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A note on persistency of excitation
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Abstract

We prove that if a component of the response signal of a controllable linear time-invariant system is persistently exciting of
sufficiently high order, then the windows of the signal span the full system behavior. This is then applied to obtain conditions
under which the state trajectory of a state representation spans the whole state space. The related question of when the matrix
formed from a state sequence has linearly independent rows from the matrix formed from an input sequence and a finite
number of its shifts is of central importance in subspace system identification.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Behavioral systems; Persistency of excitation; Lags; Annihilators; System identification

1. Introduction

Persistency of excitation of an input or a noise sig-
nal is of importance in system identification and adap-
tive control, see, for example,[1,3–6]. In this paper,
we examine consequences of persistency of excitation
using the behavioral language.

The problem studied may be posed as follows. As-
sume that a response

w̃(1), w̃(2), . . . , w̃(T )
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of a linear time-invariant system is observed. Now
consider, for someL, 1�L�T , the ‘windows’ of
lengthL:

[w̃(1), w̃(2), . . . , w̃(L)]
[w̃(2), w̃(3), . . . , w̃(L + 1)]
· · ·
[w̃(T − L + 1), w̃(T − L + 2), . . . , w̃(T )]. (1)

Under which conditions do these windows span
the whole space of all possible windows of length
L which the system can produce?

We will show that a sufficient condition for this is that
a component (typically the input component) of the
observed signal is persistently exciting of orderL+n,
wheren equals the dimension of the state space of the
system.
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2. Linear time-invariant systems

We use the behavioral language[7,11]. A dynamical
system is defined as� = (T, W,B), with T ⊆ R

the time axis,W the signal space, andB ⊆ WT the
behavior. In the present paper, we deal exclusively
with discrete-time systems with time axisT=N, W a
finite-dimensional real vector space (generic notation
W = Rw), and a behaviorB that is (i) linear, (ii)
shift-invariant (B ⊆ �B, where� denotes the shift:
(�f )(t) := f (t + 1)), and (iii) complete, i.e.,B is
closed in the topology of pointwise convergence. We
denote the class of systems�=(N, Rw,B) satisfying
(i)–(iii) by Lw. Since throughout the time axis equals
N, we use both notations� ∈ Lw andB ∈ Lw. If w

is not specified, we use� ∈ LQ or B ∈ LQ whence
LQ = ⋃

w∈Z+L
w.

It is well known (see[10, Theorem 5]) thatB ∈ Lw

if and only if there exists a real polynomial matrixR ∈
RQ×w[�] (this notation means:R is a matrix of poly-
nomials in the indeterminate�, with real coefficients,
w columns, and any finite number of rows) such that

B= {w : N → Rw |R(�)w = 0}.
Equivalently,B = ker(R(�)). We call R(�)w = 0 a
kernel representationof thisB or of �= (R, Rw,B).
The kernel representation associated with a givenB ∈
Lw is not unique, and there exists always one in which
the polynomial matrixRhas full row rank. Such kernel
representations are calledminimal.

Let B ∈ LQ. Denote, forT ∈ N, by B|[1,T ] the
w ∈ B restricted to[1, T ], i.e.

B|[1,T ] := {w : [1, T ] → Rw | ∃v ∈ B :
w(t) = v(t) for 1� t �T }.
Closely associated with a kernel representationB ∈

Lw is the module ofannihilatorsof B,NB ⊆ Rw[�],
defined by

NB := {n ∈ Rw[�] |n�(�)B= 0}.
It is easy to see thatNB is a submodule ofRw[�].
Nker(R(�)) is, in fact, the submodule generated by the
rows ofR. Consider also for nonnegative integers� ∈
Z+ the annihilators of degree less than�,

N�
B:={n ∈ Rw[�]|each element ofn is of degree��}.

Observe that there holds (with apologies for the slight
abuse of notation), forL ∈ Z+,

NL−1
B

= ker(B[1,L]).

There are a number of important ‘integer invariants’
associated withLQ. The following are of interest to us
in this paper.

