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Hamiltonian and Variational Linear

Distributed Systems

P. RAPISARDA1 AND H.L. TRENTELMAN2

ABSTRACT

We use the formalism of bilinear- and quadratic differential forms in order to study Hamiltonian and

variational linear distributed systems. It was shown in [1] that a system described by ordinary linear

constant-coefficient differential equations is Hamiltonian if and only if it is variational. In this paper we

extend this result to systems described by linear, constant-coefficient partial differential equations. It is

shown that any variational system is Hamiltonian, and that any scalar Hamiltonian system is contained (in

general, properly) in a particular variational system.

Keywords: Linear Hamiltonian systems, linear variational systems, multi-variable polynomial
matrices, bilinear- and quadratic differential forms.

1. INTRODUCTION

The objective of this paper is to present some recent results in the application of

quadratic- and bilinear differential forms, introduced in [2], to the modeling and

analysis of systems described by linear, constant-coefficient partial differential

equations (in the following also called ‘‘nD systems’’). We focus on the relationship

between Hamiltonian and variational linear distributed behaviors, which we now

define. A linear distributed behavior is called Hamiltonian if there exists a non-

degenerate, skew-symmetric bilinear functional of the system variables and their

partial derivatives up to some finite order, whose divergence is zero along the

trajectories of the behavior. A behavior is called variational if it consists of all

trajectories which are stationary with respect to some quadratic functional of the

variables and their partial derivatives up to a given order.
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In [1] Hamiltonian systems described by linear, constant-coefficient ordinary

differential equations (in the following ‘‘Hamiltonian 1D systems’’) were studied

using the formalism of quadratic- and bilinear differential forms, and various

structural- and representational properties of this class of behaviors were investigated.

In that work it was shown that a 1D-system is Hamiltonian if and only if it is

variational. In particular, it was shown that a Hamiltonian 1D system admits an

interpretation as a mechanical system, in that it consists of the set of trajectories

stationary with respect to a higher-order ‘‘Lagrangian’’ functional depending on a

‘‘generalized position’’ and a ‘‘generalized velocity’’.

In the present paper we attempt to generalize the representation-free approach of

[1] to distributed linear systems: we do not assume any special type of representation

of a system as starting point, and concentrate instead on the interplay of system

dynamics and bilinear- or quadratic differential forms. By adopting such a point of

view, considerable results have been obtained in the investigation of physical

properties such as losslessness and dissipativity for systems described by linear,

constant-coefficient, partial differential equations (see [3, 4]). The main results

presented in this paper can be summarized as follows. In Proposition 14 we prove that

every linear, variational nD system is also Hamiltonian; as for the converse, we show

how to compute for a Hamiltonian nD-system with one external variable a variational

behavior B0 that contains B, by means of solving a polynomial equation involving the

underlying bilinear differential form.

In writing this paper, we have concentrated primarily on presenting and illustrating

the basic concepts of our approach in a manner as simple as possible; consequently

we decided to emphasize physical examples and we tried to appeal to the readers’

intuition. Also, because of space limitations, we limit our exposition to closed

(‘‘autonomous’’ in behavioral parlance) systems.

The paper is organized as follows: in Section 2 we discuss the basics of

multidimensional (nD) behavioral systems. In Section 3 we discuss the basics of

bilinear- and quadratic differential forms for multidimensional systems, limiting the

exposition to the notions necessary in order to understand the material of this paper. In

Section 4 we review the main results of [1] for Hamiltonian 1D systems. In Section 5

we present our results on the relationship of Hamiltonian variational systems

described by partial differential equations. A final section contains comments on the

result presented and some indications of the directions for future research in this area.

2. ND BEHAVIORS

The purpose of this section is to introduce the reader to those concepts of

multidimensional behavioral system theory which are most relevant for the purposes

of the paper; see [4] for a thorough treatment of the subject.
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In behavioral system theory, the behavior is a subset of the space WT consisting of

all trajectories from T, the indexing set, to W, the signal space. In this paper we

consider systems with T¼Rn (from which the terminology ‘‘nD-system’’ derives)

and W¼Rw. We call B a linear differential nD behavior if it is the solution set of a

system of linear, constant-coefficient partial differential equations (in the follow-

ing PDEs); more precisely, if B is the subset of C1ðRn;RwÞ consisting of all solutions

to

R

�
d

dx

�
w ¼ 0 ð1Þ

where R is a polynomial matrix in n indeterminates �i, i ¼ 1; . . . ; n, and
d

dx
¼
�

@
@x1

; . . . ; @
@xn

�
. We call (1) a kernel representation of B.

