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Abstract We study quadratic functionals of the variables of a linear oscillatory
system and their derivatives. We show that such functionals are partitioned in con-
served quantities and in trivially- and intrinsic zero-mean quantities. We also state
an equipartition of energy principle for oscillatory systems.
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1 Introduction

In this paper, we consider oscillatory systems, i.e. systems whose trajectories are
linear combinations of sinusoidal functions

∑

k=1,... ,n

Ak sin(ωkt + φk)

with ωk,Ak, φk ∈ R for all k. Among the many physical examples of systems
of such type are mechanical systems consisting of connections of (frictionless)
spring and masses, with external variables, the displacements or the velocities of
the masses from the equilibrium positions; and electrical systems consisting of the
interconnection of inductors and capacitors, with external variables, the voltages
in the C components or the currents in the L components.
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In the context of oscillatory systems, we study quadratic functionals of the
variables of the system and their derivatives, i.e. expressions of the formQ�(w) =∑

i,j (d
iw/dti)T�ijd

jw/dtj , where the indices i and j range over a finite set and
�ij = �T

ji ∈ R
w×w. The first problem we set out to solve in this paper is the struc-

ture of the set of such quadratic functionals. We show that they are partitioned in
conserved quantities, i.e. Q�(w) is such that

d

dt
Q�(w) = 0

for all trajectoriesw of the system; and in zero-mean quantities, i.e.Q�(w) is such
that its time average over the whole real axis is zero along the trajectories w of the
system:

lim
T→∞

1

T

∫ T

0
Q�(w)(t)dt = 0 .

On physical considerations one can deduce the existence of at least one con-
served quantity, namely the total energy of the system; however, in general there
exist also other ones, which we characterize in this paper. As for zero-mean quanti-
ties, we formalize the intuitive notion that certain quadratic differential expressions
are zero-mean quantities for all bounded (and consequently, also oscillatory) tra-
jectories, since they are the derivative of some (necessarily bounded) function; con-
sequently, we call them “trivial” zero-mean. Other zero-mean quantities, instead,
are such only for the trajectories of the system at hand, and consequently will be
called “intrinsic”, since they depend in an essential way on the dynamics.

Using this classification, we prove a decomposition theorem for quadratic
differential functionals of the variables of an oscillatory system and their deriva-
tives. Assuming that such functionals are “canonical” (this technical notion will be
introduced in the course of the exposition), we show that they can be written in a
unique way as the sum of three components: a conserved quantity, a trivially zero-
mean quantity, and an intrinsic zero-mean quantity. We also state algorithms to
compute bases for the spaces of (“canonical”) conserved quantities, and of trivial-
and intrinsic zero-mean quantities.

Finally, we use the concept of conserved- and zero-mean quantity in order
to state and prove an equipartition of energy principle for oscillatory systems: if
such a system consists of symmetrically coupled identical subsystems, then the
difference between the value of any quadratic functional of the variables of the one
subsystem and their derivatives, and its value on the variables of the other and their
derivatives is zero-mean. In particular, in the case of mechanical systems, the total
energy (kinetic plus potential) of the different subsystems is the same. This result is
inspired by and generalizes that of [BB1], in which classical state-space techniques
are used in order to study the equipartition of energy of oscillators coupled in a
lossless way.

The results reported here are obtained in the behavioral framework (see [PoW]),
using the concept of quadratic differential form, introduced in [WT1]. In this frame-
work, the properties of a system are defined and studied at the level of trajectories,
independent of the actual representation of the system, be it state-space or transfer
function as it is common in system- and control theory, or second-order in the
positions as is the custom in classical mechanics.



Conserved- and zero-mean quadratic quantities in oscillatory systems 175

Besides being conceptually simple, the choice of the behavioral framework
entails some other relevant advantages. First, defining properties intrinsically leaves
open the possibility of characterizing them in terms of any particular representation
of the system which may be advantageous to use (be it transfer function, state-space,
second-order) for conceptual or computational reasons. Another important advan-
tage is that, by relying on the calculus developed in the behavioral framework (see
Ch. 2 of [PoW] and the paper [WT1]), algorithms based on one- and two-variable
polynomial algebra can be developed to determine the conserved quantities, the
zero-mean quantities, etc. starting from a set of higher-order differential equations
describing the system. This feature is of particular interest when considering the
application of the results presented in this report to computer-assisted modeling
and simulation.

The paper is organized as follows: in Sect. 2, we review some notions regarding
linear differential systems, with special attention to oscillatory systems. In Sect. 3,
we define bilinear and quadratic differential forms. In Sect. 4, we first give the
definition of conserved quantity and of zero-mean quantity; we proceed to distin-
guish trivially zero-mean and intrinsic zero-mean functionals for a given behavior;
and we give an algebraic characterization of them. Then we state a decomposition
theorem for quadratic differential forms acting on oscillatory behaviors. In Sect. 5,
we use these concepts in order to prove a general equipartition of energy principle,
which we apply to the particular situation of identical oscillators symmetrically
coupled. In Sect. 6, we discuss our results and outline some directions for future
research.

The notation used in this paper is standard: the space of n dimensional real,
respectively complex, vectors is denoted by R

n, respectively C
n, and the space of

m× n real, respectively complex, matrices, by R
m×n, respectively C

m×n. Whenever
one of the two dimensions is not specified, a bullet • is used; so that for example,
C

•×n denotes the set of complex matrices with n columns and an unspecified num-
ber of rows. In order to enhance readability, when dealing with a vector space R

•
whose elements are commonly denoted with w, we use the notation R

w (note the
typewriter font type!); similar considerations hold for matrices representing linear
operators on such spaces. If Ai ∈ R

•×•, i = 1, . . . , r have the same number of
columns, col(Ai)i=1,... ,r denotes the matrix




A1
...
Ar





The ring of polynomials with real coefficients in the indeterminate ξ is denoted
by R[ξ ]; the set of two-variable polynomials with real coefficients in the inde-
terminates ζ and η is denoted by R[ζ, η]. A polynomial p in the indeterminate
ξ is called even if p(ξ) = p(−ξ), i.e., if it is of the form p(ξ 2j ). The space of
all n × m polynomial matrices in the indeterminate ξ is denoted by R

n×m[ξ ], and
that consisting of all n × m polynomial matrices in the indeterminates ζ and η by
R
n×m[ζ, η]. Given a matrix R ∈ R

n×m[ξ ], we define R∗(ξ) := RT(−ξ) ∈ R
m×n[ξ ].

If R(ξ) has complex coefficients, then R∗(ξ) denotes the matrix obtained from R
by substituting −ξ in place of ξ , transposing, and conjugating.
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We denote with �∞(R,Rq) the set of infinitely often differentiable functions
from R to R

q, and with �(R,Rq) the subset of �∞(R,Rq) consisting of compact
support functions.

2 Oscillatory behaviors

In this section, we give the definition of oscillatory behavior and we study its
properties. Since oscillatory behaviors are a particular case of linear differential
behaviors, we introduce this notion first.

A linear differential behavior is a linear subspace � of �∞(R,Rw) consisting
of all solutions w of a system of linear constant-coefficient differential equations:

R

(
d

dt

)
w = 0 , (1)

where R ∈ R
•×w[ξ ], is called a kernel representation of the behavior

� := {w ∈ �∞(R,Rw) | w satisfies (1) } ,
and w is called the external variable of �. The class of all such behaviors is
denoted with �w. A given behavior � can be described as the kernel of different
polynomial differential operators; two kernel representations R1(d/dt)w = 0 and
R2(d/dt)w = 0 with R1, R2 ∈ R

•×w[ξ ] represent the same behavior if and only
if there exist polynomial matrices F1, F2 with a suitable number of columns, such
that R1 = F1R2 and R2 = F2R1; in particular if R1 and R2 are of full row rank,
this means that there exists a unimodular matrix F such that R1 = FR2.

In this paper, we study linear differential autonomous systems. A behavior is
autonomous if for all w1, w2 ∈ �

[w1(t) = w2(t) for t ≤ 0] �⇒ [w1(t) = w2(t) for all t] .

