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Editorial

The Behavioral Approach

to Systems and Modeling
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ABSTRACT

An introduction to behavioral system theory, and a brief review of the content of the Special Issue are given.
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1. INTRODUCTION

For nearly three decades, mathematicians and engineers alike have identified linear

system theory with the transfer function and the state-space framework. The importance

of such paradigms in our field of study is usually justified claiming that the input-output

framework fits the practitioner’s point of view of a system as a black-box transforming

input signals into output signals; while the notion of state provides insight in the internal

structure of a system, and it makes for efficient computational techniques.

While the importance of state-space and transfer function techniques cannot be

denied, their hegemony in the current discourse of and about linear system theory is

puzzling, if not downright inexplicable for the unprejudiced scholar. Indeed, the

shortcomings of the transfer-function approach are evident when considering those

situations in which the variables of a system cannot be classified in inputs and outputs,

or those in which the point of view of the system as a ‘‘signal processor’’ transforming

inputs in outputs is untenable on rational grounds (see, for example, the analysis of a

simple door-closing mechanism illustrated in [1]). The shortcomings of the state-

space approach are no less evident: for example, modeling a physical system from

first principles hardly ever results in a state-space description, which indeed usually
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needs to be constructed from the set of higher-order differential equations (possibly

with static constraints among the variables) describing the model. Thus, state-space

descriptions cannot be considered to be the most characteristic nor the most natural

starting point for the study of linear systems. Another unsatisfactory aspect of the

state-space approach is that properties such as controllability and observability,

which, as common sense dictates, are related to the essential nature of a system, are

instead highly non-intrinsic, being defined as properties of the particular state-space

representation at hand.

Issues such as these brought Jan C. Willems to seek a theoretical framework for the

modeling and analysis of systems that would be general, so as to encompass also the

transfer-function and the state-space approaches, conceptually sound, and simple. In [2]

and in the subsequent works [3, 4, 5] (see also the textbook [6]) he identified the

behavior, that is, the set of trajectories that satisfy the laws of the system, its properties,

and the way in which such properties are reflected in those of its representations

(whether transfer function, or state-space, or set of differential equations), as the central

object of study in system theory. The adoption of such paradigm fostered a great deal of

work in the classical tradition of the mathematical sciences, making possible a precise

and logically consistent formulation of some general principles of dynamics and of

some fundamental properties of dynamical systems through the use of novel, simple,

and efficient mathematical techniques: behavioral system theory was born. In the course

of time, a growing group of students and of researchers came to appreciate the potential

of such theoretical framework and made significant contributions to it, also extending

its influence in areas other than that of systems described by linear, constant-coefficient

differential equations, witness for example the use of behavioral concepts in coding

theory, in data modeling (see also the seminal papers [7, 8]), in the theory of systems

described by partial differential equations (see [9]), in the theory and practice of

simulation, to name but a few of the directions involved in such investigations.

The purpose of this Editorial is to familiarize the reader with the main concepts and

the basic ideas of behavioral system theory which will be used throughout this issue. No

attempt at being exhaustive has been made: indeed, we have been forced to leave out

several interesting notions and applications for reasons of space. The interested reader

should consult the literature quoted at the end of this article and the references therein.

We begin our exposition by introducing the notions at the very center of the

behavioral approach, those of dynamical system and of behavior.

2. DYNAMICAL SYSTEMS AND BEHAVIORS

In modeling a dynamical system, one aims at describing how a set of variables

of interest, in the sequel called manifest variables and denoted with w ¼
ðw1;w2; . . . ;wqÞ, evolves as a function of another set of independent variables, say
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x ¼ ðx1; x2; . . . ; xnÞ. In general, any modeling procedure will lead to a set of (algebraic,

differential, difference, partial differential) equations usually called the model of the

system under study. However, experience dictates that different sets of equations can

describe the same dynamical system, so that in fact there are many models for the same

system. The starting point of the behavioral approach is to avoid this fallacy, and to

identify a model with the set of the manifest variable trajectories that can occur (called

the behavior of the system). Any set of equations in terms of which the behavior is

described is then called a representation of the behavior. More precisely, in the

behavioral approach a dynamical system consists of three objects:

1. A subset I of Rn, called the index set, in which the independent variable

x ¼ ðx1; x2; . . . ; xnÞ takes its values. In many instances there is only one in-

dependent variable, that is, n ¼ 1, and this variable often has the interpretation of

time. In this case the independent variable is denoted by t. The index set is then a

subset of R, typically I ¼ R or I ¼ ½0;1Þ, in which case we speak about a

continuous time system. If, for example, I ¼ Z of N, we speak about a discrete

time system. If n > 1 the manifest variables depend on more than one independent

variable. For example, if n ¼ 4, then we might have x ¼ ðt; x; y; zÞ, where t is time,

and ðx; y; zÞ is position in a three-dimensional space.

2. A set W, called the signal space. This is the set in which the manifest variable

w ¼ ðw1;w2; . . . ;wqÞ takes its values. For example, if w only takes real values,

then W can be a subset of Rq. In the case of distributed dynamical systems it often

occurs that the components of wðx1; x2; . . . ; xnÞ are functions, in which case W is a

subset of some function space. Sometimes the values wðx1; x2; . . . ; xnÞ are

elements of some finite set W.

3. A subset B of WI, the set of all functions from I to W. The aim of the model is to

specify which functions w ¼ ðw1;w2; . . . ;wqÞ from I to W actually comply with

the laws of the dynamical system. The subset B of WI thus defined is called the

behavior of the system.

Formalizing this, we come to the following definition of a dynamical system.

Definition 1 A dynamical system is a triple � ¼ ðI;W;BÞ, with I � Rn called the

index set, W a set, called the signal space, and B � WI called the behavior.

For a trajectory w : I ! W we either have w 2 B, which means that the model allows

the trajectory w, or w 62 B, in which case the model forbids the trajectory w.

Example 1 The possible motions of the planets in the solar system are described by

Kepler’s laws:

1. planets move in elliptical orbits, with the sun (assumed in fixed position at the

origin of R3) at one of the foci;

2. the radius vector from the sun to the planet sweeps out equal areas in equal times;
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3. the square of the period of revolution is proportional to the third power of the major

axis of the ellipse.

The motion of a planet as a function of time defines a dynamical system in the following

way. Position as a function of time is given by wðtÞ ¼ ðw1ðtÞ;w2ðtÞ;w3ðtÞÞ. Thus the

index set is given as I ¼ R, and for the signal space we take W ¼ R3. The behavior of

the dynamical system is the subset B of the set of all functions from R to R3 defined by

B ¼ fw : R ! R3 j w satisfies Kepler’s lawsg:

Example 2 Consider the transverse motion of a homogeneous flexible sheet

(‘membrane’) with surface mass density �, and tension � . Let wðt; x; yÞ be the

displacement from equilibrium of point ðx; yÞ of the membrane at time t. Then w

satisfies the partial differential equation:

�
@2w

@t2
� �

@2w

@x2
� �

@2w

@y2
¼ 0: ð1Þ

This can be modeled as a dynamical system with index set I ¼ R3, signal space

W ¼ R and behavior defined by

B ¼ fw : R3 ! R j w satisfies (1)g
The following example is an illustration of the fact that often when setting up a

model to describe the behavior of a certain set of variables, one has to use auxiliary

variables.

Example 3 Consider a linear time-invariant RLC-circuit with Ne external ports with

currents I1; I2; . . . ; INe
and voltages V1;V2; . . . ;VNe

. Denote I ¼ ðI1; I2; . . . ; INe
Þ and

V ¼ ðV1;V2; . . . ;VNe
Þ. The circuit contains resistors R1;R2; . . . ;RNr

. The current

through and voltage across the k-th resistor are IRk
and VRk

, respectively. Denote by IR

and VR the vectors of resistor currents and voltages. The network contains Nc

capacitors with capacitances C1;C2; . . . ;CNc
. The current through and voltage across

the ‘-th capacitor are IC‘
and VC‘

, respectively; the vectors IC and VC are defined in the

obvious way. Finally, the network contains Ni inductors L1; L2; . . . ; LNi
. The current

through and voltage across the m-th inductor are ILm
and VLm

, respectively; the vectors

IL and VL are defined in the obvious way.