Obviously, any linear differential nD behavior B is a linear subspace of WT. Also,

any such behavior is shift-invariant in the sense that B ¼ �x0B, where for

x0 ¼ ðx01; . . . ; x0nÞ, the x0-shift �x0 is defined as

�x0 : ðRwÞRn

! ðRwÞRn

ð�x0wÞðx1; . . . ; xnÞ :¼ wðx1 þ x01; . . . ; xn þ x0nÞ

We denote the set consisting of all linear, shift-invariant differential nD-systems with

w external variables with Lw
n ; when n ¼ 1, we write simply Lw.

The following are examples of elements of L1
2 and L1

3 respectively.

Example 1 Consider the one-dimensional wave equation describing the displace-

ment w(t, x) from equilibrium of a homogeneous elastic medium:

�2 @
2w

@t2
	 �2 @

2w

@x2
¼ 0 ð2Þ

where � and � are physical constants related to the mass density and the elasticity of

the medium, respectively. Such equation defines a linear, shift-invariant, differential

system with indexing set T ¼ R2, signal space W¼R, and behavior

B ¼ fw 2 C1ðR2;RÞ j w satisfies ð2Þg

The polynomial associated with the representation (2) is Rð�1; �2Þ ¼ �2�2
1 	 �2�2

2. In

order to stress that the we are dealing with variables t and x, we often write �t instead

of �1, and �x instead of �2.

Example 2 Let wðt; x; yÞ be the displacement of an infinite vibrating plate in the

position ðx; yÞ at time t; then it can be shown that w satisfies the PDE

�
@2w

@t2
þ @4w

@x4
þ 2

@2w

@x@y
þ @4w

@y4
¼ 0 ð3Þ
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where � is a constant depending on the physical properties of the plate. Such equation

defines a linear, shift-invariant, differential system with indexing set T ¼ R3, signal

space W ¼ R, and behavior B ¼ fw 2 C1ðR3;RÞ j w satisfies Equation ð3Þg.

The polynomial associated with the representation (3) is Rð�t; �x; �yÞ ¼ ��2
t þ

�4
x þ 2�x�y þ �4

y .

Finally, we introduce the notion of (weakly) autonomous nD-behavior. Intuitively,

an autonomous behavior consists of trajectories which are completely determined by

their boundary conditions, that is, systems on which no external influence in the form

of ‘‘inputs’’ (more precisely, ‘‘free variables’’) is exerted, see [3]. In order to give a

formal definition, we need to define the characteristic ideal and characteristic variety

associated with a kernel representation (1). Let Rr�w½�1; . . . ; �n� be the set of all

r� w matrices with components in the polynomial ring R½�1; . . . ; �n� of polynomials

in n indeterminates, with real coefficients. For R 2 Rr�w½�1; . . . ; �n�, the character-

istic ideal is the ideal of R½�1; . . . ; �n� generated by the determinants of all w� w

minors of R, and the characteristic variety is the set of roots common to all

polynomials in the ideal. The behavior B represented in kernel form by Equation (1)

is said to be (weakly) autonomous if its characteristic ideal is not the zero ideal; or

equivalently, if its characteristic variety is not all of Cn. Observe that if an nD-

behavior is represented by a single Equation (1) with a nonzero polynomial, such as

the ones considered in Example 1 and Example 2, then it is (weakly) autonomous.

3. BILINEAR- AND QUADRATIC DIFFERENTIAL FORMS

In many modeling and control problems for linear systems it is necessary to study

bilinear- and quadratic functionals of the system variables and their derivatives. For

finite-dimensional linear systems, an efficient representation for such functionals by

means of two-variable polynomial matrices was introduced in [2]; in order to

represent bilinear- and quadratic functionals of the variables of nD-systems, 2n-

variable polynomial matrices are used (see [4]).