Intuitively, a system is autonomous if the future of every trajectory in � is
uniquely determined by its past and by its present state. Note that in the behavioral
framework “autonomous” means “closed”, i.e. with no external influence. It can be
shown that the behavior of an autonomous system is a finite-dimensional subspace
of �∞(R,Rw). Equivalently, if the behavior admits kernel representations (1) in
which the matrix R is square and nonsingular, it can be shown (see Theorem 3.6.4
in [PoW]) that a representation in which the matrix R is square and nonsingular
has the minimal number of equations (w, the number of variables of the system)
needed in order to describe an autonomous behavior �, and is consequently called
a minimal representation.

We now introduce a number of notions about the structure of autonomous
behaviors which will be important in this paper.

The first one is that of the invariant polynomials of an autonomous behavior
�. Since minimal kernel representations R′ ∈ R

w×w[ξ ] of � can all be obtained
from a given one associated with R ∈ R

w×w[ξ ] as R′ = UR with U unimodular,
then all minimal representations have the same Smith form (for a definition, see for
example Sect. 6.3.3 of [K]). The diagonal elements in such Smith forms are called
the invariant polynomials of �; their product is denoted by χ�, and is called the
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characteristic polynomial of �. Observe that the nonzero invariant polynomials
in the Smith form of any matrix R′ ∈ R

•×w[ξ ] such that � = ker R′(d/dt) also
equal the invariant polynomials of � (see Corollary 3.6.3 in [PoW]). In particular,
χ� = det(�) (the latter assumed monic).

We proceed by investigating the nature of the trajectories in an autonomous
behavior. It can be proved (see Theorem 3.2.16 of [PoW]) that if λi ∈ C, i =
1, . . . , r are the distinct roots of the characteristic polynomial χ�, each with mul-
tiplicity ni , then w ∈ � if and only if

w(t) =
r∑

i=1

nj−1∑

j=0

vij t
j eλi t , (2)

where the vectors vij ∈ C
w satisfy

∑ni−1
j=k

(
j

k

)
R(j−k)(λi)vij = 0, with R(j−k) denot-

ing the (j − k)th derivative of the matrix polynomial R. In particular, every tra-
jectory w ∈ � is a linear combination of polynomial-exponential trajectories
associated with the characteristic frequencies λi .

We now introduce the class of linear oscillatory behaviors.

Definition 1 � ∈ Lw is an oscillatory behavior if

[w ∈ �] �⇒ [w is bounded on (−∞,+∞)] .

From the definition, it follows immediately that an oscillatory system is necessarily
autonomous, since the presence of input variables in w implies that those compo-
nents of w could be chosen to be unbounded. Physical examples of oscillatory
behaviors are the evolution of the configuration variables in a mechanical sys-
tem consisting of springs and masses, and the evolution of the voltages or current
variables in any LC circuit.

The following is a characterization of oscillatory systems in terms of properties
of its kernel representation.

Proposition 2 Let � = ker R(d/dt), with R ∈ R
•×w[ξ ]. Then � is oscillatory

if and only if every nonzero invariant polynomial of � has distinct and purely
imaginary roots.

Proof Without loss of generality, we can assume that the kernel representation
induced by R is minimal, i.e. R ∈ R

w×w[ξ ]. Let R = U	V be the Smith form of
R, with U , V unimodular and 	 the diagonal matrix of the invariant polynomials
of R. Observe that R(d/dt)w = 0 if and only if 	(d/dt)V (d/dt)w = 0; now
define �′ := V (d/dt)�, and observe that �′ = ker 	(d/dt). Notice that since V
is unimodular, it follows that �′ is oscillatory if and only if � is.

Since �′ is described by the diagonal matrix 	 = diag(ψj )j=1,... ,w, the claim
of the Proposition is proved if we show that the scalar system �′

j := ker ψj(d/dt)
is oscillatory if and only if ψj ∈ R[ξ ] has distinct and purely imaginary roots.
(If) Observe that if the characteristic frequencies ωjk , k = 1, . . . , deg(ψj ) of �′

j

lie on the imaginary axis and are distinct, then w′
j ∈ �′

j if and only if

w′
j (t) =

deg(ψj )∑

k=1

αjke
iωjkt (3)
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for αjk ∈ C, k = 1, . . . , deg(ψj ). Observe that the αjk’s corresponding to conju-
gate characteristic frequencies ±iωjk are also conjugate, since each entry ofψj(ξ)
has real coefficients. Conclude that (3) describes a linear combination of sinusoidal
functions; thus, �′

j is oscillatory.
(Only if) The proof is by contradiction. Assume that there is a characteristic fre-
quency of �′

j not lying on the imaginary axis; then it is easy to verify from (2) that
this is in contradiction with the boundedness of the trajectories in �′

j on the whole
real axis. Now assume by contradiction that there is a characteristic frequency
iωjk , which is not simple. From (2), it follows that there exists one trajectory w′

j

in �′
j of the form w′

j (t) = t sin(ωjkt + φjk). Such w′
j is unbounded, and this is in

contradiction with the oscillatory nature of �′
j . 	


3 Quadratic differential forms

In modeling and control problems it is often necessary to study certain function-
als of the system variables and their derivatives; when considering linear systems,
such functionals are often quadratic. The parametrization of such functionals using
two-variable polynomial matrices has been studied in detail in [WT1], resulting in
the definition of bilinear- and quadratic differential form and in the development of
a calculus for application in many areas. In this section we review the definitions
and results which are used in this paper.

We first examine bilinear differential forms. Let � ∈ R
w1×w2[ζ, η]; then

�(ζ, η) =
N∑

h,k=0

�h,kζ
hηk,

where �h,k ∈ R
w1×w2 and N is a nonnegative integer. The two-variable polyno-

mial matrix � induces the bilinear functional from �∞(R,Rw1)× �∞(R,Rw2) to
�∞(R,R), defined as:

L�(w1, w2) =
N∑

h,k=0

(
dhw1

dth

)T

�h,k

dkw2

dtk
.

Such a functional is called a bilinear differential form, abbreviated as BDF. L� is
symmetric, meaningL�(w1, w2) = L�(w2, w1) for allw1, w2, if and only if� is a
symmetric two-variable polynomial matrix, i.e. ifw1 = w2 and�(ζ, η) = �(η, ζ )T.
The set of symmetric two-variable polynomial matrices of dimension w × w in the
indeterminates ζ and η is denoted with R

w×w
S [ζ, η].

If the two-variable polynomial matrix � is symmetric, then it induces also a
quadratic functional acting on �∞(R,Rw) as

Q�(w) := L�(w,w).

We will callQ� the quadratic differential form (in the following abbreviated with
QDF) associated with �.
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With every � ∈ R
w1×w2[ζ, η] we associate its coefficient matrix �̃, which is

defined as the infinite matrix �̃ := (�i,j )i,j=0,.... Indeed,

�(ζ, η) = [ Iw ζ Iw · · · · · · ]



�00 �01 · · · · · ·
�10 �11 · · · · · ·
...

. . . · · · . . .





︸ ︷︷ ︸
�̃





Iw
ηIw
...
...





Observe that although �̃ is infinite, only a finite number of its entries are non-
zero. Note that � ∈ Rw×w

S [ζ, η] if and only if its coefficient matrix is symmetric,
�̃T = �̃.

We now introduce the concept of symmetric canonical factorization (see [WT1],
p. 1709). Let � ∈ R

w×w
S [ζ, η]; then its coefficient matrix �̃ can be factored as

�̃ = M̃T��M̃ , where M̃ is a full row rank infinite matrix with rank(�̃) rows and
only a finite number of entries nonzero, and �� ∈ R

rank(�̃)×rank(�̃) is a signature
matrix, i.e.

�� =
[
Ir+ 0
0 −Ir−

]

From such factorization, multiplying on the left by
(
Iw Iwζ Iwζ

2 · · · ) and on the
right by col(ηkIw)k=0,..., we obtain the symmetric canonical factorization of �:

�(ζ, η) = MT(ζ )��M(η).

The association of two-variable polynomial matrices with BDF’s and QDF’s
allows to develop a calculus that has applications in dissipativity theory and H∞-
control (see [PW,WT2,TW,WT3]). One important tool in such calculus is the
map

∂ : R
w×w[ζ, η] −→ R

w×w[ξ ]

∂�(ξ) := �(−ξ, ξ)
Observe that if � ∈ R

w×w[ζ, η] is symmetric, then ∂� is para-Hermitian, i.e.
∂� = (∂�)∗.