The network defines a dynamical system in the following way. The index set is R

and the corresponding independent variable is time t. The signal space is R2Ne , the

space in which the vectors of external voltages and currents take their values. The

behavior B is defined by

B ¼ fðV; IÞ : R ! R2Ne j there exists ðVR; IR;VC; IC;VL; ILÞ such that

the constitutive laws of the elements, together

with Kirchoff’s laws are satisfiedg ð2Þ
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In Example 3, in order to describe the time-behavior of the external voltages and

currents (the manifest variables), one uses the vectors of voltages and currents of the

network elements. These auxiliary variables are called latent variables. If one writes

down the system equations explicitly, a so called latent variable representation of B

with latent variable ðVR; IR;VC; IC;VL; ILÞ is obtained. A formal definition of this

concept is given as follows.

Definition 2 A dynamical system with latent variables is defined as

�L ¼ ðI;W; L;BfÞ;

with I � Rn the index set, W the manifest signal space, L the latent variable space,

and Bf � ðW � LÞI
called the full behavior.

The latent variable system �L defines a latent variable representation of the

manifest dynamical system � ¼ ðI;W;BÞ, with (manifest) behavior B defined by

B :¼ fw : I ! W j there exists ‘ : I ! W such that ðw; ‘Þ 2 Bfg

Example 4 In systems and control we often encounter input/output systems in state

space form, given by equations of the form

d

dt
x ¼ f ðxðtÞ; uðtÞÞ; yðtÞ ¼ gðxðtÞ; uðtÞÞ: ð3Þ

Here f and g are given functions. The inputs and outputs are denoted by u and y, and

take their values in Rm and Rp, respectively. The manifest variable is ðu; yÞ. The latent

variable is x. It takes its values in Rn. Equation (3) represents a dynamical system with

latent variables, �L ¼ ðI;W; L;BfÞ, with index set I ¼ R, manifest signal space

W ¼ Rm � Rp, latent variable space L ¼ Rn, and full behavior

Bf :¼ fðu; y; xÞ : R ! Rm � Rp � Rn j Equation (3) is satisfiedg:

This latent variable system defines the manifest dynamical system � ¼ ðR;Rm�
Rp;BÞ with manifest variable ðu; yÞ and manifest behavior B given by

B :¼ fðu; yÞ : R ! Rm � Rp j there exists x such that ðu; y; xÞ 2 Bfg:

In the above examples and definitions we can recognize some of the central issues

in the behavioral approach to dynamical systems. The most important one is that a

model is a subset of the set of all manifest variable trajectories, namely that consisting

of those trajectories which are possible given the dynamical laws governing the

system. This subset is called the behavior of the system, and in general it admits many

possible representations. When modeling systems as an interconnection of standard

components, as is common practice in computer-aided modeling tools, one invariably

encounters (auxiliary) latent variables in addition to the manifest variables that the

model aims at describing.
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A second important issue is that that all manifest system variables are a priori

treated on an equal footing. In principle, the model does not distinguish between

inputs and outputs. Of course, after specifying the model, some of the manifest

variables might qualify as input variables and others as output variables. However for

variables to qualify as inputs, they need to satisfy certain properties; in particular, they

need to be free, in a sense that will be explained in the sequel.

We now illustrate how the framework put forward in this section applies to systems

described by linear, constant-coefficient ordinary differential equations, the so-called

linear differential systems.

