
is reachable. Recall that (A, B) is reachable if and only if [A — M, B] has full row rank for
all 1 € C. Hence, the reachability of (A, B) is equivalent to the controllability in the behavioral
system theory [13].

We define the manifest variable w € (R"*™)Z by w :=col(x, u). Then, the state space equation
(13) is equivalent to the kernel representation R(c)w = 0 with R(§) := [A — &I, B]. Hence,
this system is defined by X := (Z, R"*", B) with the behavior B = {w € (R"™)Z | R(c)w = 0}.
Since R(}) is assumed to have full row rank for all A € C, (£1, — A)"'B has a right coprime
factorization over the polynomial ring, namely

EL—AT'B=X®UE ™, (14)
where X € R [£]and U € R™*"™[&] are right coprime. Without loss of generality, we assume

det U (&) = det(£1, — A). By using the coprime factors X (&) and U (§), the observable image
representation of B is obtained as

_[x0] _[x@
w(r) = [u(t)} = [U(GJ 708 (15)

where ¢ € (R™)7 is a latent variable. Since we assumed that (A, B) is reachable, it can be shown
that x = X (0)£ is a minimal state variable for 2.

Let the QDF
On(w)=w'Hw (16)
be a supply rate for 2. Define the symmetric two-variable polynomial matrix
Dz, m):=M) IM(n) € R™[¢. 0], M(E) = col(X (&), U(&)). a7

Since Q(w) = Q¢(£) from (15)—(17), the dissipativity of 2 for the supply rate Q7 (w) is equiv-
alent to the average non-negativity of Q¢(€) as explained in Section 2.2. Hence, from now on,
we assume

Assumption 1

(i) 00(e'®) > 0, Vo € [0, 277). This implies that the system X is dissipative with respect to the
supply rate Q(w), or equivalently, Q () is average non-negative.
(ii) det 0®(&) # 0 holds as an element of R[S_l, &l

For a given P € R}*", we define
P, )= —XQ) " PX),

A, n):=M@E)"L(P)M(y), L(P):= [

ATPA—P+Q ATPB+ST
BTPA+S V(P)
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We easily see from (14) that £ X (§) = AX(§) + BU (§). It thus follows that ¥ (¢, ) and A(¢, 1)
satisfies

D) — A, =1 —mXE) PX(), (18)
or equivalently,
0a()(t) — Q40 (1) = Qu(O)(t + 1) — Qu(O)(1) (19)

holds for all £ € (R™)? and for all ¢ € Z. We obtain the following proposition from Definition 2
and Proposition 1.

Lemma 2. Let @ € RY"*™[¢, n] be defined by (17). Then, for P € RE*", the following statements
(1)—(ii) are equivalent.

(1) L(P) = 0.
(ii) The QDF Q¢ (L) is average non-negative, and the QDF Qw(£) = —x ' Px is a storage

function for Q¢ (£).
(iii) The QDF Q¢ () is average non-negative, and the QDF Q 4,(£) = wlL(P)wisa dissipation
rate for Q¢ (£).

Proof. See Appendix B. [

We define the set of the solutions to the DARE (12) by
&= {P € R*"|P satisfies the DARE (12) and V(P) > 0}.

Then, we have a necessary condition for . # ) in the following lemma.

Lemma 3. Let X € RV"[&] and U € R™*™[&] be a right coprime factorization of (€I, —
A)"'B. Let @ € R"™™[¢, n] be defined by (17). Then, for any P € &, d®(§) is factorized as
0B(E) = Fp (€)™ Fp(&), where Fp(£) = V(P)(KX(€) + U(§) and K :=V (P)" (BT PA +
S). Therefore, the following statements (1)—(iii) hold.

(1) The two-variable polynomial matrices defined by ¥ (¢, n) = —X(;)TPX(n) and A(Z, n) =
Fp (;)TFP (n) satisfy the dissipation equality (10). Thus, they induce a storage function
and a dissipation rate for Q¢(£), respectively.

(ii) det Fp () = «/det V(P) det(é1, — Ap), Ap:=A — BV(P)""(BTPA+S).
(iii) deg det Fp (£) =n holds, and the rational matrix Fp (§)U ()~ =V (P)2 K (E1, — A)~' B+
V(P)% is biproper.

Proof. See Appendix B. [

We see from Lemma 3(iii) that a necessary condition for . # @ is that there exists F €
R™*™[£] satisfying 0OD(&) = F (&)~ F(£) and F(£)U(£)~! is biproper. The next proposition
guarantees that this necessary condition is also sufficient for & # ¢.

Proposition 4. Let X € R"*"[&] and U € R™ ™ [&] be a right coprime factorization of (1, —
A)"'B. Let @ € R"™™[¢, n] be defined by (17). Then, & # @ holds if and only if there exists a
polynomial matrix F € R"*™[£] satisfying 0P (&) = F(£)~ F(£) and F(£)U (£)~" is biproper.
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Proof. See Appendix B. [
We define

%:z{fems] ’f<s>=fo+fls+~-~+fné", fn>o,}.

det0P(§) = f(§)" f(5)

In view of Lemma 3 and Proposition 4, the basic idea for solving the DARE (12) is as follows. If we
can find a spectral factorization 0@ (&) = F (&)™ F (&) suchthatdet F(§) = f(§)and F(E)U (¢ )1
is biproper for f € #, then the solution P corresponding to f (&) is obtained by solving the
polynomial matrix equation

d,n) — FQ)TFm) =1 —tmXE©) PX(n). (20)

Hence, in order to establish the solvability condition of the DARE (12), we need to show the
existence of a factorization such that F (&)U (£)~! is biproper for any f € .%. But, unlike the
continuous-time case, it is not trivial to prove this for the following two reasons.