In order to simplify the notation, define the vector x :¼ ðx1; . . . ; xnÞ, the multi-

indices k :¼ ðk1; . . . ; knÞ, l :¼ ðl1; . . . ; lnÞ, and the notation � :¼ ð�1; . . . ; �nÞ and

� :¼ ð�1; . . . ; �nÞ, so that �k�l ¼ �k1

1 � � � �kn
n �l1

1 � � � �ln
m.

Let Rw1�w2 ½�; �� denote the set of real polynomial w1 � w2 matrices in the 2n

indeterminates � and �; that is, an element of Rw1�w2 ½�; �� is of the form

�ð�; �Þ ¼
X
k;l

�k;l�
k�l

where �k;l 2 Rw1�w2 ; the sum ranges over the nonnegative multi-indices k and l, and

is assumed to be finite. Such matrix induces a bilinear differential form (BDF in the

460 P. RAPISARDA AND H.L. TRENTELMAN



following) L�

L� : C1ðRn;Rw1Þ � C1ðRn;Rw2Þ	!C1ðRn;RÞ

L�ðv;wÞ :¼
X
k;l

�
dkv

dxk

�T

�k;l
dlw

dxl

where the k-th derivative operator dk

dxk is defined as dk

dxk :¼ @k1

@x
k1
1

� � � @kn

@xkn
n

(similarly for dl

dxl).

We call L� skew-symmetric if L�ðw1;w2Þ ¼ 	L�ðw2;w1Þ for all infinitely differen-

tiable trajectories w1;w2. It can be shown that this is the case if and only if � is a skew-

symmetric 2n-variable polynomial matrix, i.e. if w1 ¼ w2 and �ð�; �Þ ¼ 	�ð�; �ÞT
.

The 2n-variable polynomial matrix �ð�; �Þ is called symmetric if w1 ¼ w2 ¼: w and

�ð�; �Þ ¼ �ð�; �ÞT
. In such case, � induces also a quadratic functional

Q� : C1ðRn;RwÞ	!C1ðRn;RÞ
Q�ðwÞ :¼ L�ðw;wÞ

We will call Q� the quadratic differential form (in the following abbreviated with

QDF) associated with �.

In this paper we also consider vectors � 2 ðRw1�w2 ½�; ��Þn
, that is,

�ð�; �Þ ¼
�1ð�; �Þ

..

.

�nð�; �Þ

0
B@

1
CA ¼: colð�ið�; �ÞÞi¼1;...;n

with �i 2 Rw1�w2 ½�; �� and with colðAiÞi¼1;...;n the matrix obtained by stacking the

matrices Ai, all with the same number of columns, on top of each other. Such �
induces a vector bilinear differential form (in short a VBDF), defined as

L� : C1ðRn;Rw1Þ � C1ðRn;Rw2Þ	!ðC1ðRn;RÞÞn

L�ðv;wÞ :¼ L�1
ðv;wÞ; L�2

ðv;wÞ; . . . ; L�n
ðv;wÞð ÞT :

Finally, we introduce the notion of divergence of a VBDF. Given a VBDF

L� ¼ ðL�1
; L�2

; . . . ; L�n
ÞT

, we define its divergence as the BDF defined by

ðdiv L�Þðw1;w2Þ :¼
�

@

@x1

L�1

�
ðw1;w2Þ þ � � � þ

�
@

@xn

L�n

�
ðw1;w2Þ ð4Þ

for all infinitely differentiable trajectories w1;w2. In terms of the 2n-variable

polynomial matrices associated with the BDF’s, the relationship between a VBDF and

its divergence is expressed as

�ð�; �Þ ¼ ð�1 þ �1Þ�1ð�; �Þ þ � � � þ ð�n þ �nÞ�nð�; �Þ
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In order to characterize those BDFs which are the divergence of some VBDF, we need

to introduce some notation. The ‘‘del’’ operator is defined as

@ : Rw1�w2 ½�1; . . . ; �n; �1; . . . ; �n� 	!Rw1�w2 ½�1; . . . ; �n�
@�ð�1; . . . ; �nÞ ¼ �ð	�1; . . . ;	�n; �1; . . . ; �nÞ

Observe that if �ð�; �Þ is symmetric, then the matrix @�ð�1; . . . ; �nÞ is para-

Hermitian, meaning @�ð�1; . . . ; �nÞ ¼ @�ð	�1; . . . ;	�nÞT
. Observe also that by

means of the ‘‘del’’ operator, a differential operator @�ð d
dx
Þ can be assigned to a QDF;

this has important applications in variational problems, and when considering the

problem of which BDFs are the divergence of some VBDF, as we now show. Indeed, it

can be shown that L� is the divergence of some VBDF L� if and only if @�ð�Þ ¼ 0

(see Th. 4, p. 1411 of [4]).