3. LINEAR DIFFERENTIAL SYSTEMS

In order to further illustrate the basic ideas behind the behavioral approach, we now

discuss some of the fundamentals of the theory of linear differential systems. These

are systems � ¼ ðR;Rq;BÞ with index set equal to R, signal space equal to Rq, and

behavior B consisting of the space of solutions of a given set of higher order, constant

coefficient, linear, ordinary, differential equations. If the manifest variable is

w ¼ ðw1;w2; . . . ;wqÞ, then one such differential equation (of order n) is of the form

Xq

j¼1

r0
j wj þ

Xq

j¼1

r1
j

d

dt
wj þ � � � þ

Xq

j¼1

rn
j

dn

dtn
wj ¼ 0:

In order to avoid technicalities, we will restrict ourselves here to infinitely often

differentiable functions w : R ! Rq, the space of all such functions being denoted by

C1ðR;RqÞ. In case w has to satisfy, say g, of such differential equations of order at most

n, we can arrange the scalar coefficients into real g � q coefficient matrices Rj, and write

down the set of differential equations in terms of one single matrix differential equation

R0w þ R1

d

dt
w þ R2

d2

dt2
w þ � � � þ Rn

dn

dtn
w ¼ 0: ð4Þ

A shorthand notation for this type of equation is obtained by defining the g � q

polynomial matrix Rð�Þ in the indeterminate � by Rð�Þ ¼ R0 þ R1� þ R2�
2 þ � � � þ

Rn�
n. Next, we form the differential operator R

�
d
dt

�
by formally replacing � by the

differentiation operator d
dt

. Then Equation (4) is equivalent to R
�

d
dt

�
w ¼ 0.

Definition 3 A dynamical system � ¼ ðR;Rq;BÞ is called a linear differential

system if there exists a positive integer g and a g � q polynomial matrix Rð�Þ with real

coefficient matrices such that

B ¼
�

w : R ! Rq

���� w is a solution of R

�
d

dt

�
w ¼ 0

�
: ð5Þ
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If � ¼ ðR;Rq;BÞ is a linear differential system, with B given by Equation (5),

then the equation R
�

d
dt
Þw ¼ 0 is called a kernel representation of B. Recall that this is

only one possible kernel representation of the behavior B, because there are always

many R’s defining the same B. For example, it can be shown that if U is any

unimodular polynomial matrix (i.e., U is square and detðUÞ 2 R, detðUÞ 6¼ 0) such

that the product UR makes sense, then R and UR yield the same behavior B (see

Section 2.5.2 of [6]).

There are many other ways of representing the behavior B of given linear

differential system. As was mentioned in the previous section, if one sets up a

model of a given dynamical system, then often one has to include latent variables

in order to specify the manifest behavior. In the context of linear differential

systems, a system with latent variables is of the form �L ¼ ðR;Rq;Rl;BfÞ, with

full behavior Bf equal to the set of all solutions ðw; ‘Þ of a system of differential

equations

R

�
d

dt

�
w ¼ M

�
d

dt

�
‘ ð6Þ

This system is called a latent variable representation of B if B is equal to the

manifest behavior of this latent variable system, that is, if

B ¼ fw j 9 ‘ such that Equation (6) holdsg: ð7Þ

If a linear differential behavior B is defined by Equation (7), then we say that B is

obtained from the latent variable representation Equation (6) by elimination of the latent

variable ‘. Of course, it is a fundamental question whether a behavior B obtained in this

way is a linear differential system, i.e., whether there exists a polynomial matrix R0ð�Þ
such that B ¼

	
w : R ! Rq

�� w is a solution of R0� d
dt
Þw ¼ 0



. The fact that this is

indeed the case is known as the Elimination Theorem, see Chapter 6 of [6].

We now discuss the concept of free variable, and we illustrate how it connects with

the intuitive notion of ‘‘input variable’’ (see also Section 3.3 of [6]). Suppose we

have a linear differential system � ¼ ðR;Rq;BÞ, with manifest variable w. The

statement ‘w 2 B’ then means that the time trajectory w ¼ ðw1;w2; . . . ;wqÞ complies

with the laws of the system, and can indeed occur. The idea behind the concept of

inputs and outputs is that the condition ‘w 2 B’ may leave some of the components

w1;w2; . . . ;wq unconstrained: such components can be chosen arbitrarily, and they

qualify as inputs. After choosing these free components, the remaining components

are determined up to initial conditions: these components are the outputs. Consider

the following example.

