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Abstract

In a totally dissipative behavior, all non-trivial trajectories dissipate energy. A characterization of such behaviors is given
in terms of properties of the one- and two-polynomial matrices associated with the supply rate and with their kernel- and
image representation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study dissipative systems in the
framework originated in[7,8] and further developed in
[1,2, 6,11]. In such framework, a dissipative dynami-
cal system is one for which two functions are speci-
fied: one is a supply rate function measuring the rate
at which energy flows into the system, and the other
is a storage function measuring the amount of en-
ergy stored into the system. The two functions are re-
lated by the dissipation inequality, which expresses the
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intuitive property that in a dissipative system the stor-
age of energy cannot happen faster than the speed with
which energy is supplied to it from the environment.
The difference between the supplied and the stored
energy is the dissipated energy, which is measured
by a nonnegative functional called the dissipation
rate.
In this paper, we consider a special class of discrete-

time dissipative systems, that consisting of those sys-
tems for which the dissipation rate is instantaneously
positive on all nonzero trajectories of the system. We
call such systems totally dissipative, because in such
cases, the transfer of the state from one point of the
state space to another cannot be performed without
dissipation. The main result of the paper is a theorem
characterizing such class of systems in terms of prop-
erties of their trajectories and of properties of the poly-
nomial matrices corresponding to their representation.
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Notation. In this paper we denote the sets of real
numbers withR and the set of integers withZ. The
space ofn dimensional real vectors is denoted byRn ,
and the space ofm×n real matrices, byRm×n . If A ∈
Rm×n , thenAT ∈ Rn×mdenotes its transpose. When-
ever the size of a matrix or a vector is not specified, a
bullet • is used. In order to enhance readability, when
dealing with a vector spaceR• whose elements are
commonly denoted withw, we use the notationRw;
similar considerations hold for matrices representing
linear operators on such spaces. Given two matricesA
andB with the same number of columns, we denote
with col(A, B) the matrix obtained by stackingA over
B. If Ai ∈ Rk i×k i , i=1, . . . , m, then diag(Ai)i=1,...,m
denotes the(

∑m
i=1 ki )×(

∑m
i=1 ki )matrix having the

Ai ’s on the main diagonal.
The set consisting of all sequences fromZ to Rw

is denoted with(Rw)Z. On such space we define the
left, i.e.backwards, shift

� : (Rw)Z → (Rw)Z

(�w)(t) := w(t + 1)

for all t ∈ Z. The set of square-summablew-dimen-
sional vector time series is denoted withl2(Z, Rw),
i.e.w ∈ l2(Z, Rw) if

∑∞
k=−∞ wT(k)w(k) < ∞.

The ring of polynomials with real coefficients in the
indeterminate� is denoted byR[�]; the ring of two-
variable polynomials with real coefficients in the inde-
terminates� and� is denoted byR[�, �]. Similarly, the
ring of “polynomials” (or finite Laurent series) with
both positive and negative powers of� is denoted with
R[�−1, �]. The space of alln×mpolynomial matrices
in the indeterminate� is denoted byRn×m[�], and that
consisting of alln×mpolynomial matrices in the inde-
terminates� and� byRn×m[�, �]. Given a polynomial
matrixR(�) := R0+R1�+· · ·+RL−1�

L−1+RL�L ∈
Rn×m[�] with RL �= 0, we define itsreciprocal matrix
Rr(�) asRr(�) := R0�

L + R1�
L−1 + · · · + RL−1� +

RL ∈ Rn×m[�]. A matrixU ∈ R[�−1, �] is calleduni-
modular if its inverse also belongs toR[�, �−1]. It is
easy to see that this is equivalent with det(U) = ��i

for some nonzero� ∈ R and for somei ∈ Z.

2. Linear difference systems

In this paper, we consider linear, shift-invariant with
time axisZ, and closed subspaces of(Rw)Z equipped

with the topology of pointwise convergence. We de-
note the set of such behaviors withLw. It has been
shown in [4,9] that if B ∈ Lw, then there exists a
polynomial matrixR ∈ R•×w[�] such that

B= {w ∈ (Rw)Z |R(�)w = 0},

where, ifR=R0+R1�+· · ·+RL�L, withRi ∈ R•×w,
then

R(�)w := R0w + R1(�w) + · · · + RL(�Lw).