• w : LQ → Z+, thevariable cardinality. If B ∈ Lw,
thenw(B) := w.

• m : LQ → Z+, the input cardinality. This may
be defined as follows.m(B) = m if there exists
an m-dimensional subvector that is free inB. An
m-dimensional subvectorw1 is free inB if after
permutationw = (w1, w2) with w1 : N → Rw1,
w2 : N → Rw2, andw1 + w2 = w, then for all
w1 : N → Rw1 there exists aw2 : N → Rw2, such
that (w1, w2) ∈ B.

• p : LQ → Z+, theoutput cardinality, defined as
p(B) := w(B) −m(B).

• n : LQ → Z+, the state cardinality. This may be
defined as follows. EveryB ∈ Lw admits a state
representation, i.e., there existsn ∈ Z+ (called the
state dimension) andB′ ∈ Lw+n, such that

B= {w | ∃x : (w, x) ∈ B′}
and such thatB′ satisfies the state axiom.
This means that if(w1, x1), (w2, x2) ∈ B and
t0 ∈ N satisfy x1(t0) = x2(t0), then (w, x) =
(w1, x1)∧t0(w2, x2) ∈ B. ∧t0 denotes concatena-
tion at t0, defined by

(w1, x1)∧t0(w2, x2) :=
{

(w1, x1)(t) for t < t0,

(w2, x2)(t) for t � t0.

The smallest state-space dimension among all state
representations ofB is the state cardinalityn(B)

of B.
• L : LQ → Z+, the lag. This may be defined as fol-

lows. LetR(�)w = 0 be a kernel representation of
B. The maximum of the degrees of the polynomial
elements ofR is called the lag associated with this
particular kernel representation.L(B) is the small-
est possible lag over all kernel representations ofB.
In fact, L(B) is also the smallest� such thatN�

B
generates the moduleNB. In particular, there ex-
ist a kernel representation ofB with equation lags
less than or equal toL(B).
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• l : LQ → Z+, theshortest lag. This may be defined
as follows. LetR(�)w = 0 be a kernel representa-
tion ofB. Define the degree of a vector of polyno-
mials to be equal to the largest of the degrees of the
entries. The minimum of the degrees of the rows
of R is called the minimal lag associated with this
kernel representation: each equation inR(�)w = 0
involves lags at least equal to the minimal lag.l(B)

is the smallest possible minimal lag over all ker-
nel representations ofB. Every equation in every
kernel representation ofB has lag at leastl(B).

These integers are all readily computable from
a kernel representation, and certainly from an in-
put/state/output representation ofB (see [10, Sec-
tion 7]). It is, for example, possible to prove that

n(B)�L(B).

Also,

L�L(B) ⇔ dim(B|[1,L]) =m(B)L + n(B)

⇔ dim(NL−1
B

) = p(B)L − n(B),

and

L� l(B) ⇔ dim(B|[1,L]) = w(B)L

⇔ dim(NL−1
B

) = 0.

Recall thatB ∈ LQ is said to becontrollable :⇔
for all T ∈ N, w1 ∈ B|[1,T ], andw2 ∈ B, there exists
v ∈ B andT ′ ∈ N, such thatv|[1,T ] =w1 andw2(t −
T − T ′) = v(t) for t > T + T ′. Denote byLQcontrollable
andLw

controllable of the controllable elementsLQ and
Lw, respectively.

3. Sequences with spanning windows

Let B ∈ LQ, and assume that a finite trajectory
w̃ ∈ B|[1,T ] is ‘observed’.Under which conditions it
is possible to recover from̃w the laws of the systemB
that generatedw̃? This question is closely related to
the question asked in the introduction:Under which
conditions do the observed windows of length L span
the space of all possible windows of length L which
the system can produce?

Define the Hankel matrix ofdepth Lassociated with
the vector signalf (1), f (2), . . . , f (T ) by

HL(f )

:=




f (1) f (2) · · · f (T − L + 1)

f (2) f (3) · · · f (T − L + 2)
...