Another important role in the following is played by the notion of derivative
of a QDF. Given a QDF Q�, we define its derivative as the QDF Q •

�
defined by

Q •
�
(w) := d

dt
(Q�(w))

for all w ∈ �∞(R,Rw). In terms of the two-variable polynomial matrices associ-
ated with the QDF’s, the relationship between a QDF Q� and Q •

�
is

•
�(ζ, η) = (ζ + η)�(ζ, η) . (4)



180 P. Rapisarda, J. C. Willems

In the rest of this paper, we use integrals of BDFs/QDFs on closed finite inter-
vals [t0, t1] ⊂ R, defined as:

∫ t1

t0

L� : �∞([t0, t1],Rv)× �∞([t0, t1],Rw) → R

∫ t1

t0

L�(v,w) :=
∫ t1

t0

L�(v,w)(t)dt .

The notation for QDFs follows easily and will not be repeated here. We call∫ t1
t0
Q�(w) independent of path if for all intervals [t1, t2], the value of the inte-

gral depends only on the value of w and (a finite number of) its derivatives at t1
and at t2, but not on the intermediate path used to connect these endpoints. The
following algebraic characterization of path independence in terms of properties
of two-variable polynomial matrices uses the notion of derivative of a QDF and
the ∂ operator. Assume � ∈ R

w×w
S [ζ, η]; then

∫ t2
t1
Q� is independent of path if and

only if either of the following two equivalent conditions holds:

(a) There exists a � ∈ R
w×w
s [ζ, η] such that (ζ + η)�(ζ, η) = �(ζ, η);

(b) ∂�(ξ) = �(−ξ, ξ) = 0.

(see Theorem 3.1 of [WT1]).
An essential role in this paper is played by QDFs evaluated along a linear differ-

ential behavior � ∈ Lw. Let �1,�2 ∈ R
w×w
S [ζ, η] and let � ∈ Lw ; we say that

Q�1 is equivalent to Q�2 along �, denoted

Q�1

�= Q�2

if Q�1(w) = Q�2(w) holds for all w ∈ �. It is a matter of straightforward verifi-
cation to see that such relation is indeed an equivalence relation. This equivalence
can be expressed in terms of a kernel representation (1) of � as follows (see Prop-

osition 3.2 of [WT1]): Q�1

�= Q�2 if and only if there exists F ∈ R
•×•[ζ, η] such

that

�2(ζ, η) = �1(ζ, η)+ R(ζ )TF(ζ, η)+ F(η, ζ )TR(η) . (5)

If (5) holds, then we also say that �1 and �2 are R-equivalent, written �1
R= �2.

If � ∈ Lw is autonomous, then each equivalence class of QDF’s in the equiv-

alence
�= admits a canonical representative. In order to see this, choose a minimal

kernel representation R ∈ R
w×w[ξ ] of �; observe that since � is autonomous, then

det(R) �= 0. We call � ∈ R
w×w
S [ζ, η] R-canonical if (R(ζ )T)−1�(ζ, η)(R(η))−1

is a matrix of strictly proper two-variable rational functions. It can be proved (see
Proposition 4.9 p. 1716 of [WT1]) that if� ∈ R

w×w
S [ζ, η], then there exists exactly

one QDF�′ ∈ R
w×w
S [ζ, η] which is R-canonical and such that�′ R= �; we call�′

the R-canonical representative of �, denoted as � mod R.

Example 3 As an illustration of the above definition, we consider the notion of
R-equivalence for scalar systems. Assume that w = 1, and let � = ker r(d/dt),
with r ∈ R[ξ ] having degree n. Observe that since

r0w + r1
dw

dt
+ . . .+ rn

dnw

dtn
= 0 (6)
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and rn �= 0, it follows that the derivatives of w of order higher than n can be
rewritten as linear combinations of the derivatives of w of order less than or equal
to n − 1. Consequently, any quadratic differential form Q� involving derivatives
ofw of order higher than or equal to n can be rewritten in an equivalent and unique
way as a quadratic differential form Q�′ involving the derivatives of w up to the
(n− 1) th one. �′ is the r-canonical representative of �.

For example, observe that for the system described by (6), it holds thatQ�1(w) =
((dn/dtn)w)2 and Q�2(w) =

(
− 1
rn

∑n−1
i=0 rid

i/dt iw
)2

are ker(r(d/dt))-equiva-

lent. Observe also that

ζ nηn
r=
(

− 1

rn

n−1∑

i=0

riζ
i

)(
− 1

rn

n−1∑

i=0

riη
i

)
,

which implies that the two-variable polynomial
(
− 1
rn

∑n−1
i=0 riζ

i
) (

− 1
rn

∑n−1
i=0 riη

i
)

is the r-canonical representative of ζ nηn.

We denote the set consisting of all w-dimensional R-canonical symmetric two-var-
iable polynomials with R

w×w
R [ζ, η]. It is a matter of straightforward verification to

prove that R
w×w
R [ζ, η] is a vector space over R. The following result establishes its

dimension.

Proposition 4 Let R ∈ R
w×w[ξ ] be nonsingular, and let n := deg(det(R)) =

dim(�). The set of QDFs Q� with � ∈ R
w×w
S [ζ, η] taken modulo �, is a vector

space over R of dimension n(n+1)
2 .

Proof It is easy to see that the set of QDFs modulo � stands in one-to-one corre-
spondence with the set

R
w×w
R [ζ, η] = {� ∈ R

w×w
S [ζ, η] | � is R-canonical } .

Now let� ∈ R
w×w
S [ξ ], and let�(ζ, η) = MT(ζ )��M(η) be a canonical factoriza-

tion of �. Denote the rows of the matrix M ∈ R
rank(�̃)×w[ξ ] with Mi ∈ R

1×w[ξ ],
i = 1, . . . , rank(�̃).

It is easy to see that �(ζ, η) is R-canonical if and only if Mi(ξ)R(ξ)
−1 is

strictly proper for i = 1, . . . , rank(�̃). Without loss of generality, we can assume
that R is column-reduced, meaning that if the highest power of the indeterminate
ξ in the ith column of R is ki , then deg(det(R)) = n = ∑w

i=1 ki . It follows then
from Lemma 6.3-11 of [K] that v ∈ R

1×w[ξ ] is such that vR−1 is strictly proper
if and only if the degree of each of the entries of v is strictly less than the degree
of the corresponding column of R. Conclude from this that the dimension of the
vector space

{v ∈ R
1×w[ξ ]|vR−1 is strictly proper}

over R equals
∑w

i=1 ki = n.
Let vi ∈ R

1×w[ξ ] be a basis for this space. Such polynomial vectors induce the
following basis for the space of two-variable symmetric R-canonical polynomial
matrices:

vT
i (ζ )vj (η)+ vT

j (ζ )vi(η)
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for 1 ≤ i ≤ j ≤ n. Indeed, such n(n+ 1)/2 symmetric matrices are linearly
independent since the vi’s are; moreover, it follows from the characterization of
R-canonicity in terms of the factorM of a symmetrical canonical factorization that
they span the set of R-canonical symmetric matrices. Conclude from this that the
number of linearly independent symmetric R-canonical two-variable polynomial
matrices is n(n+ 1)/2. 	

Example 5 Consider a system with w = 1 described by the differential equation
r(d/dt)w = 0, with r ∈ R[ξ ], deg(r) = n. Consider that an r-canonical QDFQ�

is induced by a symmetric two-variable polynomial � in which only powers of ζ
and η up to the (n− 1) th appear. It is evident that the space of such two-variable
polynomials is in one-to-one correspondence with the space of symmetric matrices
of dimension n × n. This observation yields a simpler proof of the statement of
Proposition 4 for the scalar case.

In the rest of this paper, we also need the notion of nonnegativity and posi-
tivity of a QDF. Let � ∈ R

w×w
S [ζ, η]; we call it nonnegative, denoted � ≥ 0, if

Q�(w) ≥ 0 for allw ∈ �∞(R,Rw). We call� positive, denotedQ� > 0, if� ≥ 0
and (Q�(w) = 0) �⇒ (w = 0). Using the two-variable matrix representation of
Q� and the concept of symmetric canonical factorization, it can be verified that

[Q� ≥ 0] ⇐⇒ [∃ D ∈ R
•×w such that �(ζ, η) = DT(ζ )D(η)] ,

[Q� > 0] ⇐⇒ [∃ D ∈ R
•×w such that �(ζ, η) = DT(ζ )D(η) ,

and rank (D(λ)) = w for all λ ∈ C] .