(i) There holds deg det 0@ (&) = 2r < 2n in discrete-time systems, while deg det 0P (&) = 2n
is always guaranteed in the continuous-time case.> Thus, f € % can be described by f(£) =

§"7" fo(§), where fo € R[£] is such that det 0P(§) = fo(§)™ fo(§), deg fo(§) =r, and fo(0) #

0. Hence, the singularities of 0@ (&) are arranged as

0,..,0, Alyoovy Ay Ao A0 h 00,0, 00,
e e e ———
n—r r r n—r
where Aq, ..., A, and Al_l, R Ar" are the non-zero roots of det 0®(£) = 0. Note that n finite

singularities of 0@ (&) are the zeros of f (&), while n other singularities including infinities are
the zeros of £" f (5_1). There are cancellations between the zero and infinite singularities in
det 0@ (&). Moreover, the singularities of 0®(&) coincide with the eigenvalues of Ap and their
reciprocals from Lemma 3(ii). Actually, these are the generalized eigenvalues of the Hamiltonian
pencil associated with the DARE (12) [9,10]. Although Popov [18] proved the existence of a
factorization 0®(¢) = F (&)™ F (&) such that det F(§) = f (&) for f € #, the biproperness of
FE)UE )~ is not guaranteed yet.

(ii) As pointed out in Remark 1, from the existence of a dissipation rate such that F(§)U (§ y~!
is not proper, storage functions are not expressed as a state function for discrete-time systems in
general. This implies that the necessary condition for . # ¥ in Lemma 3(i) is not always satisfied.

Example. Consider the case where X (§) = 1,U(§) =&, Q0 =2, R = 1,and S = 0. In this case,
we have n = 1 and (¢, n) =2+ ¢n. It is clear that 0®(£) = 3, and hence degdet 0P(&) =
0 < 2 = 2n. Hence, the singularities of 0@ (&) are {0, oo}. If we choose F(§) = V32, then
F(&)UE)~" = v/3& is not proper. Taking 4(¢.n) = F(¢)T F(y) = 3¢%n? yields ¥(;. ) =
—2 —3¢n. Since F(&)U(£)~! is not proper, by Proposition 2, this ¥(¢, n) induces a storage
function which cannot be expressed as a state function. Indeed, the induced storage function
Qy(£) = —2x% — 3u? depends not only on the state but also on the input.

In the remainder of this section, we will discuss how to overcome the above difficulties peculiar
to the discrete-time case. More specifically, we will present a method for constructing a spectral

factor F (&) that satisfies the biproperness condition of F(§)U (& )~ L,

3 The degree of a dipolynomial ¢ (§) = ¢L§L + -+ ¢1§l (pr, 1 #£0, L > 1) is defined by degp(§) = L — 1 [17].
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For this purpose, we assume that U (£) is column reduced without loss of generality. Otherwise,
we can always obtain such a coprime factorization as follows. There always exists a unimodular
matrix V € R™*™[£]suchthat U'(§) :=U (§) V() is column reduced (see [19, p. 386]). Then, the
image representation of (14) is equivalently rewritten as w = M’ (c')¢', where M’ (§) = M (&) V (§)
and ¢ = V(o) e Let nj (j=1,2,...,m) be the degree of the jth column vector of U (§). We
define the diagonal polynomial matrix Ug(§) :=diag(E™,£"2, ..., &™), ni+ny+---+ny =
n. It is well-known that U (§) is column reduced if and only if U (&' YUq(& T biproper [19].
Moreover, the identity F (§)U (&) ™' = F(&)Ug(&)~! - Ug(€)U (£)~! implies that F(£)U (£) ! is
biproperif and only if F(£)Uq(£)~"! is biproper. Therefore, we have only to check the biproperness
of F(§)Uq(£)~!. A spectral factor F(£) satisfying the biproperness condition can be obtained by
the following iterative algorithm.

Algorithm 1

Step 1: Let f € # be given. Then, f(&§) is expressed as f(§) = &"7 fo(§), where fp €
R[&] satisfies deg det fo(§) = r and det 0D(&) = fo(§)™ fo(&). It is clear from the definition that
f0(0) # 0.Find afactor Fy € R™*"™[£] satisfying (&) = FO(E)”FO(S) anddet Fy(&) = fo(&).
The existence of such an Fy(§) is guaranteed for any f € # (see e.g. [18]). Note also that
Fo(§)Uq(§)™ Uis always proper.

Step 2: If degdet Fi(§) = n, then stop, and the desired factor F(£) is obtained by F(£§):=
Fi(&). Otherwise, go to Step 3.

Step 3: At the (k + 1)th iteration, we define Hy := limjg|— 0 Fx(§)Ug(&)~!. Let pr denote
the rank deficiency of Hj, namely rank Hy = m — pi. There exists an orthogonal matrix Z; €

R™*™ such that Zy Hy, = [Oﬂ,ixm], where Hy € R —P)XM is of full row rank. Then, Z; Fi.(€) is
H,
expressed as ‘
(Y © e - fWeT
“”(5) “‘)@) SN AN (3
ZiFr(§) = ) B k'
f,f,j(é) f,f € o fym®)
L Fr(®) _

where Fj, € RO"—POXm[£] and fig.k) € R[E] satisfy

lim Fr(&)Uq(e)™" = Hy : full row rank,

‘Sl‘lm fR®E™ =0 (=120 j=12....m).