...
...

f (L) f (L + 1) · · · f (T )


 .

Note that the columns of the Hankel matrixHL(w̃)

correspond to the windows of̃w displayed in the intro-
duction. Of course, sincẽw ∈ B|[1,T ], anyn ∈ NL−1

B
,

n(�) = n0 + n1� + · · · + nL−1�
L−1, is such that

[n�
0 n�

1 · · · n�
L−1]HL(w̃) = 0.

Therefore, the left kernel ofHL(w̃) contains the
vectors generated by the elements ofNL−1

B
. The

question is:When are there no other annihilators?
Equivalently (with a very slight abuse of notation):
When is leftkernel(HL(w̃)) = NL−1

B
, equivalently,

rowspan(HL(w̃)) =B|[1,L]?
Crucial in our result is the persistency of excitation

of a component (typically, the input component) of
w̃. The signalf = [1, T ] ∩ N → Rf is said to be
persistently exciting of orderL :⇔ rank(HL(f )) =
Lf , i.e., if there exist no non-trivial linear relations
of order L among thef (t)’s. In other words, there
are noa1, a2, . . . , aL ∈ Rf , not all zero, such that
a�

1 f (t) + a�
2 f (t + 1) + · · · + a�

L f (t + L − 1) = 0,
for t = 1, 2, . . . , T − L.

The following is the main result of the paper.

Theorem 1. Consider B ∈ Lw
controllable. Let ũ :

[1, T ] → Rm(B), ỹ : [1, T ] → Rp(B), andw̃=(ũ, ỹ).
Assume thatw̃ ∈ B|[1,T ]. Then, if ũ is persistently
exciting of orderL + n(B),

leftkernel(HL(w̃)) =NL
B, (K)

and

rowspan(HL(w̃)) =B|[1,L]. (I)

Proof. We only need to prove (K). The inclusion
leftkernel(HL(w̃)) ⊇ NL

B is obvious.
Consider the reverse inclusion: leftkernel(HL

(w̃)) ⊆ NL
B. Assume, to the contrary, that

0 �= r� = [r�
0 r�

1 · · · r�
L−1] ∈ leftkernel(HL(w̃))
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butr(�)=r0+r1�+· · ·+rL−1�
L−1 /∈NL−1

B
. Consider

HL+n(B)(w̃). Obviously, leftkernel (HL+n(B)(w̃))

containsNL+n(B)−1
B

+R, withR ⊂ Rw[�] the linear
span of

R= span{r�(�), �r�(�), . . . , �n(B)r�(�)}.
Recall that

dim(N
L+n(B)−1
B

) = (L + n(B))p(B) − n(B).

Clearly, dim(R) = n(B) + 1. We now show that
the persistency of excitation assumption implies
R ∩NL+n(B)

B
�= {0}. If R ∩NL+n(B)

B
= {0}, then

dim(N
L+n(B)−1
B

+R) = (L + n(B))p(B) + 1.

But the persistency of excitation implies

rank(HL+n(B)(w̃))�(L + n(B))m(B).

Hence

dim(N
L+n(B)−1
B

+R)

= (L + n(B))p(B) + 1

� dim(leftkernel(HL+n(B)(w̃)))

�(L + n(B))p(B).

ThereforeR ∩NL+n(B)

B
�= {0}.

Consequently, there is a linear combination of

r�(�), �r�(�), . . . , �n(B)r�(�),

that is contained inNL+n(B)

B
. In terms of the minimal

kernel representationR( d
dt

)w=0 ofB, this means that
there is 0�= f ∈ R[�], such thatf r = FR, for some
0 �= F ∈ R1×rowdim(R)[�]. If deg(f )�1, then there is
�′ ∈ C, such thatf (�′) = 0, henceF(�′)R(�′) = 0.
Now use the well-known fact[11] that R(�)w = 0
of B is a minimal kernel representation of a control-
lable behavior if and only ifR(�) has full row rank
for all � ∈ C. Hence controllability impliesF(�′)=0.
This implies thatf and each element ofF have a com-
mon root�′. Cancel this common factor. Proceed un-
til deg(f ) = 0. But thenr = FR. This contradicts the
assumptionr� /∈NL−1