Example 3 Consider the behavior described by Equation (2). On the basis of

physical considerations, the total energy of the system trajectory w at time t can be

shown to be
R

R
Q�ðwÞdx, where Q�ðwÞ ¼ 1

2
�ð@w

@t
Þ2 þ 1

2
�ð@w

@x
Þ2

is associated with the

4-variable polynomial

�ð�t; �x; �t; �xÞ ¼ � 1
2
�t�t þ 1

2
��x�x

Example 4 Consider the behavior defined by the transverse motion of a

homogeneous flexible sheet (‘‘membrane’’) with surface mass density �. It can be

shown that if wðt; x; yÞ is the displacement from equilibrium of point ðx; yÞ of the

membrane at time t, then w satisfies the PDE (see Section 7.36.3 [5]):

�
@2w

@t2
	 �

@2w

@x2
	 �

@2w

@y2
¼ 0 ð5Þ

This defines the behavior

B ¼ fw 2 C1ðR3;RÞj Equation ð5Þ is satisfiedg ð6Þ

On the basis of physical considerations (see [5]) it can be shown that the Lagrangian

(i.e. the difference between the kinetic and potential energy) of the membrane at time

t is
R

R2 Q�ðwÞdxdy, where

Q�ðwÞ ¼
1

2
�

�
@w

@t

�2

	 1

2
�

�
@w

@x

�2

þ
�
@w

@y

�2�
ð7Þ

is associated with the 6-variable polynomial

�ð�t; �x; �y; �t; �x; �yÞ :¼ 1
2
��t�t 	 1

2
�ð�x�x þ �y�yÞ
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4. AUTONOMOUS HAMILTONIAN 1D SYSTEMS

In this section we review some of the results of [1] about autonomous Hamiltonian 1D

behaviors; in order to do this, a number of preliminary remarks are in order.

The trajectories of a 1D behavior map R into a signal space Rw, and normally are

considered to be time-signals; for this reason we denote the ‘‘independent variable’’

of which such a trajectory is function with t. It can be shown (see [6]) that an

autonomous 1D behavior corresponds to a kernel representation (1) associated with a

one-variable polynomial matrix Rð�Þ having full column rank w; in particular, such a

matrix can be chosen to be square and nonsingular. It can also be shown that the

behavior of a 1D autonomous system is finite-dimensional, and consists of vector-

polynomial exponential trajectories wðtÞ ¼
Pr

i¼1

Pni	1
k¼0 
i;ktke�it, where 
i;k 2 Rw.

The polynomial

�Bð�Þ :¼ �r
i¼1ð� 	 �iÞni

associated with B is called the characteristic polynomial of B.

The definition of autonomous Hamiltonian 1D system is as follows.

Definition 5 Let B 2 Lw be autonomous. B is called Hamiltonian if there exists a

bilinear differential form L�, such that

(i) d
dt

L�ðw1;w2Þ ¼ 0 for all w1; w2 2 B;

(ii) L� is skew-symmetric;

(iii) L�ðv;wÞð0Þ ¼ 0 for all v 2 B()w ¼ 0 (nondegeneracy).

Observe that in Definition 5 no assumption on the number w of external variables of B

is made, in contrast with the usual definition, in which an even number of such

variables is assumed.

Example 6 Consider the autonomous behavior B represented by the first order

differential equation d
dt

w ¼ Aw, where A 2 Rw�w, and w is even. Such system is often

called Hamiltonian if the matrix A is a Hamiltonian matrix, that is, if AT J þ JA ¼ 0,

where J is equal to the nonsingular skew-symmetric matrix

J ¼ 0 Iw=2

	Iw=2 0

� �
:

This behavior B is also Hamiltonian in the sense of Definition 5: the bilinear

differential form L�ðv;wÞ :¼ vT Jw is easily seen to satisfy the conditions (i), (ii) and

(iii).