Define puy; := min jey m{n; — deg f(k) (&)} fori =1,2,..., pk, and form a unitary polynomial

matrix Wi (&) :=diag(§#t, g#2, . g¥ee 1, ..., 1) € RIP*™[&]. Update the polynomial matrix
Fi (&) by Fry1(8) =Wy (g)Zka(é), and go back to Step 2.

We obtain the next lemma since it can be shown that F (£)Uq (&)~ is biproper for the factor
F(¢) obtained from Algorithm 1.
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Lemma 4. Forevery f € F, there exists a polynomial matrix F € R™*™[&] satisfying 0D(§) =
F(§)~F(§), det F(§) = f(&), and F(§)U (&)~ " is biproper.

Proof. See Appendix B. [

Summarizing Lemmas 3, 4 and Proposition 4, we conclude that the solvability condition of
the DARE (12) is given by Theorem 1.

Theorem 1. There exists a real symmetric solution of the DARE (12), i.e. ¥ # @ if and only if
Assumption 1 is satisfied.

Proof. See Appendix B. [J

4. Characterization of all unmixed solutions

In this section, we derive a characterization of all unmixed solutions of the DARE (12). A
solution P € & is called unmixed if A(I,, Ap) N A(Ap, I,) = @ is satisfied,* where Ap = A —
BV(P)"Y(BTPA + ). We define the set of all unmixed solutions by < unm- Also, we define

Feop={f €7 | f(&) and £" f(£€~") are coprime}.

It is straightforward to verify under Assumption 1 that & op # @ if and only if 0d(e'”) > 0 for
all w € [0, 27). Hence, we see that yym # ¥ if and only if 7 op # ¥ from Lemma 3(ii). In the
following, we assume a more restrictive condition than Assumption 1.

Assumption 1. 0d(e'®) > 0 holds for all w € [0, 27).

We define the map
Ric : Z cop = Lunm

as follows. For f € F ¢op, find a factorization 0@ (&) = F (&)™ F (&) such that FEUE) ™ is
biproper and det F'(§) = f(§). Then, Py = Ric(f) is defined as a unique solution of the equation
(20).

Proposition 5. Under the Assumption ', the map Ric is well-defined and bijective.
Proof. See Appendix B. [

We consider the relationship between the map Ric and the characterization of all unmixed solu-
tions. For a given f € % ¢op, let F € R™*™[£] be such that 0P(§) = F(§) F (&) and det F(§) =
f(&).Let Py = Ric(f).

We now define the Pick matrix which plays a central role in our characterization of all unmixed
solutions. For f € Z cop, suppose that A1, A2, ..., Ax € C are the roots of f(§) = 0. Note that
these roots are not necessarily distinct. Let A; have the partial multiplicity d; > 1. Then, d; +

4 Our definition of the unmixed solution is slightly different from the definition by [6] in that we do not allow A p to
have an eigenvalue on the unit circle.
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do+---+di =n.Let F) € R™™[£] be the ith derivative of F(£). By the result of Theorem
3.2.16 in [20], there exist non-zero vectors a;; € C" (j =0, 1,...,d; — 1) such that

di—1

Z (f) F<J’*1)(Ai)ai,/ =0 (=0,1,...,d; —1). 21

j=l
di -2\ di—1\ ]
dt _ 2 aldj—z dt _ 1 aldl‘—l
di —1
g — o) didi=1 0
1

Using these vectors, we form the matrix V; € Clim=di gq
B 0 1

1 2

o) ¢l 1 ) 42

Vii= : 0 0
di -2\ i — 1\
0 aldifz l aldj*l
di —1
_( 10 >aidi—l 0 0 0 |
(22)
Fori, j =1,2,..., k, we construct the matrix 4;; € C4ixd; by
0 0 --. 0 07
dj—1 % s Lo 0 0
=2 (m) Ly Li=lo 2 . 0o ol (23)
s=0 ) . . . .
10 0 -+ d—1 0]

Finally, we define the Pick matrix associated with f (&) by the matrix 7y € C"*" whose (i, j)th
block T;; € CH™*dim(i j =1,2,..., k) is given by
min{d,-,dj}—l 1 /
o T Vil (L)
Tj= Y m(/ﬁ;iq) A5 VROV Ay (L) (24)
[=0 .
In(24), ©;; € Cdim>djm is the matrix whose (r, s)th block is givenby @9 (¢, n) r =0,1,...,
di—1,s=0,1,...,d; — 1) and @9 (¢, 1) denotes the (r, s)th derivative with respect to ¢ and
n of &(Z, n).
We derive the relationship between the solution Py and the Pick matrix Ty in the following.
Recall that Py is uniquely determined by

) —FOTFm) =10 —-¢mX @) PrXm). (25)
The (r, s)th partial derivative of (25) is given by