Often, in the following, we study whether a given QDF is zero-, nonnegative-,
or positive along a behavior �. We call Q� zero along �, denoted with

Q�
�= 0 or �

�= 0

if Q�(w) = 0 for all w ∈ �; we call Q� nonnegative along �, denoted

Q�

�≥ 0

or �
�≥ 0, if Q�(w) ≥ 0 for all w ∈ �. The notion of positivity along a behavior

is analogous and will not be repeated here. These concepts translate in terms of
properties of the one- and two-variable polynomial matrices representing � and the
QDFs as follows. From the notion of �-equivalence and from its characterization
(5) we can conclude that

[Q�
�= 0] ⇐⇒ [∃ F ∈ R

•×•[ζ, η] such that

�(ζ, η) = R(ζ )TF(ζ, η)+ F T(η, ζ )R(η)] . (7)

Also, �
�≥ 0 if and only if there exists �′ such that �′ �= � and �′ ≥ 0; equiva-

lently,

[�
�≥ 0] ⇐⇒ [∃ D ∈ R

•×w[ξ ] and F ∈ R
•×•[ζ, η] such that

�(ζ, η) = D(ζ)TD(η)+ R(ζ )TF(ζ, η)+ F T(η, ζ )R(η)] .



Conserved- and zero-mean quadratic quantities in oscillatory systems 183

4 A decomposition theorem for QDFs

We begin this section with the definition of conserved and zero-mean quantities;
among the latter, we distinguish between trivially- and intrinsic zero-mean quan-
tities. We proceed to parametrize these in terms of properties of the two-variable
polynomial matrices representing the QDFs. Finally, we give the main result of
this section, a decomposition theorem for QDFs, and we illustrate this result with
an example.

The definition of conserved quantity is as follows.

Definition 6 Let � ∈ Lw be an oscillatory system, and let � ∈ R
w×w[ζ, η]. Then

a QDF Q� is a conserved quantity for � if

[w ∈ �] �⇒ [
d

dt
Q�(w) = 0] .

The definition of zero-mean quantity is as follows.

Definition 7 Let � ∈ Lw be an oscillatory system, and let � ∈ R
w×w[ζ, η]. Then

QDF Q� is a zero-mean quantity for � if

[w ∈ �] �⇒ [ lim
T→∞

1

T

∫ T

0
Q�(w)(t)dt = 0] .

We illustrate these definitions with an example, in which we also point out some
aspects of conserved- and zero-mean quantities which will be treated in detail in
the following.

Example 8 Assume that two equal masses m connected to “walls” by springs of
equal stiffness k, are coupled together with a spring of stiffness k′.

We interpret this situation as the symmetric interconnection, through the spring
with elastic constant k′, of two identical oscillators, each consisting of a mass m
and a spring with elastic constant k. Take as external variables the displacementsw1
and w2 of the masses from their equilibrium positions; in such case two equations
describing the system are

md2w1
dt2

= k′(w2 − w1)− kw1 ,

md2w2
dt2

= k′(w1 − w2)− kw2 .

(8)

Assume that this system has m = 13 kg, k = 7 (N/m), and k′ = 5 (N/m), and
that it is excited by some arbitrary nonzero initial conditions, for example w1 = 1,
dw1/dt = 0, w2 = 0, dw2/dt = 0. Define the energy of the ith oscillator as
Ei(t) := 1

2kw
2
i + 1

2m(dwi/dt)
2, i = 1, 2.

The energy of the first oscillator is depicted in Fig. 1, together with its time-
average

Ē1(t) := 1

t

∫ t

0
E1(τ )dτ

at time t .
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Fig. 1 Energy (dashed line) and its time-average (solid line) for oscillator 1
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Fig. 2 Energy (dashed line) and its time-average (solid line) for oscillator 2

The energy of the second oscillator and its time average are depicted in Fig. 2.
It follows from Fig. 3 that the difference E1(t) − E2(t) of the energies of the
oscillators is zero-mean, meaning that

lim
t→∞ Ē1(t)− Ē2(t) = 0 .

It is not difficult to see that the quadratic expression w1(dw1/dt) also has
zero-mean. Indeed,

∫ t

0
w1(τ )

dw1

dt
(τ )dτ = 1

2
(w1(t)

2 − w1(0)
2) .

Given the oscillatory nature of the system, w1 is bounded, and consequently

lim
t→∞

1

t

∫ t

0
w1(τ )

dw1

dt
(τ )dτ = 0 .
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Fig. 3 Graph of E2 − E1 (dashed line) and Ē2 − Ē1 (solid line)

Observe the qualitative difference between the zero-mean quantities w1(dw1/dt)
and E1(t)− E2(t); the first one is zero-mean for all bounded differentiable argu-
ments w, while the second one is zero-mean only for the trajectories satisfying the
differential equations (8).

The system under study also has conserved quantities. Because of physical
considerations, namely the absence of dissipative elements, we can conclude that
one of them is the total energy of the system at time t , given by

E(t) = E1(t)+ E2(t) .

For the trajectories (w1, w2) corresponding to the given initial conditions, E(t) is
constant, equal to 20 J (Joules). The system also admits another conserved quantity,
linearly independent of E(·). One possible choice for such conserved quantity is
the functional

C(t) = −k
′

2
w1(t)

2 − k′

2
w2(t)

2 + (k + k′)w1(t)w2(t)+m
dw1

dt
(t)
dw2

dt
(t)

whose dimension is that of an energy. For the trajectories (w1, w2) at hand, the
constant value of such a functional is 11.5 J.

In Example 8 it has been pointed out that certain zero-mean quantities are such
for every oscillatory system: their zero-mean nature has nothing to do with the
dynamics of the particular system at hand, but follows instead from the fact that
such quadratic differential forms are derivatives of some other QDF. The following
definition addresses this issue.

Definition 9 Let� ∈ R
w×w
S [ζ, η]. Then a QDFQ� is a trivially zero-mean quantity

if

[w ∈ �∞(R,Rw), w bounded ] �⇒ [ lim
T→∞

1

T

∫ T

0
Q�(w)(t)dt = 0] .
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It is easy to see that a QDFQ� is trivially zero-mean if and only if there existsQ�

such that (d/dt)Q� = Q�, or equivalently ∂� = 0.
It is a matter of straightforward verification to see that given � = ker R(d/dt),

the sets of conserved-, zero-mean, and trivially zero-mean quantities for � are
linear subspaces of the vector space of R-canonical two-variable polynomials. We
denote such subspaces respectively with �, � and �; thus

� := {� ∈ R
w×w[ζ, η] |Q� is conserved } ,

� := {� ∈ R
w×w[ζ, η] |Q� is zero-mean } ,

� := {� ∈ R
w×w[ζ, η] |Q� is trivially zero-mean } .

It is a matter of straightforward verification to prove that the sets of R-canonical
conserved-, zero-mean, and trivially zero-mean quantities are linear subspaces of
R
w×w
R [ζ, η], the set of R-canonical quadratic differential forms. We denote such

subspaces respectively with �R , �R and �R .
We now give parametrizations of the elements of �R , �R and �R , beginning

with the conserved quantities.

Proposition 10 Let � ∈ Lw be oscillatory, and let R ∈ R
w×w[ξ ] be such that

� = ker R(d/dt). Then � ∈ R
w×w
R [ζ, η] is a conserved quantity if and only if

there exists Y ∈ R
w×w[ζ, η] such that

(ζ + η)�(ζ, η) = R(ζ )TY (ζ, η)+ Y (η, ζ )TR(η) . (9)

Proof Q� is a conserved quantity if and only if (d/dt)Q�
�= 0. Given � ∈

R
w×w
R [ζ, η], the derivative ofQ� is represented by (ζ +η)�(ζ, η), and the fact that

(d/dt)Q� is zero along � is expressed as in (9) (see equation (7)). 	

From Proposition 10, we conclude that in order to compute a conserved quan-

tity, the following algorithm can be used: first solve the one-variable polynomial
Lyapunov equation (PLE)

RT(−ξ)X(ξ)+XT(−ξ)R(ξ) = 0 (10)

in the unknown matrixX ∈ R
w×w[ξ ].A conserved quantity�(ζ, η) is then obtained

taking the R-canonical representative of

�(ζ, η) = RT(ζ )X(η)+XT(ζ )R(η)

ζ + η
.