Example 5 Let qðtÞ 2 R3 be the position of a point mass M subject to a force

FðtÞ 2 R3. According to Newton’s law this can be modelled as a linear differential
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system � ¼ ðR;R6;BÞ, with behavior B given by

B ¼
�
ðq;FÞ

���� M
d2

dt2
q � F ¼ 0

�
:

Note that this is a kernel representation of B. In effect, it consists of three

(differential) equations, and six unknowns. The condition ‘ðq;FÞ 2 B’, expressing

that ðq;FÞ complies with Newton’s second law, does not put constraints on F: F is

allowed to be any function. After choosing F, the variable q is determined up to qð0Þ
and dq

dt
ð0Þ. Also: ðq;FÞ 2 B does not put constraints on q, so that q is allowed to be

any function. After choosing q, the variable F is determined uniquely.

The definition of free variable is as follows.

Definition 4 Let � ¼ ðR;Rq;BÞ be a linear differential system, with manifest

variable w ¼ ðw1;w2; . . . ;wqÞ. For I ¼ fi1; i2; . . . ; ikg � f1; 2; . . . ; qg, denote by

PIB the system obtained by eliminating the variables wj, j 62 I.

1. The set of variables fwi1 ;wi2 ; . . . ;wikg is called free in B if

PIB ¼ C1ðR;RjIjÞ;

where jIj ¼ k, the cardinality of the set I. In other words, the set of variables

fwi1 ;wi2 ; . . . ;wikg is free in B if for any choice of ðwi1 ;wi2 ; . . . ;wikÞ 2 C1ðR;RkÞ,
there exist wj, j 62 I, such that ðw1;w2; . . . ;wqÞ 2 B.

2. The set of variables fwi1 ;wi2 ; . . . ;wikg is called maximally free in B if it is free,

and if for any I0 � f1; 2; . . . ; qg such that I $ I0 we have

PI0B$ C1ðR;RjI0 jÞ:

In other words, fwi1 ;wi2 ; . . . ;wikg is maximally free, if it is free and if any set of

variables obtained by adding to this set one or more of the remaining variables is

not free.

The notion of maximally free variable leads to the following definition of input and

output variable.

Definition 5 Let� ¼ ðR;Rq;BÞbealineardifferential system,withmanifestvariable

w ¼ ðw1;w2; . . . ;wqÞ. Possibly after permutation of its components, a partition of w

into w ¼ ðwð1Þ;wð2ÞÞ, with wð1Þ ¼ ðw1;w2; . . . ;wmÞ and wð2Þ ¼ ðwmþ1;wmþ2; . . . ;wqÞ,
is called an input/output partition in B if fw1;w2; . . . ;wmg is maximally free.

In that case, wð1Þ is called an input of B, and wð2Þ is called an output of B. Usually,

we write u for wð1Þ, and y for wð2Þ.
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Consider now the following example.

Example 6 Consider the linear differential system � ¼ ðR;Rmþp;BÞ with manifest

variable ðu; yÞ, represented by the latent variable representation

d

dt
x ¼ Ax þ Bu;

y ¼ Cx þ Du;

w ¼ ðu; yÞ
with latent variable x. In B, u is maximally free: once we choose u, there are no more

free components left in y: the only freedom of y is the choice of initial state xð0Þ. The

conclusion is that in B, ðu; yÞ is an input/output partition, with input u and output y.

Note that in the previous example u is input and y is output, not because it has been

decided a priori to call them as such, or because they are denoted by ‘u’ and ‘y’, but

because in the behavior B, the variable u is maximally free.

For a given linear differential system, the manifest variable w in general allows

more than one input/output partition.