(@, m) = FO @) FY ()

r N

d
LX) Py

P {nX(m} (26)
n

d
— XOATP XD () —
=X"E) Pr XY (n) i

forr =0,1,...,di—1,5s =0,1,...,d; — 1. Since
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dd—;,{éX(S)} =exV@&) +1x7V @), @7
the right hand side of (26) can be rewritten as
T (g, ) = FO @) TFY ()
= A =X @ PrXV ) —rsX"V@) T PXCTV ()
=X TP X () — s XD @) TP XD ). (28)
Substituting (¢, 7) = (A;, A;) into (28) yields
"I Ay = FOG)TFOG)
= (1= 2A)XO0) TP XYW 0 —rsXTV0N TP XD ()
— XGNP X)) — s XO ) TP XSV 0. (29)
From (29), the direct calculation of V;*@;;V; yields
V¥O;;V; = (1 — Mirj)SiPrS; — L SFPpS;Lj — AjL] S*PyS; — hiSFPrS;L;, (30)
where
Si=[X0) XV - XETVEn] v 3D

Notice that the terms involving F")(1;) T F®) (A ;) vanish, because a straightforward calculation
shows

0 I, O 0
0 0 21, 0
NiVi=ViL;, Nij:=|:. . : ; (32)
0o 0 - 0 @—-Dly,
o o -~ 0 0
and (21) implies
[FO.) FO@) - FU=Dap]vi=o0. (33)
Pre- and post-multiplying (30) by A;‘.i and 4;;, respectively, we obtain
A5 VO Vidij = (1 — Lihj)S; PrS) — %MAjiLing“PfstjAﬁ. (34)
From (L A;j)% = 0, constructing the matrix T;; yields
T;; = SFPsS;. (33)
Since (35) holds forall i, j = 1,2, ..., k, we obtain
Tp=S}PsSy. (36)

In (36), Sy € C"*" is called the zero state matrix associated with f (£) defined by
S¢i= [Sl S - Sk]~ @7

We can prove that S is non-singular under Assumption 1’. Hence, we obtain a characterization
of all unmixed solutions as a main result of this paper.
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Theorem 2. Under Assumption 1', all unmixed solutions to the DARE (12) are parametrized by
Ric(f) = (S})*‘Tfsil, f € Feop-
Proof. See Appendix B. [
Using Propositions 3, 5, and Theorem 2, the largest solution of the DARE (12) is given by P, =
(Sfl‘)’1 T, S _1, where h € F ¢op is Schur. Hence, we obtain a necessary and sufficient condition

for the existence of a non-negative definite solution of the DARE (12).

Corollary 1. Under Assumptions 1', let h € F cop be Schur. Then, the DARE (12) has a non-
negative definite solution if and only if Ty, is non-negative definite.

Proof. See Appendix B. [

5. Numerical example
Consider the DARE (12) with the coefficient matrices

0 1 1 0 3 0 2 0 0 O
A R ) R e

Note that = 2 in this case. One of the right coprime factorizations of (¢, — A)~! B is given by

X(s>=[(1) ﬂ and U(s)=[fl _13]

§+ 3
The corresponding two-variable polynomial and dipolynomial matrices are
34+42tp  —2¢-—1 5 -2l
@ = d 09¢) =

respectively. It is easy to verify by direct calculation that 9®(el®) > 0 for all w € [0, 277). Since
det 0d(&) = 3& 4+ 15 + 3¢~ !, we have degdet 0P(§) = 2 < 4 = 2, i.e. there is a cancellation
between £ and £ 1. 9® (&) has four singularities

=54 4/21 =5 —4/21
M= d=
2 2
Then, F op consists of two elements 1 (§) = hW(E —X)E —A3)anda(€) = a'(§ — A)(E — A3),
where b/, a’ > 0 satisfy h'a’ = 15.
We first choose the Schur polynomial /(£), and compute the corresponding solution, i.e. the

largest solution of the DARE (12). A spectral factor satisfying the biproperness condition and
det H(§) = h(&) is given by

, M3=0, )»4=OO}.

(4—+21)+/7395+1530v/21 £ _ «/7395+1530m
H() = 8
\/782+102\/ﬁ§ (— 23+3f)«/782+102f \/782+102f%.
7

Solving H(A;)V; =0 =1, 3) yield v; = [4 a «/ﬁ] and V3 = [O] Then, the zero state matrix Sy,

153421
LS o

and Pick matrix 7}, are given by §;, = [4 —i/ﬁ (1)} and 73, = [ AT ;

}, respectively.
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Since the eigenvalues of Tj, are 47+3v21+ 2V0758*78m and $3v21= 50758_78 V21 the corresponding
. . .. . . 3 —1 L. .. .
solution P, is positive definite. Indeed, we obtain P, = [1 1743 ﬁ} which is positive definite.
10

Moreover, the closed-loop zeros are 0 and *5%5, which coincide with the roots of 2(&) = 0.
Thus, Py, is the stabilizing solution of the DARE (12).
Next, we choose a(£). Similarly to the above case, the zero state matrix and Pick matrix are

1543+/21
givenby S, = [ 4 +1\/ﬁ (1)] and 7, = [_:_2 G -1 ;‘m},respectively. ‘We obtain the indefinite
3 —1
solution as P, = | 13 ﬁ} which is neither stabilizing nor anti-stabilizing solution of the
_ 17-3421
DARE (12).

6. Conclusion

In this paper, we have derived the characterization of all unmixed solutions of the DARE (12)
based on QDF. Moreover, we have obtained a necessary and sufficient condition for the existence
of a non-negative definite solution.