If the solution X of (10) is taken to be R-canonical, then the corresponding � is
also R-canonical; moreover, every conserved quantity is obtained in this way (see
Proposition 4.1 of [PR]).

We now establish the dimension of the subspace of R-canonical conserved
quantities.

Proposition 11 Assume that kerR(d/dt) is oscillatory, without characteristic fre-
quencies in zero. Let ±iωi , i = 1, . . . , r , be the distinct roots of det(R), with
algebraic multiplicity µi , i = 1, . . . , r . Then

dim �R =
r∑

i=1

µ2
i .



Conserved- and zero-mean quadratic quantities in oscillatory systems 187

Proof In order to prove the claim, we use several concepts developed in [PR], and
proceed as follows. We first introduce a linear map L on the space of R-canonical
matrices, which associates to � ∈ R

w×w
R [ζ, η] the R-canonical representative of

(ζ +η)�(ζ, η). Given the characterization of Proposition 10, the kernel of L coin-
cides with the space ofR-canonical conserved quantities. Consequently, in order to
compute the dimension of the space ofR-canonical conserved quantities, we need to
determine the dimension of the eigenspace of L associated with the eigenvalue zero.

The map L is defined as

L : R
w×w
R [ζ, η] → R

w×w
R [ζ, η]

L(�(ζ, η)) := (ζ + η)�(ζ, η) mod R

where (ζ + η)�(ζ, η) mod R denotes the R-canonical representative of (ζ +
η)�(ζ, η). It is easy to see that L is well defined, since �1

�= �2 implies that
L(�1) = L(�2). Observe also that L is linear. Moreover, the set �R of conserved
quantities coincides with the kernel of L. In order to find its dimension, we study the
dimension of the eigenspace of L associated with the eigenvalue zero. In order to do
this, we will have to consider one- and two-variable polynomial matrices with com-
plex coefficients; observe that the notion ofR-canonicity is valid also in such cases.

Consider the equivalence relation in C
1×w[ξ ] defined by v1

R= v2 if and only
if v1 − v2 = fR for some f ∈ C

1×w[ξ ]. We denote with v mod R the canonical
representative of the equivalence class of v ∈ C

1×w[ξ ], defined as the only vector
in the equivalence class

[v] := {v′ | exists f ∈ C
1×w[ξ ] such that v − v′ = fR}

such that v′R−1 is strictly proper.
The set of canonical representatives (equivalently, of the equivalence classes)

is the deg(det(R))-dimensional vector space over C

C
1×w
R [ξ ] := {v ∈ C

1×w[ξ ] | vR−1 is strictly proper }
Now consider the map

S : C
1×w
R [ξ ] → C

1×w
R [ξ ]

S(p(ξ)) := ξp(ξ) mod R

It is easy to see that S is linear. We now prove that its eigenvalues coincide with the
roots of det(R). Indeed, assume that λ ∈ C is a root of det(R) with associated left
singular vector v ∈ C

1×w; then vR(λ) = 0, and therefore vR(ξ) = v(R(ξ)−R(λ)).
Observe that the polynomial matrix R(ξ) − R(λ) is zero for ξ = λ; conse-
quently, all of its entries must have ξ − λ as a factor. Consequently v′(ξ) :=
v(R(ξ)− R(λ))/(ξ − λ) = vR(ξ)/(ξ − λ) is a vector polynomial. Moreover,
v′(ξ)R(ξ)−1 is strictly proper. Now observe that ξv′(ξ) = λv′(ξ) + vR(ξ); this
implies that λ is an eigenvalue of S with associated eigenvector v′ ∈ C

1×w[ξ ].
Conversely, assume that λ ∈ C is an eigenvector of S with associated eigen-

vector v ∈ C
1×w[ξ ]; then ξv(ξ) mod R = λv(ξ). Now for v = col(vi)i=1,... ,w ∈

C
1×w
R [ξ ], define deg(v) = maxi=1,... ,w{deg(vi)}. Consider that deg(ξv(ξ))

= deg(v(ξ))+1, and consequently ξv(ξ)R(ξ)−1 must have a nonzero constant part,
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which we denote with vc ∈ C
1×w in the following. Observe that ξv(ξ) mod R =

λv(ξ) = ξv(ξ)−vcR(ξ). The last equality implies that vcR(ξ) = (ξ−λ)v(ξ) from
which, letting ξ = λ, we conclude that vc is a left singular vector of R associated
with the root λ of det(R).

We now return to the proof of the claim of the proposition. Apply Proposition 2
in order to conclude that since � is oscillatory and without characteristic frequen-
cies in zero, C

1×w
R [ξ ] admits a basis {bi}i=1,... ,deg(det(R)) consisting of eigenvectors

of S. Consequently,

{b̄T
i (ζ )bj (η)+ b̄T

j (ζ )bi(η)}1≤i≤j≤deg(det(R))

is a basis for C
w×w
R [ζ, η] consisting of eigenvectors of L respectively associated

with λ̄i + λj , where b̄i (ξ) is obtained from bi(ξ) by conjugating the coefficients
(see Proposition 3.4 of [PR]). Conclude from this that the characteristic polynomial
of L is �1≤i≤j≤deg(det(R))(ξ − (λ̄i + λj ). In order to complete the proof, observe
that for each iωi , there exist exactly µi roots of det(R) equal to −iωi . Conclude
that iωi contributes µi · µi = µ2

i zero eigenvalues of L. This concludes the proof
of the claim. 	

Corollary 12 Assume that kerR(d/dt) is oscillatory, without characteristic fre-
quencies in zero; assume that the roots of det(R) are all simple. Then

dim �R = deg(det(R))

2
.

Remark 13 The parametrization (9) of conserved quantities can be further refined
in the case w = 1. Then R is an even polynomial with distinct roots, and it is easy
to see that a polynomial X ∈ R[ξ ] solves the PLE (10) if and only if it is odd. It
follows that a basis for the set �R ofR-canonical conserved quantities is the family

Cj(ζ, η) := ζ 2j−1R(η)+ R(ζ )η2j−1

ζ + η
, (11)

j = 1, . . . , deg(det(R))
2 .

Using such characterization, it is a matter of straightforward verification to
prove that each conserved quantity �(ζ, η) can then be expressed as

�(ζ, η) = �′(ζ, η)+ ζη�′′(ζ, η)

where�′ and�′′ contain only even powers of ζ and η, that is�′(ζ, η) =∑i,j �
′
i,j

ζ 2iη2j and �′′(ζ, η) = ∑
i,j �

′′
i,j ζ

2iη2j . This means that Q�′(w) is a quadratic
functional of the even derivatives of w, while the QDF induced by ζη�′′(ζ, η)
is a quadratic functional of the odd derivatives of w. This result generalizes to
higher-order systems the decomposition of the total energy of a mechanical system
as the sum of the potential energy (which in the case of a mechanical system is
a quadratic functional of the positions, that is of even derivatives of the config-
uration variables) and of the kinetic energy (which in the case of a mechanical
system is a quadratic functional involving the velocities, that is odd derivatives of
the configuration variables).
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Observe that for the case of one oscillator governed by the equationmd2w/dt2+
kw = 0, the characterization (11) yields

�(ζ, η) = ζ(mη2 + k)+ η(mζ 2 + k)

ζ + η
= mζη + k ,

which is the two-variable polynomial corresponding to the total energy (kinetic+
potential)Q�(w) = m((d/dt)w)2 + kw2 of the oscillator. Observe also that since
deg(det(R)) = 2 in this case, the space �R has dimension 1; consequently, in the
case of one oscillator the total energy is the only conserved quantity for such a
system.

The following example illustrates the computation of conserved quantities for
the system considered in Example 8.

Example 14 The system is described by the two second-order differential equa-
tions (8), and consequently a matrix R ∈ R

2×2[ξ ] such that � = ker R(d/dt) is

R(ξ) =
[
mξ 2 + k + k′ −k′

−k′ mξ 2 + k + k′

]
(12)

Observe that this matrix is column proper, and consequently theR-canonical matri-
cesX ∈ R[ξ ] have column degree less than or equal to one. Since deg(det(R)) = 4,
it follows from Proposition 4 that dim R

2×2
R [ζ, η] = 10, and from Proposition 11

that there are two linearly independent R-canonical conserved quantities. We now
proceed to construct a basis for �R using the characterization (9).