Example 7 Consider the behavior of a resistor R, defined as the set of (voltage,

current) pairs compatible with the constitutive relation of the element, namely

V ¼ RI:

B ¼ fðV ; IÞ j V ¼ RIg
It is easy to see that in such behavior, Vor I can be imposed from the outside, with the

remaining variable being bound by the constitutive equation and the value of the

other. It follows that V is maximally free, so that V is input and I is then an output.

Also, I is maximally free, so that another input/output partition of the external variable

has I as input and V as output.

Example 8 Consider the behavior B ¼
	
ðq;FÞ

�� M d2

dt2 q � F ¼ 0



introduced in

Example 5, with external variable w ¼ ðq;FÞ. It is easy to see that q is maximally free,

so q is input and F is output in B. However, also F is maximally free, so F is input and

q is output in B.

Although in general a given linear differential system � ¼ ðR;Rq;BÞ has many

input/output partitions w ¼ ðu; yÞ, the number of input components in any input/

output partition of B is fixed. This number is denoted by mðBÞ and is called the input

cardinality of B:

mðBÞ :¼ maxfk 2 N j fwi1 ;wi2 ; . . . ;wikg is free in Bg.

The output cardinality of B, denoted by pðBÞ, is the number of output components in

any input/output partition of B. Obviously:

pðBÞ ¼ q � mðBÞ:
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An important issue in the behavioral approach is the study of how the properties

of a given dynamical system are reflected in the properties of its representations.

As an example, suppose that we have a linear differential system � ¼ ðR;Rq;BÞ
represented in kernel form by R

�
d
dt

�
w ¼ 0, where Rð�Þ is a given polynomial matrix.

How can we compute the input cardinality mðBÞ and the output cardinality pðBÞ of B

knowing the representing polynomial matrix Rð�Þ? It turns out that

mðBÞ ¼ q � rankðRÞ;

where rankðRÞ denotes the rank of the polynomial matrix R. Suppose now the system

is represented by the latent variable representation R
�

d
dt

�
w ¼ Mðd

dt
Þ‘, with latent

variable ‘. How can we compute mðBÞ and pðBÞ in terms of the representing poly-

nomial matrices R and M? It can be shown that

mðBÞ ¼ q � rankð½R M�Þ þ rankðMÞ

Example 9 Consider the ‘descriptor system’ given by the equations

E
d

dt
x ¼ Ax þ Bu; ð8Þ

y ¼ Cx þ Du; ð9Þ
w ¼ ðu; yÞ;

where u, y and x take their values in Rm, Rp and Rn, respectively. This is a latent

variable representation of the linear differential system � ¼ ðR;Rmþp;BÞ, with

B ¼ fðu; yÞ j there exists x such that Equations (8) and (9) holdg

By writing the latent variable representation alternatively as

B 0

�D I

� �
u

y

� �
¼ E d

dt
� A

C

� �
x:

we get the following expression for the input cardinality of the system:

mðBÞ ¼ m þ p � rank
B 0 E� � A

�D I C

� �� �
þ rank

E� � A

C

� ���

so

mðBÞ ¼ m � rankð½E� � A B�Þ þ rank
E� � A

C

� �� �
:

Clearly, in the case that E ¼ I, the n � n identity matrix, we have mðBÞ ¼ m, the

number of components of u.
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Other intrinsic properties of linear differential systems which are reflected in the

algebraic properties of their representations are controllability, observability, and

stability (see Chapter 7 of [6]). The notion of controllability in the behavioral

framework is extensively discussed in the article of S. Shankar appearing in this issue

(see also Chapter 5 of [6]). We now briefly discuss the notion of observability.

Observability is a property of systems whose variables are partitioned in two

sets, one of which is observed while the other is to be deduced from the first one.