Using the QDF and the dipolynomial matrix associated with the DARE, we have shown that
the existence of a real symmetric solution of the DARE is equivalent to a certain biproperness
condition of a spectral factorization of the dipolynomial matrix. It appeared that the discrete-
time problem was that there does not always exist such a spectral factorization. We have solved
this problem by developing a spectral factorization algorithm satisfying the above condition, and
shown that the solvability of the DARE is equivalent to a certain dissipativity of the associated
discrete-time state space system. Also, we have shown that the singularities of the dipolynomial
matrix coincide with the generalized eigenvalues of the associated Hamiltonian pencil. Such a
relationship has never been considered from a behavioral viewpoint so far.
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Appendix A. Preliminary lemmas
We here collect some preliminary lemmas that will be used in the proofs in Appendix B.

Lemma A 1. Foragiven ® € RI'™[¢, n], we assume thatd®(e?) > 0 holdsforallw € [0, 27).
Let fo € R[&] be an arbitrary polynomial satisfying det 0@ (&) = fo(§)™ fo(§) and fp(0) # 0.
Then, there exists a polynomial matrix Fy € R™*™[&] satisfying 0P (&) = Fo(§)™ Fo(€),
det Fo(§) = fo(§) and Fo(§)U (€)™ is proper.

Proof. It is obvious from Theorem 1 in §37 of [18] that there exists a square polynomial ma-
trix Fy € R™*™[£] satisfying 0@ (&) = Fy(&)™ Fo(§) and det Fo(&) = fo(&). Then, Ag(¢, n):=
Fo(¢) T Fo(n) induces a dissipation rate for Q¢(£). Let Fo(§) be expressed by Fo(§) = Foo +
Foié+---+ F()’r/ér/, where Foyo, Fo,1...., Fo,» € R™™ and Fy, # 0. Since det Fy o =
det Fp(0) = fo(0) # 0, we obtain
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rank 4¢(0, 0) = rank F(;l,—OFO-,O = rank I:"JI:"O = rank Zlo.

Hence, by Lemma A 2 below, the storage function corresponding to the dissipation rate
0 4,(0) is given by —X(¢)" PyX () for some Py € R?*". This is equivalent to the properness of
Fo(£)U (£)~! from Proposition 2. [

Lemma A 2 [8]. Suppose that X € R*"™[&] induces a minimal state map for X. Let ® €
R>*™[¢, n]. Let 4 € RY™*™[¢, n] induce a dissipation rate for Qg(£). Let ¥ € RI"™[¢, n]
induce a storage function for Q¢ () corresponding to the dissipation rate induced by A(¢, n).
Assume that rank A = rank 4(0, 0). Then, there exists a symmetric matrix P € R}*" satisfying

V() =—X@)PX).

Lemma A 3. Let M € R X" [£] be defined by (17). Then, the mapping
wo = (R™M)? — R™™, wo(€):= (M(0)(©)) (0)

is surjective. Therefore, the coefficient matrix M has full row rank.

Proof. The proof is omitted because the lemma can be proved in the same way as the continuous-
time case [5]. O

Appendix B. Proofs

Proof of Proposition 2. Let ¥(¢, n) = G() " ZyG(n), G € RK l‘?’X’”[é] be a canonical factor-
ization, where Xy € Rga“k Pxrank ¥ i¢ non-singular. Substituting the above factorization and the

proper input—output partition of M (§) into (10) yield

y@)]"  [Ym
U(;J I [U(n)

Pre- and post-multiplying (B.1) by U(¢)~ " and U ()", we get

&n—1DGE) ZpG) = [ } — F(@)F(n). (B.1)

Cn—DUQ) TG ZeGmUm ™!

_ [Y@)U(o‘]Tn [Y(n)U(n)‘
- I

L } —U@™TF©O FmUm™. (B.2)

m

Since Y (£)U (&)~ ! is proper, we can see from (B.2) that G (£)U (£) ! is strictly proper if and only
if F(&)U (& )y is proper. From Lemma 1, the strict properness of G(§)U (§ )y is equivalent to

the existence of H € R™k ¥X" guch that G(&) = HX (). In this case, ¥Y(¢, n) is expressed as
Y, n) =—X()" PX(n) with P = —H " Xy H. This completes the proof. [

Proof of Proposition 3. The dissipation equalities associated with the dissipation rates F(¢) "
F(n) and H(¢)" H () are given by

Qu(O)(t+1) = Qu(O)(1) = Qu(O)(¥) — | F(0)t®)]?, (B.3)
Qu- (O +1) = Qu-(O)(1) = Qa(O)(1) — | H(@) D), (B.4)

respectively. Subtracting (B.3) from (B.4) yields
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QO +1) = Q) (1) = [ F(@)eI* = [ H (o)) (B.5)

Let X € R"™[&] induce a minimal state map for X, and define x:=X(o)£. Since both
F(é)U(S)_1 and H(é)U(S)_1 is biproper, we see from Proposition 2 that ¥ (¢, n) and ¥ (¢, )
can be expressed as Y (£, 1) = —X(¢)"PX(n) and Y~ (¢, n) = —X(¢) " P, X () for some P €
RZ2*" and P, € RI*", respectively. Thus, (B.5) can be rewritten as

x4+ DT (P, = P)x(t+ 1) —x@) (P, — P)x(1)
= | F (o) — [1H (@)@ (B.6)