Example 7 Consider two masses m1 and m2 attached to springs with constants k1

and k2. The first mass is connected to the second one via the first spring, and the
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second mass is connected to a ‘‘wall’’ with the second spring. Denote the positions of

the masses with w1 and w2. The system equations are

m1

d2

dt2
w1 þ k1w1 	 k1w2 ¼ 0

m2

d2

dt2
w2 	 k1w1 þ ðk1 þ k2Þw2 ¼ 0

and it can be shown that such equations describe an autonomous system. Now assume

that we are only interested in modeling the position w1 of the first mass; manipulating

the equations we can then eliminate w2 obtaining a higher-order model for w1 as

m1m2

d4

dt4
w1 þ ðk1m1 þ k2m1 þ k1m2Þ

d2

dt2
w1 þ k1k2w1 ¼ 0 ð8Þ

(see Chapter 6 of [6] for a thorough discussion of the issue of variable elimination).

For simplicity, denote r0 :¼ k1k2, r2 :¼ k1m1 þ k2m1 þ k1m2 and r4 :¼ m1m2. Now

define the skew-symmetric two-variable polynomial

�ð�; �Þ :¼ r2ð� 	 �Þ þ r4ð�3 	 �3Þ þ r4ð��2 	 �2�Þ:
The corresponding BDF L�ðv;wÞ is skew-symmetric and d

dt
L�ðv;wÞ ¼ 0 for all

v;w 2 B, as can be easily verified. It can also be easily proved that L� is

nondegenerate on B. Hence the behavior B is a Hamiltonian system.

In order to state the main result of this section, that is the equivalence of

Hamiltonianity and variationality for 1D-systems, we need to review the concept of

stationarity of a trajectory with respect to a QDF. Let � 2 Rw�w½�; �� be symmetric and

consider the corresponding QDF Q�ðwÞ on C1ðR;RwÞ. For a given w we define the

cost degradation of adding the compact-support function � 2 DðR;RwÞ to w as

Jwð�Þ :¼
Z þ1

	1
ðQ�ðw þ �Þ 	 Q�ðwÞÞdt ¼

Z þ1

	1
Q�ð�Þdt þ 2

Z þ1

	1
L�ðw; �Þdt

The second term on the right in this equation is called the variation associated with w:

it is a functional associating to � the real number 2
Rþ1
	1 L�ðw; �Þdt. We call w a

stationary trajectory of Q� if the variation associated with it is the zero functional. It

can be shown (by repeated partial integration of the integral defining the variation)

that w 2 C1ðR;RwÞ is a stationary trajectory with respect to the QDF Q� if and only

if w satisfies the differential equation

@�

�
d

dt

�
w ¼ 0

(Recall: @�ð�Þ is defined as the one-variable polynomial matrix �ð	�; �Þ.) A

behavior B consisting of all trajectories that are stationary with respect to a given

QDF Q� is called variational with respect to Q�. It follows from the definition of
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stationary trajectory that B is variational with respect to Q� if and only if

B ¼ ker @�ðd
dt
Þ.

The following theorem is an extension of [1], Theorem 10.

Theorem 8 Let B 2 Lw be autonomous, �Bð0Þ 6¼ 0. Then B is Hamiltonian if and

only if there exists a symmetric �ð�; �Þ 2 Rw�w½�; �� such that B ¼ ker @�ðd
dt
Þ. In that

case the number nðBÞ of state variables in any minimal state representation of B is

even, and there exists a full column rank matrix Pð�Þ 2 Rq�w½��; M ¼ MT ;
K ¼ KT 2 Rq�q nonsingular, with q :¼ nðBÞ

2
; such that B is equal to ker @�ðd

dt
Þ;

with �ð�; �Þ the two variable polynomial matrix

�ð�; �Þ :¼ Pð�ÞTð��M 	 KÞPð�Þ; ð9Þ

corresponding to the QDF

Q�ðwÞ ¼
���� d

dt
P

�
d

dt

�
w

����
2

M

	
����P
�

d

dt

�
w

����
2

K

:

If one interprets the latent variable q ¼ Pðd
dt
Þw as a generalized position, then

_qq ¼ d
dt

Pðd
dt
Þw is a generalized velocity; consequently the expressions j d

dt
Pðd

dt
Þwj2M ¼

j _qqj2M and jPðd
dt
Þwj2K ¼ jqj2K can be interpreted, respectively, as kinetic and potential

energy. From this point of view, the QDF Q�ðwÞ can be interpreted as a Lagrangian

of the system. The system of differential equations @�ðd
dt
Þw ¼ 0 (representing the

stationary trajectories with respect to this Lagrangian) coincide with the Euler-

Poisson equations associated with the Lagrangian.

Remark 9 In [1] algebraic procedures are stated, which compute the ‘‘generalized

Lagrangian’’, and the symplectic BDF L� in Definition 5 starting from a

representation of a system.

The following example illustrates the result of Theorem 8.

Example 10 Consider the configuration of Example 7. As shown in that Example,

the behavior B of the position w1 of the first mass is represented by Equation (8).

Define the latent variable q as colðw1;
d2

dt2 w1Þ. It can be shown that a generalized

Lagrangian for B is given by Q�ðw1Þ ¼ _qqT M _qq 	 qTKq, with

M :¼ r2 r4

r4 0

� �
; K :¼ r0 0

0 	r4

� �
:

where the ri are defined as in Example 7. Observe that such generalized Lagrangian

does not correspond to a difference of energies, as can be readily seen checking the

physical dimensions of the terms _qqT M _qq and qT Kq. By choosing the latent variable q as
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before, and the matrices

�KK :¼
k2

k2m1

k1

k2m1

k1

m2
1
ðk1þk2Þ

k2
1

 !
; �MM :¼

m1 þ m2
m1m2

k1

m1m2

k1

m2
1
m2

k2
1

 !
; ð10Þ

we obtain a new generalized Lagrangian for B. With this second choice of L,

the generalized kinetic energy _qqT �MM _qq and generalized potential energy qT �KKq

(which are a function of the position and the acceleration of the first mass) coincide

with the physical kinetic energy and potential energy of the system with the two

masses:

Ekinðw1;w2Þ ¼ 1
2
ðm1ðd

dt
w1Þ2 þ m2ðd

dt
w2Þ2Þ

Epotðw1;w2Þ ¼ 1
2
ðk1w2

1 	 2k1w1w2 þ ðk1 þ k2Þw2
2Þ

This can be verified easily, since the generalized position q ¼ colðw; d2

dt2 w1Þ is related

to the actual position ðw1;w2Þ by the nonsingular linear map

w1

w2

� �
¼ 1 0

1 m1

k1

� �
w1

d2

dt2 w1

� �
:

5. AUTONOMOUS HAMILTONIAN nD SYSTEMS

In this section we attempt to generalize the result of Theorem 8 in Section 4 to linear

differential nD systems, that is, systems described by linear, constant-coefficient

PDEs. We first define Hamiltonian nD systems, give a couple of examples in order to

illustrate the definition, and then we show that every autonomous variational nD

system is Hamiltonian. Finally, we show that every scalar (i.e., w ¼ 1), autonomous

Hamiltonian nD system is a sub-system of an autonomous variational system that is

Hamiltonian with respect to the same VBDF.

The definition of autonomous Hamiltonian nD system is as follows.

Definition 11 Let B 2 Lw
n be autonomous. B is called Hamiltonian if there exists a

VBDF L�; with div L� 6¼ 0; such that

(i) div L�ðw1;w2Þ ¼ 0 for all w1; w2 2 B;

(ii) L� is skew-symmetric;

(iii) ½L�ðv;wÞð0Þ ¼ 0 for all v 2 B�() ½w ¼ 0� (nondegeneracy);

Note that in this definition it is required that the divergence of L� is unequal to zero. In

the 1D case this condition reduces to d
dt

L� 6¼ 0, which in that case is implied by the
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nondegeneracy condition (iii). In the general nD case, nondegeneracy does

not imply div L� 6¼ 0. We now consider a couple of examples of Hamiltonian systems.