Moreover, we can always take the number of rows of
R to be less than or equal tow. The representation of
B as the kernel of the polynomial shift operatorR(�)

is called akernel representationof B. Such represen-
tation is calledminimal if R has the minimal number
of rows in any kernel representation ofB.
Some behaviors can also be represented as the im-

age of polynomial operators in the shift. LetM ∈
Rw×•[�], and consider the linear subspace ofLw

defined by

B := {w ∈ (Rw)Z | ∃� ∈ (R•)Z

such thatw = M(�)�}.

Such representation is called animage representation
ofB, and� is called thelatent variable. Evidently, the
equationw=M(�)� also constrains thefull trajectory
col(w, �); the linear subspace ofLw+l defined by

Bf := {(w, �) ∈ (Rw+l )Z |w = M(�)�}

is called thefull behaviorassociated with the image
representationB=Im M(�). It can be shown that only
controllablebehaviors can be described as the image
of some polynomial difference operator (see[4,9] for
details on the notion of controllability in the behavioral
framework). It can be shown that two full row-, re-
spectively column, rank matricesR ∈ R(w−l )×w and
M ∈ Rw×l define a kernel, respectively image, repre-
sentation of the same controllable behavior if and only
if RM = 0. In an image representationw = M(�)�,
the latent variable� is calledobservable from wif
M(�)� = 0 implies � = 0. It can be shown that this
is the case if and only if for every� ∈ C the matrix
M(�) has full column rank.
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3. Quadratic difference forms

In this section, we review the definitions and results
on quadratic difference forms (cf.[1]), which is the
discrete time version of quadratic differential forms
developed in[11] in the continuous time, required in
the rest of this paper.
Let � ∈ Rw1×w2[�, �]; then

�(�, �) =
N∑

h,k=0

�h,k�
h�k,

where�h,k ∈ Rw1×w2 andN is a nonnegative integer.
The two-variable polynomial matrix� induces thebi-
linear difference form(in the following abbreviated
with BdF)

L� : (Rw1)Z × (Rw2)Z −→ RZ,

L�(w1, w2)(t) :=
N∑

h,k=0

w1(t + h)T�h,kw2(t + k).

If w1= w2= w, then�(�, �) induces a quadratic func-
tional defined as

Q� : (Rw)Z −→ RZ,

Q�(w)(t) :=
N∑

h,k=0

w(t + h)T�h,kw(t + k).

Without loss of generality, we can assume the two-
variable polynomial matrix�(�, �) to besymmetric,
i.e.�(�, �) = �(�, �)T. We callQ� thequadratic dif-
ference form(in the following often abbreviated as
QdF) associated with the two-variable polynomial ma-
trix � ∈ Rw×w[�, �].
The following map:

� : Rw×w[�, �] −→ Rw×w[�−1, �],
��(�) := �(�−1, �)

will be useful in the rest of this paper. Observe that
if � ∈ Rw×w[�, �] is symmetric, then��(�−1, �) =
(��)(�, �−1)T.
Another notion extensively used in the following is

that of rate of change of a QdF. Given a QdFQ� we
define itsrate of changeas the QdF∇Q� defined by

∇Q�(w)(t) := Q�(w)(t + 1) − Q�(w)(t).

In terms of the two-variable polynomial matrices as-
sociated with the BdF’s, the relationship between a
BdF and its rate of change is expressed as

∇�(�, �) = (�� − 1)�(�, �).

In this paper, we also use the series obtained from a
QdF. In order to make sure that such series exist, we
assume in this case that the trajectories on which the
QdF acts are inl2(Z, Rw). Formally, we define the
series associated withQ� as the functional

∑
Q�

defined by∑
Q� : l2(Z, Rw) −→ R,

(∑
Q�

)
(w) :=

+∞∑
t=−∞

Q�(w)(t).

The following is a characterization of
∑

Q� in terms
of properties of the polynomial matrices�(�, �) and
��(�−1, �) associated withQ�.

Proposition 1. Let � ∈ Rw×w[�, �]. The following
statements are equivalent:

1.
∑

Q� = 0;
2. There exists a� ∈ Rw×w[�, �] such that∇�=�;
3. �� = 0.