We now show that there exists a latent variable satisfying H(c)€(t) =0 (t > 0) and x(0) =
(X (0)€)(0) = xo forany xo € R". Since X (&) induces a minimal state map, there exist A € R"*"
and B € R™*™ satisfying

x(t + 1) = Ax(t) + Bu(r), (B.7)

where u := U (0')£ serves as an input for 2. By Lemma 1(iii), there exist a matrix C, € R™*" and

a non-singular matrix D;, € R™*™ satisfying H (&) = C, X (§) + D, U (£) since H(E)U (£)" ! is
biproper. This implies H(0)€(t) = Cpx(¢t) + Dpu(t). Then, H(c)£(t) = 0 (¢ > 0) is equivalent
to

Cpx(t) + Dpu(t) =0 (¢ > 0). (B.8)
It is obvious that the state space equation
x(t+1)=(A-BD;'Cx(t), x(0)=xo

has a solution for any initial state xo € R". By taking u(t) = —D,; 'Chx (1) (t = 0) for such a
solution, both (B.7) and (B.8) are fulfilled. This clearly implies that there always exists a latent
variable satisfying the requirements described above.

To complete the proof, we choose the latent variable so that H(c)£(t) = 0 (¢ > 0). Recall
that £(t) — 0 (+ — 00) holds because H (§) is Schur. Hence, we get x(¢) — O (t — o0). Then,
summing (B.6) up from # = 0 to = oo along the above trajectory yields x(0)T (P, — P)x(0) =
Z?io | F(o)e()]|?> > 0. Since x(0) is arbitrary, it follows that P, — P is non-negative definite.
This is equivalent to Q- (€)(¢) < Qw(£)(¢) forall £ € (R™MZ and forallt € Z. O

Proof of Lemma 2. (iii) = (i) We easily see from (iii) that (M (c)¢) " L(P)M (c)£ > 0 for all
¢ ely and t € Z. This is the case if only if MTL(P)M > 0, which is equivalent to L(P) > 0
from Lemma A 3.

(i) = (iii)) Summing up the dissipation equality (19) from r = —oo0 to t = oo yields
3 o Qa(O)(t) = Y2 04(0)(t) = 0. Since Q4(¢) = w'L(P)w and L(P) > 0, we ob-
tain 3.2 Qa(O)(1) = Y2 Qu(O)() = 0.

(ii) < (iii) The equivalence of (ii) and (iii) follows immediately from the fact that ¥ (¢, n) and
A(L, n) satisfy the dissipation equality of (10). O

Proof of Lemma 3. Let P be an element of .. Since V (P) > 0 holds from the definition of .%,
it follows from (12) and the definition of L(P) that

LP)=[K I.]"V(P)[K 1.]>0, (B.9)
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where K = V(P)"'(BTPA + S). Then, the QDF Q,(¢) = w' L(P)w induced by A(z, n) =
M(¢)TL(P)M () is a dissipation rate for Q¢ (¢) by Lemma 2. Moreover, pre- and post-multi-
plying (B.9) by M({)T and M (n) yield

A, ) = (KX @)+ U@} V(PUKX () + U} = Fp(¢)' Fp(n).

This implies that 0®(§) = Fp(§)~ Fp (&) holds, because 0P(§) = 0A4(§).

(1) It is clear that ¥ (¢, ) and 4(¢, n) satisfy the dissipation equality (10). It follows that they
induce a storage function and a dissipation rate for Q ¢(£), respectively.

(ii) By the identity

In _X(E) _ In 0 In 0 In _X(E)
K U | |K In][0 KXE+UE]|O In |’
we easily see that
det(£1, — A)det{K X (§) + U (£)}
_ gln_A B In _X(éj_) _ gln_A B In _X(E)
a S I S (R | F il
:det[gln—A+BK 0

© U(g)] — detU(€) det(¢I, — A + BK).

Since we have assumed det U (§) = det(§1, — A), we get

det Fp (&) = det{V(P)2} det (KX (&) + U (£)} = v/det V(P) det(¢1, — Ap).

(iii) Since degdet Fp(§) = nfrom(ii),wecangetFP(E)U(.E)_l = V(P)%{K(Eln — A7 'B+
V(P)%} by direct calculation using (14). Moreover, the inverse of Fp (&)U (£)~! is given by a
proper rational matrix (Fp&UE) YW ' ={1 - K(EL — Ap)’lB}V(P)_%. This implies that
Fp(&)U (&)~ is biproper. [

Proof of Proposition 4. We have only to prove the sufficiency, since the necessity immediately
follows from Lemma 3.

Let F € R™*™[£] be a polynomial matrix such that 0®(&) = F(&§)~F (&) and F (&)U (£)~!
is biproper. From Lemma 1, there exist a matrix C € R™*" and a non-singular matrix D €
R™*™ gatisfying F(§) = CX(§) + DU (&). Letadissipation rate Q 4(£) beinduced by 4(¢, n) =
F(¢)T F(n). Then, by Proposition 2, the corresponding storage function is expressed as ¥ (¢, 1) =
—X(g)TPX(n) for some P € RY*". Furthermore, it follows from Lemma 2 that Q,(¢) can
be expressed as Q 4(£) = w' L(P)w, or equivalently, 4(¢, n) = M ()T L(P)M(n). Hence, we
obtain

T
M@)'[c D] [C D]M@m =M©E)L(PYM®). (B.10)
Interms of coefficient matrices, (B.10) is equivalent to M7 [C D]—r [C D] M=M"L(P)M.
Since M has full row rank from Lemma A 3, it reduces to
[c D]'[c D]=L(P). (B.11)

Since D is nonsingular, we get rank L(P) = m. We also see that V(P) = DTD > 0 from the
(2,2) block of (B.11), which implies that rank L(P) = rank V(P) = m. This is the case if and
only if the Schur complement of V (P) in L(P) is equal to zero, namely
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ATPA—P+Q—ATPB+SHV(P) Y (BTPA+S)=0.