We first solve the PLE R(−ξ)TX(ξ) + X(−ξ)TR(ξ) = 0 in the R-canonical
matrix X ∈ R

2×2[ξ ]. It follows from simple computations that two independent
solutions are

X1(ξ) := 1

2

[
ξ 0
0 ξ

]
and X2(ξ) := 1

2

[
0 ξ
ξ 0

]

corresponding to the two linearly independent conserved quantities

��R,1(ζ, η) := 1

2

[
k + k′ +mζη −k′

−k′ k + k′ +mζη

]

��R,2(ζ, η) := 1

2

[ −k′ k + k′ +mζη
k + k′ +mζη −k′

]

Observe that ��R,1 induces the total energy of the system, and that ��R,2 induces
the conserved quantity C of Example 8.

We now give a parametrization of zero-mean quantities.

Proposition 15 Let � ∈ Lw be oscillatory, and let R ∈ R
w×w[ξ ] be such that

� = ker R(d/dt). Then � ∈ R
w×w
R [ζ, η] is a zero-mean quantity if and only if

there exist �,X ∈ R
w×w[ζ, η] such that

�(ζ, η) = (ζ + η)�(ζ, η)+ R(ζ )TX(ζ, η)+X(η, ζ )TR(η) . (13)
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Proof (If) Observe that if (13) holds, then for every w ∈ � it holds

1

T

∫ T

0
Q�(w)(t)dt = 1

T

∫ T

0

d

dt
Q�(w)(t)dt = 1

T
(Q�(w)(T )−Q�(w)(0)) .

Now consider thatw ∈ � impliesw and its derivatives are bounded on (−∞,∞).
Conclude that

lim
t→∞

1

T

∫ T

0
Q�(w)(t)dt = lim

t→∞
1

T
(Q�(w)(T )−Q�(w)(0)) = 0 .

(Only if) Assume by contradiction that (13) does not hold; then there exists a
�′ ∈ R

w×w[ζ, η] that is not the derivative of some QDF, is nonzero along �, and
such that

�(ζ, η) = �′(ζ, η)+ (ζ + η)�(ζ, η)+ R(ζ )TX(ζ, η)+X(η, ζ )TR(η) . (14)

Given the assumptions on�′, there exists a root iω of det(R), with associated right
singular vector v, i.e.R(iω)v = 0, such that vT�′(−iω, iω)v �= 0. Now substitute
ζ with −iω and η with iω in (14), multiply both sides of the equation by v̄T on
the left and by v on the right, and conclude that v̄T�(−iω, iω)v is nonzero. This
means that Q�(ve

iωt ) contains a nonzero constant term, and therefore that

lim
T→∞

1

T

∫ ∞

0
Q�(ve

iωt + v̄e−iωt )dt �= 0,

is a contradiction. 	

From Proposition 15, we conclude that in order to find a zero-mean quantity,

the following algorithm can be used. Let X ∈ R
w×w[ξ ] be R-canonical, and define

Z(ξ) as

RT(−ξ)X(ξ)+XT(−ξ)R(ξ) =: Z(ξ) .

Now find a two-variable polynomial matrix� ∈ R
w×w[ζ, η] such that ∂� = Z; for

example, � can be chosen as the R-canonical representative of 1
2Z

T(ζ )+ 1
2Z(η).

Then � is a zero-mean quantity; indeed, equation (13) holds, with

�(ζ, η) := �(ζ, η)− RT(ζ )X(η)−XT(ζ )R(η)

ζ + η
.

Remark 16 In the scalar case, if � is oscillatory and without characteristic fre-
quencies in zero, then the polynomialR ∈ R[ξ ] such that � = kerR(d/dt) is even,
that is R∗ = R. It then follows from equation (13) and Theorem 3.1 of [WT1] that
Q� is zero-mean if and only if there exists Y ∈ R[ξ ], YR−1 strictly proper, such
that ∂� = R∗Y + Y ∗R = R(Y + Y ∗). This leads to the following result.

Proposition 17 Let � ∈ L1 be oscillatory and without characteristic frequencies
in zero. The QDF induced by � ∈ R[ζ, η]R is zero-mean if and only if ∂� has R
as a factor.
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Example 18 Consider the single oscillator described by the differential equation
md2w/dt2 + kw = 0. The result of Proposition 15 allows us to conclude that the
following are zero-mean quantities for ker(md2/dt2 + k):

mζη − k = (ζ + η)
1

2
(ζ + η)m
︸ ︷︷ ︸

�1

− (mζ 2 + k) · 1

2
− 1

2
· (mη2 + k) ,

(ζ + η)k = −(ζ + η)mζη︸ ︷︷ ︸
�2

+ (mζ 2 + k) · η + (mη2 + k) · ζ .

Observe that the first of these zero-mean quantities is none other than the Lagrang-
ian of the system, while the second one is evidently a trivially zero-mean quantity,
being (d/dt)kw2.

Observe also that these two zero-mean quantities are linearly independent, and
also linearly independent from the total energy of the system, represented by the
two-variable polynomial mζη + k, which is a conserved quantity. Conclude that
there exists a basis of the space of R-canonical QDFs, which in this case is three-
dimensional, consisting of the direct sum of the zero-mean, trivially zero-mean
and conserved quantities subspaces. As will be shown later in this section, this is
no coincidence: for an oscillatory system, any R-canonical QDFs is the sum of a
conserved quantity and a zero-mean quantity.

We now establish the dimension of the subspace �R of R-canonical zero-mean
QDFs.

Proposition 19 Assume that kerR(d/dt) is oscillatory, without characteristic fre-
quencies in zero. Let ±iωi , i = 1, . . . , r , be the distinct roots of det(R), with
algebraic multiplicity µi , i = 1, . . . , r . Then

dim �R = deg(det(R))(deg(det(R))+ 1)

2
−

r∑

i=1

µ2
i

Proof Consider the map L introduced in the proof of Proposition 11. From equa-
tion (13), it follows that �R is the image of L, and that �R = ker L. Recall from
Proposition 4 that dim(Rw×w

R [ζ, η]) = deg(det(R))(deg(det(R))+ 1)/2 and from
Proposition 11 that dim(�R) =∑r

i=1 µ
2
i . The proof is complete. 	


Corollary 20 Assume that kerR(d/dt) is oscillatory, without characteristic fre-
quencies in zero, and assume that the roots of det(R) are all simple. Then

dim �R = (deg(det(R)))2

2
.

Example 21 We consider again the system illustrated in Example 8. A basis for
�R has been computed in Example 14. In order to compute a basis for �R , we
use the characterization (13). Choosing linearly independent X ∈ R

2×2[ξ ] and
generating the corresponding ∂� according to the polynomial Lyapunov equation

∂�(ξ) = RT(−ξ)X(ξ)+XT(−ξ)R(ξ)
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we obtain the following basis for �R:

��,1(ζ, η) :=
(

2(k + k′)− 2mζη −k′
−k′ 0

)
,��,2(ζ, η) :=

(
0 k′η
k′ζ 0

)
,

��,3(ζ, η) :=
(

0 k + k′ −mζη
k + k′ −mζη −2k′

)
,

��,4(ζ, η) :=
( −2k′ k + k′ −mζη
k + k′ −mζη 0

)
,

��,5(ζ, η) :=
(

2k′ζη 0
0 −2k′ζη

)
,

��,6(ζ, η) :=
(

0 −k′
−k′ 2(k + k′)− 2mζη

)
,��,7(ζ, η) :=

(
0 k′ζ
k′η 0

)
,

��,8(ζ, η) := (ζ + η)

( −k′ k + k′ +mζη
k + k′ +mζη −k′

)
.

We now analyze trivially zero-mean quantities, giving first their character-
ization in terms of two-variable polynomial matrices, and then determining the
dimension of the subspace �R . Since it has been proved before that � is trivially
zero-mean if and only if there exists � ∈ R

w×w
S [ζ, η] such that (d/dt)Q� = Q�,

we only need to prove that if � is R-canonical, then so is �.