Proof. See[1, Proposition 3.2]. �

Another notion extensively used in the following
is that of positivity of a QdF. We call the QdFQ�
acting onw-dimensional time seriesnonnegative(de-
notedQ��0) if Q�(w)�0 for all w ∈ (Rw)Z. We
call Q� positive(denotedQ� >0) if Q�(w) >0 for
all w ∈ (Rw)Z, w �= 0. It is not difficult to see that
Q��0 if and only if there existsD ∈ R•×w[�] such
that�(�, �) = DT(�)D(�). MoreoverQ� >0 if and
only if suchD satisfies rank(D(�)) = w for all � ∈ C.
Finally, we introduce the concept of orthogonal be-

haviors with respect to a given constant BdF. Let� ∈
Rw×w, and letB1,B2 ∈ Lw be controllable. Then
B1 is said to beorthogonal toB2 with respect to� if

+∞∑
t=−∞

L�(w1, w2)(t) = 0,

for all w1 ∈ B1 ∩ l2(Z, Rw), w2 ∈ B2 ∩ l2(Z, Rw).
GivenB ∈ Lw controllable and� ∈ Rw×w, we define
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its orthogonal complement with respect to� to be the
controllable part of the subspace defined by{

w ∈ (Rw)Z

∣∣∣∣∣
+∞∑

t=−∞
L�(w, w′)(t) = 0

for all w′ ∈ B ∩ l2(Z, Rw)

}
.

The orthogonal complement ofB with respect to� is
denoted byB⊥� . The following result shows how to
compute a kernel or image representation ofB⊥� of
a discrete-time behaviorB with respect to a nonsin-
gular� ∈ Rw×w (see also Section 10 of[11] for the
analogous result in continuous-time).

Proposition 2. Let� ∈ Rw×w be nonsingular. Then,
w = M(�)� is an observable image representation of
B if and only if

Mr(�)T�v = 0

is a minimal kernel representation ofB⊥� .

Proof. Observe that
∑∞

t=−∞ v(t)T�w(t) = 0 for

all w ∈ B and all v ∈ B⊥� is equivalent to∑∞
t=−∞ v(t)T�(M(�)�)(t) = 0 for all v ∈ B⊥� and

all � ∈ l2(Z, Rl ).
Now, it is clear that

∑∞
t=−∞ wT

2 (t)w1(t + n) =∑−∞
t=∞ wT

2 (t − n)w1(t) holds for all w1, w2 ∈
l2(Z, Rw), and for all n ∈ Z. Consequently,∑∞

t=−∞ v(t)T�(M(�)�)(t) = 0 is equivalent to∑∞
t=−∞ (M(�)rT�v)(t)T�(t) = 0 for all � ∈

l2(Z, Rl ). This completes the proof.�

4. Dissipative- and totally dissipative systems

In this section, we summarize the basic definitions
and results about dissipative systems; a thorough ex-
position is given in[1]. We then define the notion of
totally dissipative system, which we will characterize
in several equivalent ways in Section 5 of this paper.
Let � ∈ Rw×w[�, �], and consider a controllable

behaviorB ∈ Lw. B is said to bedissipative with
respect toQ� if

∑
Q�(w)�0 for all w ∈ B ∩

l2(Z, Rw). An intuitive interpretation of such defini-
tion is the following: if one considersQ� as the rate of

“energy” (i.e.Q� is the “power”) provided to the sys-
tem by the environment, then

∑
Q�(w) measures the

total energy exchanged with the environment while the
system followed the trajectoryw. A dissipative system
is one for which the net flow of energy is nonnega-
tive; that is, for each possible evolutionw the system
absorbs energy from the environment.
Now assume thatB is controllable, with an ob-

servable image representationw = M(�)�, with
M ∈ Rw×l [�]. ThenB is dissipative w.r.t.Q� if
and only if the QdFQ�′ induced by�′(�, �) =
MT(�)�(�, �)M(�) satisfies

∞∑
t=−∞

Q�′(�)(t)�0 for all � ∈ l2(Z, Rl ).

It can be shown (see Proposition 3.1 of[1]) that∑t=∞
t=−∞ Q�′(�)(t)�0 for all � ∈ l2(Z, Rl ) if and

only if M(e−i	)T�(e−i	,ei	)M(ei	)�0 for every
	 ∈ R. Observe that in this caseM(�−1)T��M(�)

admits asymmetric factorizationM(�−1)T��M(�)=
F T(−�)F (�), with F ∈ Rl ×l [�].
We now introduce the notion of storage- and of

dissipation function. A QdFQ� is said to be astorage
function forB with respect toQ� if

∇Q��Q� ∀w ∈ B. (1)

A QdFQ
 is said to be adissipation function forB
with respect toQ� if

Q
(w)�0 ∀w ∈ B and∑
Q�(w) =

∑
Q
(w) ∀w ∈ B ∩ l2(Z, Rw).