It is clear from this equation that P satisfies the DARE (12). This completes the proof of suffi-
ciency. [J

Proof of Lemma 4. The proof is completed by showing that F(&)Uq(£)~! is biproper for the
polynomial matrix F € R">"™[£] obtained from Algorithm 1. Notice that F (£)Uq (€)™ is proper
because, at each iteration, Wy (¢) and Z; are chosen so that Hy1 = lim|g|— 00 Fi+ H(E)Uq(E)™!
be finite.

Suppose that Algorithm 1 stopped at k =1 with F(§) = F;(§) and degdet F(§) =n. To
prove the biproperness, we assume on the contrary that F(£)Uq(&)~" is proper but not biprop-
er. In this case, we carry out Step 2 for k = once more to obtain Fjy1(§) = Wi(§)Z;F(§).
It follows from the definitions of Wi (&) and Zj that Fyo1(£)Ug(€)~! is proper, and hence
limjg |5 00 Fi41 (€)Uq(&)~ ! is finite. On the other hand, it is not difficult to see that

o
degdet Fi41(§) = Z,un +n >n =degdet Uq(§).
i=1
The strict inequality in the above equation immediately follows from the assumption that
limjg |5 00 Fr41 (£)Uq (&)~ is singular. Hence, we obtain

: — . det Fi11(§)
lim det{F;11(5)Ua(€) "'} = lim ———== =
600 - El>oo det Ug(§)
This contradicts the properness of Fj41(§)Uq(€ )=, Therefore, the proof of this lemma is com-
pleted. [

Proof of Theorem 1. The necessity is clear from the result of Lemma 3. The sufficiency can be
shown by Proposition 4 and Lemma 4. [

Proof of Proposition 5

Proof of well-definedness: To prove the well-definedness of the map Ric, we introduce two poly-
nomial matrices F; € R™[£] (i = 1, 2) suchthatd®(§) = F; ()~ F;(§),det F;(§) = f(&),and
Fi&UE) is biproper for a given f € F ¢op.

We first show that L(&):= F>(§)F (¢ )=l is a constant orthogonal matrix. Assume that L (&)
is a rational matrix. Then, it is biproper because F; (§)U (¢ Yyl i=1,2)is biproper and L(§) =
{(FEUE T HFIEUE) ™} Moreover, it follows from Fi(§)~ Fi(§) = F2(§)~ F2(§) =
0d(&) that L(§) is unitary, i.e. L(§)~L(§) = I,,,. Recall that, if A € C is a pole of a unitary
rational matrix L (&), then A~! is a zero of L(&). If the pole A is equal to zero, then L (&) will have
a zero at infinity. This contradicts the biproperness of L(£), and hence L(£) does not have any
poles at & = 0.

LetL(§) = Ly(§)L, (S)_l, Ly, Ly € R™™[&]be aright coprime factorization of L(£). Then,
by the unitarity of L(§), we get

La(8)"La(§) = L1(§) L1 (§). (B.12)

From the above discussion, the zeros of L;(§) (i = 1,2) are identical to the non-zero roots of
f (&) =det F;(§) = 0. Suppose that A # 0 is a root of det L1(£) = 0. Then, there exists a non-
zero vector v € C" such that Lj(A)v = 0. Substituting & = A into (B.12) and post-multiplying by
vyield Ly(A ™) TLy(Wv = Li(A™Y) TL1(A)v = 0. Since f(£) belongs to F cop, det Li(1) =0
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implies det L (A~") = det Ly(A~") = 0. It thus follows that L,(A)v = 0. This contradicts the
right coprimeness of L1(&) and L (&). Since A is an arbitrary zero of L{(£), we conclude that
L1(§) and L,(&) are non-singular constant matrices, namely they do not have any zeros. This
implies that L = Lle_l is an orthogonal constant matrix.

We now complete the proof of the well-definedness of Ric. As was discussed in Section 3,
the Riccati solution P; = Ric(f) corresponding to F;(§) (i = 1, 2) is obtained by solving the
polynomial equation

O, ) — Fi(@©) F(n) = (1 —¢cmX Q)P X (). (B.13)

We will prove the well-definedness by showing P; = P,. Since L = F(§) F1(§ )_1 is an orthog-
onal matrix, we have F1(¢) T Fi () = F2(¢) " F2(n). It follows from (B.13) that X (¢) T P1 X () =
X ()" P,X(n). Since X (o) is a minimal state map for X, the map £ — (X (¢/)£)(0) is surjective.
Hence, we have x(—)r Pixg = x(—)r P>xg for all xg € R". Clearly, this implies P; = P>.