More precisely, let ðR;Rq1 � Rq2 ;BÞ be a linear differential system, with the ex-

ternal variable partitioned as w ¼ ðw1;w2Þ, w1 being q1-dimensional and w2 being

q2-dimensional. We say that w2 is observable from w1 if

ðw1;w2Þ; ðw0
1;w0

2Þ 2 B and w1 ¼ w0
1 ¼)w2 ¼ w0

2

It is easy to see that this implies that there exists a map F associating to every portion

w1 of a trajectory in B one and only one corresponding portion w2:

ðw1;w2Þ 2 B¼)w2 ¼ Fw1

In order to illustrate how such intrinsic property of the behavior is reflected in the

algebraic properties of the polynomial matrices describing it, consider the behavior

described by

R1

�
d

dt

�
w1 ¼ R2

�
d

dt

�
w2

Then it can be shown (see Section 5.3 of [6]) that w2 is observable from w1 if and only

if the matrix R2ð	Þ has full column-rank q2 for all 	 2 C.

Example 10 Consider a system with two variables, whose behavior is described in

kernel form as

p

�
d

dt

�
w1 ¼ q

�
d

dt

�
w2

where p; q are polynomials. It is easy to see that in such system, w2 is observable from

w1 if and only if qð�Þ is a nonzero constant, that is, qð�Þ ¼ c 6¼ 0, c 2 R. Indeed, if

such condition is not satisfied then q has at least one root 	, so that if ð�ww1; �ww2Þ 2 B,

then also ð�ww1; �ww2 þ 
e	tÞ 2 B for all 
 2 R, so that by observing �ww1 it is impossible

to determine which trajectory in the variables w2 has occurred.

In order to see the relationship of the behavioral definition of observability with the

one known in the state-space setting, consider an input-state-output representation

d

dt
x ¼ Ax þ Bu

y ¼ Cx þ Du ð10Þ
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of Bf ¼ fðu; y; xÞj (10) is satisfiedg, which can be rewritten as

d
dt

In � A

�C

� �
x ¼ B 0

D �Ip

� �
u

y

� �

The variable x is observable (in the behavioral sense) from ðu; yÞ if and only if the

matrix

	In � A

�C

� �

has full column rank for all 	 2 C. This of course is the well-known Popov–

Belevitch–Hautus test for observability.

4. ABOUT THE CONTENTS OF THIS ISSUE

For this special issue of Mathematical and Computer Modeling of Dynamical Systems

(MCMDS) on Behavioral System Theory we have asked a number of researchers

active in this area to provide us with a contribution which would introduce their point

of view on the behavioral approach to the community of readers of MCMDS, and also

give the flavor of the state of the art in their own area of research. A glance at the index

will show the range and breadth of the subjects treated over the years in the behavioral

framework:

The article by Tommaso Cotroneo and Jacob van Dijk illustrates the Behavioral

Toolbox, a Unix-based modeling and simulation package based on the behavioral

concept of interconnection of subsystems through terminals, rather than on block-

diagram and input-output structures as is common in most such products.

The contribution by Kiyotsugu Takaba and Yutaka Ichihara concerns the initial

value problem for systems of first-order differential-algebraic equations obtained as

the result of the interconnection of sub-systems.

The paper by Shiva Shankar traces the evolution of the concept of controllability

from its introduction by Kalman in the state-space framework, through its

formalization in behavioral terms by Willems, to its definition for distributed systems.

The article by Madhu Belur and Harry L. Trentelman discusses the type of

algorithmic issues that arise in the behavioral approach to the synthesis of dissipative

systems, and constitutes an illustration of the behavioral point of view on control (see

also [1]).

The paper by Margreta Kuijper and Jan Willem Polderman provides an example of

how behavioral ideas about data modeling are applied to coding theory, in this specific

instance the list decoding of Reed-Solomon codes (see also [10] for another

application of behavioral techniques to coding-theory problems).
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The paper by Thanos Antoulas and Andrew Mayo casts positive-real interpolation

problems and the algorithms used for their solution, in the exact data-modeling

framework initiated in [7] and further developed in [11].

Finally, our own contribution uses the formalism of bilinear- and quadratic

differential forms introduced in [12], in order to study symplectic and variational

properties of lumped- and distributed systems.
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