Dissipativity is characterized in terms of storage- and
of dissipation functions as follows.

Proposition 3. LetB ∈ Lw be controllable and let
� ∈ Rw×w[�, �]. The following conditions are equiv-
alent:

1.
∑

Q�(w)�0 for all w ∈ B ∩ l2(Z, Rw);
2. Q� admits a storage function forB;
3. Q� admits a dissipation function forB.
Moreover, there is a one-one correspondence be-

tween storage and dissipation functions, Q� andQ
,
respectively, defined by

Q�(w) = ∇Q�(w) + Q
(w) ∀w ∈ B. (2)
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Proof. See Proposition 3.3 of[1]. �

If the equality∇Q�(w)=Q�(w) holds for allw ∈
B, then we call thebehaviorB lossless with respect
to Q�.
SinceB is controllable, it admits an observable im-

age representationB={w ∈ (Rw)Z | ∃� such thatw=
M(�)�}. Of course,Q�(M(�)�) = Q�′(�), with

�′(�, �) = MT(�)�(�, �)M(�),

the problem of studying the dissipativity or lossless-
ness ofB with respect toQ� is reduced to study the
dissipativity of the QdFQ�′ .
Dissipativity is a property related to the average of

a functional (the dissipation rate) being nonnegative
over the whole time axis. The notion of dissipativity
that we now introduce, instead, is useful in the analysis
of systems whose energy balance is positive on every
interval- finite or infinite.

Definition 4. Let B ∈ Lw be controllable, and let
� ∈ Rw×w[�, �] be symmetric. LetQ
 be a dis-
sipation function forB with respect toQ�. B is
called totally dissipative with respect toQ� if for all
−∞� t0� t1� + ∞ and for all nonzerow ∈ B ∩
l2(Z, Rw) it holds

t1∑
k=t0

Q
(w)(k) >0.

The next section is devoted to the proof of a series
of alternative characterizations of total dissipativeness
in terms of properties ofB and ofQ�.

5. Main result

The main result of this paper is the following.

Theorem 5. Let B ∈ Lw be controllable and let
� = �T ∈ Rw×w be nonsingular. Then the following
statements are equivalent:

1. B is totally dissipative with respect to�;
2. let M ∈ Rw×l [�] induce an observable image

representation ofB. ThenM(�−1)T�M(�) is
unimodular and such thatM(e−i	)T�M(ei	)�0
for all 	 ∈ R;

3. B ∩B⊥� = {0};
4. let M ∈ Rw×l [�] induce an observable im-

age representation ofB. Then for everyL ∈
Rl ×w[�] left inverse of M, the QdF induced by
LT(�)F T(�)F (�)L(�) ∈ Rw×w[�, �] induces a
dissipation function forB with respect toQ�,
whereF ∈ Rl ×l [�] is a unimodular spectral
factor ofM(�−1)T�M(�);

5. there exists an image representationw = M(�)�

such that the full behaviorBf = {(w, �) |w =
M(�)�} is lossless with respect to a supply rate
induced bydiag(�, −Il ).

Proof. We first prove the equivalence of (1) and (2).
In order to prove(1) �⇒ (2), takingt0= t1 in Def-

inition 4 shows that ifB is totally dissipative, then
any dissipation rateQ
(w) is positive for allw ∈
B. This implies also thatQ
′ is instantaneously posi-
tive, where
′(�, �) := M(�)T
(�, �)M(�). Conclude
from the dissipation equality (2) that

(�� − 1)M(�)T�(�, �)M(�)

= M(�)T�M(�) − 
′(�, �)

holds, henceM(�−1)T�M(�) = 
′(�−1, �). Observe
that sinceB is dissipative,M(e−i	)T�M(ei	)�0
for all 	 ∈ R, and consequently
′(�−1, �) can be
factored as
′(�−1, �) = D(�−1)TD(�) for some
D ∈ Rl ×l [�] (see[5, pp. 350–375]). It follows that

′(�, �) = DT(�)D(�). A simple argument by con-
tradiction yields that sinceQ
′ is instantaneously
positive, thenD must be unimodular. Consequently,

′(�−1, �) = M(�−1)T�M(�) is also unimodular.
The proof of (2) �⇒ (1) is as follows. Since