Proof of bijectiveness: Let P be an element of . We assume that there exist two polynomials
f1, fo € F cop satisfyingRic(f1) = Ric(f2) = P.Let F1, F» € R™*™[£] be polynomial matrices
suchthat0®(&) = F; (&)~ F;(§),det F;(§) = f;(€)and F,'(S)U(é)_1 isbiproper (i = 1, 2). Then,
we obtain Fi ()T Fi(n) = F2(¢) " Fa(), since

o, —F@Q)Fm=>0-¢tnX©)"PX(n)

holds for i = 1, 2. This implies that detF(¢)detF1(n) = detF>($)detFa(n), ie. f1(¢) fi(n) =
f2(2) f2(n). Given that the highest degree coefficients of f1(£) and f>(£) are positive, it follows
f1(&) = f2(&). This concludes the proof of the injectiveness of Ric.

The surjectiveness is easily proved by taking f (&) = det Fp(§), where Fp(§) is defined in
Lemma3. [

Proof of Theorem 2. We have only to show that S is non-singular under Assumption 1’.
There holds £ X (§) = AX (§) + BU (¢) from (14). Then, it follows from (27) that £ X (&) +
IXDE)y= AXD@E)+ BUDE) forl =0, 1, ..., d; — 1. Hence, we obtain
(X XWG - XEDOD] Gily + Ni)
=[A B][M®x) MDDy - MUDGH]. (B.14)
Post-multiplying (B.14) by V;, it follows from (31) and (32) that
ASi+SiLi=ASi+B[UM) UD@Ry) - U9 Doyl (B.15)

Since F(£)U(&)~! is biproper, there exist a matrix C € R”*" and a non-singular matrix D €

R™>™ satisfying F(§) = CX(§) + DU (¢) from Lemma 1. Thus, we get

[Fo) FOG) - FADay)]
= C[X(Ai) XDy - X(di—l)(ki)]
+D[U) UDGy) - UGy,

Post-multiplying this by V;, there holds from (31) and (33) that

Uy UD0y) - v4=Dop]vi=-D7ICs;. (B.16)
Substituting (B.16) into (B.15) yields

(il —A+BD7'O)S; = =SiL; (i=1,2,....,k). (B.17)
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We now prove that S; has full column rank. Partition S; as S; = [Si0  Si1 -+ Sig-1],
S eC"(=0,1,...,di —1). (B.17) implies that S; 0, Si .1, - -, Si,d;—1 satisfy
Guily— A+ BD'C)S1 = —(U+DSis1 A =0,1,....di —2), (B.18)
(il — A4+ BD7'C)S; 41 = 0. (B.19)
It is sufficient to prove that S/ := [Sii  Siz41 -+ Sig;—1] has full column rank for [ =

di —1,...,1,0 using a induction. For [ =d; — 1, (31) and (B.16) imply that there holds
M(\)ai g,—1 = col(ly, —D_lC)Sl.”di_l. Since a; 4;—1 # 0 and M (A;) has full column rank from
the observability, Slf’d[_ ;1 #0,ie. Slf’d[_ _, is of full column rank. Assume that Sl.’!l is of full column
rank for / =d; — 1,d; —2,...,k. To deduce a contradiction, we also assume that Sl.”kfl =
[Sik—1 ;) ]doesnothave full column rank. Then, there exists a non-zero vector v; x € cdi=k
satisfying S; y—1 = S{,kv,-,k. Since (A I, — A + BD_IC)S{’k = _Sl{’kLi,k from (B.18) and (B.19),
we see (Ail, — A+ BD_IC)S,;k_l = _Si/,kLi,kVi,k, where L; i € R(@ =R x(di=k) ig the lower
subdiagonal matrix with elements {k,k + 1,...,d; — 1}. Since (A\; I, — A + BD_IC)Sl-,k,l =
—S{’k -col(k, 0, ...,0) from (B.18), we obtain Sl-/’k(Li,kVi,k —col(k,0,...,0)) = 0. From the
assumption that S[’k is of full column rank, we have L; ;v; x —col(k,0,...,0) =0. This is a
contradiction, because this is not the case for any choice of v; . Hence, S; is of full column rank.

From (B.17) and the fact S; has full column rank, the column vectors of S; are the eigen-
vectors of A — BD™!C for the eigenvalue A; with the partial multiplicity d;. Thus, if i # j, the
column vectors of §; and §; are linearly independent. Since 7, j = 1,2, ..., k are arbitrary, Sy
is non-singular. [J

Proof of Corollary 1. Let f € F ., be arbitrary. Under Assumption 1’, the map Ric is bijective
from Proposition 5. Thus, the polynomial matrix which induces the corresponding storage func-
tion is given by ¥ (¢, n) = —X(;)TPfX(n), where Py = Ric(f). Similarly, from Proposition
3, the polynomial matrix which induces the smallest storage function is given by ¥~ (¢, ) =
—X(¢)" PyX (n), where P, = Ric(h). This implies —x ' Pyx > —x ' Pyx forall € € (R™)Z and
t € Z. Since X (o) is a minimal state map for 2, the map £ — (X (0)£)(0) is surjective. Hence,
we have —x(—)r Prxo > —x(—)r Ppxg for all xo € R". This implies Py < Py, for all f € F¢op. From
Theorem 2, we see that P, = (S;:)’] 1,8, ! gives the largest solution of the DARE (12). Since
the existence of non-negative definite solution of the DARE (12) is equivalent to P, > 0, this is
the case if and only if 7, > 0, which completes the proof. [
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