Proposition 22 Let � ∈ Lw be oscillatory. Then � ∈ R
w×w
R [ζ, η] is a trivially

zero-mean quantity if and only if there exists � ∈ R
w×w
R [ζ, η] such that

�(ζ, η) = (ζ + η)�(ζ, η) . (15)

Proof Condition (15) is evidently sufficient. In order to prove its necessity, we
proceed as follows. Using equation (13), observe that if Q� is zero-mean, then
Q�− (d/dt)Q� is zero along �; observe also thatQ�− (d/dt)Q� is induced by
some �′ ∈ R

w×w
S [ζ, η] of the form �′(ζ, η) = RT(ζ )X(ζ, η)+ XT(η, ζ )R(η) for

someX ∈ R
w×w[ζ, η]. It follows from Proposition 4.1 of [PR] thatX can be chosen

univariate and such that XR−1 is strictly proper; consequently, �′ is R-canonical.
	


We now proceed to establish the dimension of �R , the subspace ofR-canonical
trivially zero-mean quantities.

Proposition 23 Assume that kerR(d/dt) is oscillatory, without zero characteris-
tic frequencies. Then

dim �R = deg(det(R))(deg(det(R))+ 1)

2
− 2

r∑

i=1

µ2
i .

Proof Introduce the following equivalence relation on �R:

[�1 ∼ �2] ⇐⇒ [�1 −�2 ∈ �R] .

Observe that the set consisting of all equivalence classes of ∼ is in one-to-one
correspondence with �R . We proceed to determine its dimension. In order to do
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so, we determine first the dimension of the zero equivalence class considered as a
subspace of �R .

It follows from equation (13) that the equivalence class of zero is in one-to-one
correspondence with the set �R of R-canonical conservation laws, since

0 = (ζ + η)�(ζ, η)+ R(ζ )TX(ζ, η)+X(η, ζ )TR(η)

if and only if Q� is a conservation law.
According to Proposition 11 �R has dimension equal to

∑r
i=1 µ

2
i . Conclude

that the set of equivalence classes of ∼ has dimension dim �R − ∑r
i=1 µ

2
i =

deg(det(R))(deg(det(R))+1)
2 − 2

∑r
i=1 µ

2
i as claimed. 	


Corollary 24 Assume that kerR(d/dt) is oscillatory, without zero characteristic
frequencies, and assume that all the roots of det(R) are simple. Then

dim �R =
(

deg(det(R))

2

)2

− deg(det(R))

2
.

The set �R of trivially zero-mean quantities is a subspace of �R , the space of
zero-mean quantities. Let �R be a complement of �R in �R; then �R consists of
those zero-mean quantities which are not trivial ones. We call the elements of �R

the intrinsically zero-mean quantities, in order to emphasize that their zero-mean
nature depends in an essential way on the dynamics of the system. Observe that
the dimension of �R is

∑r
i=1 µ

2
i .

Remark 25 Using the characterization of zero-mean quantities for the case w = 1
given in Remark 16, it is not difficult to see that the following two-variable polyno-
mials form a basis for a choice of the space of intrinsically zero-mean quantities:

�i(ζ, η) := R(ζ )η2i−1 − ζ 2i−1R(η)

ζ − η

where i = 1, . . . , deg(det(R))
2 . It is a matter of straightforward verification to see that

each �i(ζ, η) can be written as

�i(ζ, η) = �′
i (ζ, η)− ζη�′′

i (ζ, η)

where �′
i (ζ, η) and �′′

i (ζ, η) contain only even powers of ζ and η, 1 ≤ i ≤
deg(det(R))

2 . Following the line of thought illustrated in Remark 13, one can think

of the basis �i , i = 1, . . . , deg(det(R))
2 as consisting of “generalized Lagrangians”.

Indeed, in the case of one oscillator described by the equationmd2w/dt2+kw = 0,
the only element of the basis of �R constructed in this way ismζη−k, the Lagrang-
ian of the system.

Remark 26 In Remark 25, we have shown how to construct a basis for a choice
of the space of intrinsically zero-mean quantities for the scalar case. An alternative
basis can be constructed as follows.

Observe that if � = ker R(d/dt) is oscillatory and it has no characteristic fre-

quency in zero, then R ∈ R[ξ ] is an even polynomial: R(ξ) = ∑
degR

2
i=0 Riξ

2i . Then
it easily follows from Remark 16 that the following two-variable polynomials:

�i(ζ, η) := R(−ζη)(−ζη)2i ,
i = 0, . . . , degR

2 − 1, also form a basis for �R .
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Remark 27 In Proposition 11, we have assumed for simplicity of exposition that
the behavior � under study had no characteristic frequencies in zero. If this assump-
tion does not hold, it can be proved that the following result holds true (see also
statement (i) of Theorem 6.1 in [BB2]):

Proposition 28 Assume that kerR(d/dt) is oscillatory. Let ± iωi , i = 1, . . . , r ,
be the distinct roots of det(R), with algebraic multiplicity µi , i = 1, . . . , r , and
let 0 be a root of det(R) with multiplicity µ0. Then

dim �R = µ0(µ0 + 1)

2
+

r∑

i=1

µ2
i .

We can now state the main result of this section, a decomposition theorem for
R-canonical QDFs.

Theorem 29 Let � ∈ Lw be oscillatory, and let R ∈ R
w×w[ξ ] be such that � =

ker R(d/dt). Assume that � has no characteristic frequencies in zero. Denote with
�R , �R , and �R , respectively, the space ofR-canonical conserved, zero-mean, and
trivially zero-mean quantities. Let �R be a complementary subspace of �R in �R .
Then every � ∈ R

w×w
R [ζ, η] admits a unique decomposition as

� = ��R +��R
+��R ,

where ��R ∈ �R , ��R
∈ �R , ��R ∈ �R .

Proof Observe first that �R ∩ �R = {0}. Recall respectively from Proposition 4,
from Proposition 11, and from Proposition 15 that

dim R
w×w
R [ζ, η] = deg(det(R))(deg(det(R))+ 1)

2
,

dim �R =
r∑

i=1

µ2
i ,

dim �R = deg(det(R))(deg(det(R))+ 1)

2
−

r∑

i=1

µ2
i .

Conclude that

R
w×w
R [ζ, η] = �R ⊕ �R .

Use the definition of �R and of �R to conclude that since �R = �R ⊕ �R , it
follows

R
w×w
R [ζ, η] = �R ⊕ �R ⊕ �R .

This concludes the proof of the claim. 	
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5 An equipartition of energy principle

In Example 8, we examined a system consisting of identical parts (the two oscil-
lators) interconnected in a “symmetrical” way and we simulated the behavior of
the system, finding that the average total energy of each oscillator is the same. The
purpose of this section is to state and prove a general result valid for oscillatory
systems consisting of identical subsystems connected in a symmetrical way, which
following [BB1] we call the deterministic equipartition of energy principle.

In order to do so, we first need to formalize the notion of symmetry. As usual
in the behavioral framework, we define such property at an intrinsic level, that of
the trajectories of the system (see [FW] for a thorough investigation of symmetries
and the related representational issues).

Definition 30 Let � be a linear differential behavior with w external variables,
and let � ∈ R

w×w be a linear involution, i.e. �2 = Iw. � is called �-symmetric if
�� = �.

This definition is an operational one, as is common in physics: a behavior is sym-
metric if it can be subjected to a certain operation (the transformation � of the
external variables) without altering it.

In the following, we use the symmetry induced by the permutation matrix

� =
(

0 Im
Im 0

)
(16)

or equivalently, we consider systems with 2m external variables

w =





w1
...
wm
wm+1
...

w2m





for which

[w ∈ �] ⇐⇒









wm+1
...

w2m
w1
...
wm





= �w ∈ �





. (17)

In order to state the main result of this section, we need to introduce the notion of
observability. Let � ∈ Lw, with its external variablew partitioned asw = (w1, w2);
then w2 is observable from w1 if for all (w1, w2), (w1, w

′
2) ∈ � implies w2 = w′

2.
Thus, the variable w2 is observable from w1 if w1 and the dynamics of the system
uniquely determinew2; in other words, the variablew1 contains all the information
about the trajectory w = (w1, w2). For linear differential systems, observability
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of w2 from w1 is equivalent with the following property of the kernel representa-
tion of �. Let R1(d/dt)w1 = R2(d/dt)w2 be a kernel representation of �, with
R1 ∈ R

•×w1[ξ ], R2 ∈ R
•×w2[ξ ]. Then w2 is observable from w1 if and only if

rank R2(λ) = w2 for all λ ∈ C (see [PoW], Th. 5.3.3). It is easy to see that this
is equivalent with the existence of a polynomial matrix F ∈ R

w2×w1[ξ ] such that
w2 = F(d/dt)w1 for all w1, w2 ∈ �.