M(e−i	)T�M(ei	)�0 for all 	 ∈ R andM(�−1)T

�M(�) = 
′(�−1, �) is unimodular,
′(�, �) can be
factored as
′(�, �)=D(�)TD(�), with D ∈ Rl ×l [�]
unimodular. It follows thatQ
′ is instantaneously
positive, and consequently also

∑t1
k=t0

Q
(w)(k) >0
for all non zerow ∈ B.
In order to prove(2) ⇐⇒ (3), consider that

M(�−1)T�M(�) is also unimodular if and only if
Mr(�)T�M(�) is unimodular. From Proposition 2,
observe thatMr(�)T�v=0 is a minimal kernel repre-
sentation ofB⊥� .Mr(�)T�M(�) being unimodular is
equivalent toMr(�)T�(M(�)�) �= 0 for every� �= 0,
and consequently toMr(�)T�w �= 0 for all w ∈ B,
w �= 0. This is equivalent withB ∩B⊥� = {0}.
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We proceed to prove(2) ⇐⇒ (4). Observe
that M(e−i	)T�M(ei	)�0 for all 	 ∈ R, if
and only if there existsF ∈ Rl ×l [�] such that
M(�−1)T�M(�) = F(�−1)TF(�). From the unimod-
ularity of M(�−1)T�M(�), it follows that F(�) is
also unimodular. Consequently, besidesw = M(�)�,
B admits another observable image representation as
w = M ′(�)�′, whereM ′ := MF−1 and�′ := F(�)�.
Conclude from such considerations thatB ∩

B⊥� = {0} if and only if B is represented in ob-
servable image form asw = M ′(�)�′, with M ′ such
thatM ′(�−1)T�M ′(�) = Il . Consequently, for every
(w, �′) such thatw = M ′(�)�′ it holds that

∞∑
k=−∞

wT(k)�w(k) =
∞∑

k=−∞
�′T(k)�′(k).

Now letL ∈ Rl ×w[�] be a left inverse ofM. Consider
that for every(w, �) such thatw = M(�)� it holds
L(�)w=�. Conclude that for everyw ∈ B of compact
support

∞∑
k=−∞

wT(k)�w(k)

=
∞∑

k=−∞
�′T(k)�′(k)

=
∞∑

k=−∞
(F (�)�)T(k)F (�)�(k)

=
∞∑

k=−∞
(F (�)L(�)w)T(k)(F (�)L(�)w)(k).

On the other hand, for every other left inverseL′ ∈
Rl ×w[�] of M it holds L′ = L + HR, whereH ∈
R(w−l )×(w−l )[�] andR ∈ R(w−l )×w[�] induces a
kernel representationR(�)w=0 ofB. Conclude from
this and fromRM = 0 that the dissipation function
induced byL′T(�)L′(�) also satisfies

∞∑
k=−∞

wT(k)�w(k)

=
∞∑

k=−∞
(F (�)L(�)w)T(k)(F (�)L(�)w)(k).

This concludes the proof of the equivalence of state-
ments(2)and(4).

Finally, we prove the equivalence of(2) and (5).
The argument used in the proof of(2) and(4) allows
us to conclude that there exists an observable image
representationM of B such thatM(�−1)T�M(�) =
Il . From Proposition 1 we conclude that there exists
� ∈ Rl ×l [�, �] such thatM(�)T�M(�) − I = (�� −
1)�(�, �) or equivalently,Qdiag(�,−Il ) = ∇Q�. This
is equivalent with the full behaviorBf being lossless
with respect to the QdF induced by diag(�, −Il ). �

Remark 6. Using the results of[10,3] it is not diffi-
cult to see that under the dissipativity assumption on
B with respect to�, the setB ∩B⊥� consists of all
stationary trajectories ofB with respect to the cost
functional on the external variables ofB associated
with �. Consequently, one additional condition equiv-
alent to(1)–(5) of Theorem 5 is the statement

6. The set of stationary trajectories ofB with re-
spect to the cost functional on the external vari-
ables induced by� consists of the zero trajectory
only.

This formulation is close to how singular control
problems are dealt with in the state-space framework.
There is more than a coincidental affinity between sin-
gular control problems and totally dissipative systems;
details will be provided elsewhere.

6. Conclusions

The main result of this paper is Theorem 5, which
provides a characterization of totally dissipative sys-
tems, i.e. systems which dissipate energy for every
possible transfer from one state to another. Applica-
tions of this result are being pursued in several direc-
tions, most notably in the study of singular optimal
control problems, and in the development of spectral
factorization algorithms for unimodular matrices.
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