B
. Hence leftkernel(HL(w̃)) ⊆

NL−1
B

, and (K) holds. �

4. Comments and corollaries

1. The interesting, and somewhat surprising, part of
Theorem 1 is that persistency of excitation of order
L + n(B) is needed in order to be able to deduce
that the observed sequences (1) of lengthL have
the ‘correct’ annihilators and the ‘correct’ span. In
other words, we have to assume a ‘deeper’ per-
sistency of excitation oñu than the width of the
windows of(ũ, ỹ) which are considered.

2. Note that Theorem 1 holds for allL (and not just
for L >L(B)). So, in particular, ifL� l(B), and
under persistency of excitation of orderL+n(B),
HL(w̃) has full row rank. Also, ifL >L(B), and
under persistency of excitation of orderL+n(B),
the left kernel ofHL(w̃) (identified in the obvious
way with polynomial vectors) generates the full
annihilator moduleNB. The observed system sig-
nal then completely specifies the laws of the sys-
tem.

3. An interesting special case is whenB is the usual
state space system�x=Ax+Bu. Note that for this
system,L(B)=1. Theorem 1 yields the following
corollary.

Corollary 2. Assume that�x = Ax + Bu is con-
trollable. Consider a trajectorỹu(1), ũ(2), . . . , ũ(T );
x̃(1), x̃(2), . . . , x̃(T ) of this system. Then

(i) If ũ is persistently exciting of orderdim(x), then
rank[x̃(1) x̃(2) · · · x̃(T )] = dim(x) + 1.

(ii) If ũ is persistently exciting of orderdim(x) + 1,
then rank[

ũ(1) · · · ũ(T )

x̃(1) · · · x̃(T )

]
= dim(x) + dim(u).

(iii) If ũ is persistently exciting of orderdim(x) + L,
then rank[
HL(ũ)

X̃

]
= dim(x) + L dim(u),

where

X̃ := [x̃(1) · · · x̃(T − L + 1)].

In [9, Section 3.3]the conditions rank
[
HL(ũ)

X̃

]
=

dim(x) + L dim(u) is recognized to have a crucial
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role in subspace system identification. To the best of
our knowledge, however, a test to verify it from the
given data(ũ, ỹ) that is an arbitrary response of the
system is not available in the literature. Special cases
that were studied are:u white noise[2] andu periodic
[9, Theorem 2]. Corollary 4 gives such a test for an
arbitraryu.

4. The matricesA, B, C, D of the system

�x = Ax + Bu, y = Cx + Du

can be recovered from the input/state/output trajec-
tory[

ũ(1)

x̃(1)

ỹ(1)

]
,

[
ũ(2)

x̃(2)

ỹ(2)

]
, . . . ,

[
ũ(T )

x̃(T )

ỹ(T )

]

(think of the input/output as measured directly, and
the state computed using a subspace algorithm) if
ũ is persistently exciting of order dim(x) + 2.

5. Letw = (u, y) with u the input andy the output of
B ∈ LQcontrollable. Assume that the system is driven
by a ‘random’ inputũ, meaning an input that is per-
sistently exciting of any order. How many (exact)
data points[

ũ(1)

ỹ(1),

]
,

[
ũ(2)

ỹ(2)

]
, . . . ,

[
ũ(T )

ỹ(T )

]
,

input/output measurements, do we need in order to
be able to identify the system? The left kernel of

HL(B)+1

([
ũ
ỹ

])
will give us the laws, provided̃u

is persistently exciting of orderL(B) + n(B) + 1.
This yields the inequality

T �(L(B) + n(B) + 1)m(B) + L(B) + n(B).

Adapted for the caseD = 0 and known zero initial
conditions, our bound ofT is the same as the one
derived in[8].
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