Theorem 31 Let � be an oscillatory behavior with w = 2 m external variables.
Assume that � is �-symmetric, with � given by (16), i.e. (17) holds. Moreover,
assume that

(a) w2, . . . , wm, wm+1 observable from w1; and
(b) wm+2, . . . , w2m observable from wm+1.

Let� ∈ R
m×m[ζ, η], and consider the QDFQ� induced by the 2 m × 2 m two-var-

iable matrix

�(ζ, η) :=
(
�(ζ, η) 0

0 −�(ζ, η)
)

on �. Then Q� is a zero-mean quantity for �.

Proof In order to prove the claim, we reduce ourselves to the case of two external
variables as follows. Since � is�-symmetric and sincew2, . . . , wm is observable
from w1, and wm+2, . . . , w2m is observable from wm+1, we can write




w2
...
wm



 = F

(
d

dt

)
w1 and




wm+2
...
w2m



 = F

(
d

dt

)
wm+1

for some F ∈ R
(m−1)×1[ξ ]. Consequently, we can write

Q�(w) = Q�

(
w1

F( d
dt
)w1

)
−Q�

(
wm+1

F( d
dt
)wm+1

)
= Q� ′(w1)−Q� ′(wm+1)

where the symmetric two-variable polynomial � ′(ζ, η) is defined as

� ′(ζ, η) = (1 F T(ζ )
)
�(ζ, η)

(
1

F(η)

)
.

We now prove that the QDF induced by
(
� ′(ζ, η) 0

0 −� ′(ζ, η)

)
∈ R

2×2[ξ ]

and acting on the projection of w ∈ � on the components w1 and wm+1 is zero-
mean, using the characterization (13) of zero-mean quantities. In order to do so,
observe first that � being oscillatory implies also that its projection on the w1 and
wm+1 variable is such. Moreover, �-symmetry of � implies that its projection on
the w1 and wm+1 variable is J -symmetric, with

J :=
(

0 1
1 0

)
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In order to complete the claim of the Theorem, therefore, it suffices to show that
given any J -symmetric oscillatory behavior � with two external variables one
of which is observable from the other, and given any � ∈ RS[ζ, η], the QDF
Q�(w1)−Q�(w2) is zero-mean.

We first prove that this system admits a kernel representation of special struc-
ture using the results of [FW]. Argue analogously to the proof of Theorem 4 p. 9
of [FW] in order to conclude that � admits a kernel representation of the form

(
r1 ε1r1
r2 ε2r2

)
∈ R

2×2[ξ ]

where εi = ±1, i = 1, 2. Observe that the determinant of this matrix equals
r1r2(ε2 − ε1), and that it is nonzero if and only if ε1 �= ε2, that is, if and only if
ε1 = −ε2. Conclude from this that � can also be described in kernel form by

(
1 1
ε1 ε2

)(
r1 ε1r1
r2 ε2r2

)
=
(

r1 + r2 ε1r1 + ε2r2
ε1r1 + ε2r2 r1 + r2

)

=: R′ =
(
r ′

1 r
′
2

r ′
2 r

′
1

)

Observe that det(R′) = r ′2
1 − r ′2

2 is an even polynomial, since � is oscillatory.
Conclude from r ′2

1 − r ′2
2 = (r ′

1 + r ′
2)(r

′
1 − r ′

2), that r ′
1 and r ′

2 are even polynomials.
Moreover, since the second external variable is observable from the first one, then
col (r ′

2(λ), r
′
1(λ)) has rank 1 for all λ ∈ C, in other words,GCD(r ′

1, r
′
2) = 1. This

implies that there exist a, b ∈ R[ξ ] such that

ar ′
1 + br ′

2 = 1 .

Observe that since r ′
1 and r ′

2 are even, a and b can also be taken to be even polyno-
mials.

Now let � ∈ RS[ζ, η], and define

X(ξ) := ∂�(ξ)

(
a(ξ) −b(ξ)
b(ξ) −a(ξ)

)
.

It is a matter of straightforward manipulations to see that

R′T(−ξ)X(ξ)+XT(−ξ)R′(ξ) =
(
∂�(ξ) 0

0 −∂�(ξ)
)
.

We conclude from the characterization of zero-mean quantities given in Proposi-
tion 15 that the QDF Q�(w1) −Q�(w2) is zero-mean. This concludes the proof
of the theorem. 	

Example 32 Consider the system described in Example 8. It is easy to see that
this system satisfies the assumptions of Theorem 31. It has already been remarked
that the difference between the energies of the two oscillators, associated with the
two-variable polynomial matrix

�(ζ, η) :=
(
mζη + k 0

0 −(mζη + k)

)
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is zero-mean. In fact, it can be easily verified that withR defined as in (12), equation
(13) has the solution

X(ξ) =
( − 1

2 − 2k+k′
2k′

− 2k+k′
2k′

1
2

.

)

From the result of Theorem 31, we can conclude that the difference between the
kinetic energies of the two oscillators, represented by the two-variable polynomial
matrix

�(ζ, η) :=
(
mζη 0

0 −mζη
)

is also zero-mean. In fact, in this case equation (13) has the solution

X(ξ) =
( − 1

2
k+k′
2k′

− k+k′
2k′

1
2

)
.

Of course, the difference between the potential energies of the two oscillators,
represented by the two-variable polynomial matrix

�(ζ, η) :=
(
k 0
0 −k

)

is also zero-mean. In fact, in this case equation (13) has the solution

X(ξ) =
(

0 k
2k′

− k
2k′ 0

)
.

Example 33 Consider the following oscillatory system. Two oscillators with mass
m are attached to walls by means of springs with stiffness constant k. The oscil-
lators are coupled symmetrically by means of an oscillatory system consisting of
a mass m′ attached on either side to the oscillators by means of springs of equal
stiffness constant k′. We consider as external variables of this system the displace-
ments from the equilibrium positions of the two massesm (labeledw1 andw3), and
as latent variable the displacement from the equilibrium position of the third mass
m′ (labeled w2). A kernel description of such behavior � is given by the matrix

R(ξ) =



mξ 2 + k + k′ −k′ 0

−k′ m′ξ 2 + 2k′ −k′
0 −k′ mξ 2 + k + k′



 .

Consider for example the case k = 7N
m

, k′ = 2N
m

, m = 13 kg, m′ = 10 kg. Elimi-
nating the w2 variable from the equations (see Sect. 6.2 of [PoW]) yields a kernel
representation of the projection of � onto (w1, w3) as

R′(ξ) =
( −9 − 13ξ 2 9 + 13ξ 2

32 + 142ξ 2 + 130ξ 4 −4

)
.

It is easy to verify that all assumptions of Theorem 31 are satisfied. It follows that
the difference of the potential energies of the two oscillators is zero-mean. This
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can also be verified via (13), since the equation R′T(−ξ)X(ξ) + XT(−ξ)R(ξ) =
diag(k,−k) has the solution

X(ξ) =
(− 7

2 − 35
4 ξ

2 0
− 7

4
7
4

)
.

The same conclusion holds for the difference of the kinetic energies, associated
with the two-variable polynomial matrix diag(mζη,−mζη). Indeed, the equation
R′T(−ξ)X(ξ)+XT(−ξ)R(ξ) = diag(−mξ 2,mξ 2) has the solution

X(ξ) =



−4 − 45

4 ξ
2 1

2

− 9
4

9
4



 .

Of course, this implies that the difference of the actual energies of the two oscilla-
tors is also zero-mean.

6 Conclusions

The main results of this paper are the decomposition presented in Theorem 29
and the equipartition principle stated in Theorem 31, which are proved using the
framework of quadratic differential forms. The computation of the conserved- and
zero-mean quantities for a given system is reduced to the solution of polynomial
matrix equations such as (9) and (13). As such, these results can be applied to
systems described by higher-order equations, and they can be implemented easily
using standard polynomial computations.

Research efforts are now being pursued in incorporating Lagrangian and
symplectic methods in our framework, with the ultimate goal of automatizing the
work- and energy methods used in mechanics and engineering through their imple-
mentation with standard polynomial computations. The use of quadratic differential
forms in energy flow modeling and control of complex interconnected structures
(see [KB1,KB2,KBH]) is also under investigation.
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