Example 12 Consider the behavior of the membrane system illustrated in Example

4. Define the 6-variable polynomial vector

�ð�t; �x; �y; �t; �x; �yÞ :¼
�t 	 �t

	 �
� ð�x 	 �xÞ

	 �
� ð�y 	 �yÞ

0
@

1
A

and observe that L�ðv;wÞ ¼ 	L�ðw; vÞ for every pair of trajectories v;w, so that L� is

skew-symmetric. It is also easily seen that div L� 6¼ 0. Moreover, along every pair of

trajectories v;w belonging to the behavior B defined in Equation (6), we have

ðdiv L�Þðv;wÞ

¼ @

@t

�
@v

@t
w 	 v

@w

@t

�
þ @

@x


	 �

�

�
@v

@x
w 	 v

@w

@x

��
þ @

@y


	 �

�

�
@v

@y
w 	 v

@w

@y

��

¼
�
@2v

@t2
	 �

�

@2v

@x2
	 �

�

@2v

@y2

�
w 	 v

�
@2w

@t2
	 �

�

@2w

@x2
	 �

�

@2w

@y2

�
¼ 0

so that L� also satisfies property ðiÞ of Definition 11. It can also be shown that L� is

nondegenerate, and consequently that B defined in Equation (6) is a symplectic

behavior.

Example 13 Let wðt; xÞ be the position at time t of point x of an infinitely long stiff

beam subject to vibrations. It can be shown (see, e.g., [5]) that the behavior consisting

of all possible motions wð�; �Þ is described by

B ¼
�

w 2 CðR2;RÞ
���� @2w

@t2
þ a2 @

4w

@x4
¼ 0

�
ð11Þ

where a is a constant which depends on the physical properties of the beam. We

claim that the system is symplectic. Indeed, the two-dimensional VBDF associated

with

�ð�t; �x; �t; �xÞ :¼
�t 	 �t

a2ð�3
x 	 �3

x 	 �2
x�x þ �x�

2
xÞ

� �
ð12Þ

that is,

L�ðv;wÞ ¼
@v
@t

w 	 @w
@t

v

a2ð@3v
@x3 w 	 v @3w

@x3 	 @2v
@x2

@w
@x

þ @v
@x

@2w
@x2 Þ

 !

HAMILTONIAN AND VARIATIONAL LINEAR DISTRIBUTED SYSTEMS 467



is skew-symmetric, as it is easy to verify. Also, div L� 6¼ 0. Moreover, since

ðdiv L�Þðv;wÞ

¼ @

@t

�
@v

@t
w 	 @w

@t
v

�
þ @

@x


a2

�
@3v

@x3
w 	 v

@3w

@x3
	 @2v

@x2

@w

@x
þ @v

@x

@2w

@x2

��

¼ @2v

@t2
w 	 @2w

@t2
v þ a2

�
@4v

@x4
w 	 v

@4w

@x4

�

¼
�
@2v

@t2
þ a2 @

4v

@x4

�
w þ

�
@2w

@t2
þ a2 @

4w

@x4

�
v

we conclude that ðdiv L�Þðv;wÞ ¼ 0 for all v, w 2 B. It is a matter of tedious

verification to show that L� is also non-degenerate, and consequently that B defined

in Equation (11) is Hamiltonian.

Similar as in the 1D case, for systems described by partial differential equations we

have the notion of stationarity with respect to a given QDF. Let �ð�; �Þ be a symmetric

2n-variable polynomial matrix, and consider the corresponding QDF Q�ðwÞ on

C1ðRn;RwÞ. For a given w the cost degradation of adding the compact-support

function � 2 DðRn;RwÞ to w is defined as

Jwð�Þ :¼
Z

Rn

Q�ðw þ �Þ 	 Q�ðwÞdx ¼
Z

Rn

Q�ð�Þdx þ 2

Z
Rn

L�ðw; �Þdx

The second term on the right in this equation is called the variation associated with w:

it is a functional associating to � the real number 2
R

Rn L�ðw; �Þdx. We call w a

stationary trajectory of Q� if the variation associated with it is the zero functional.

It can be shown (by repeated application of the Gauss divergence theorem) that

w 2 C1ðRn;RwÞ is a stationary trajectory with respect to the QDF Q� if and only if w

satisfies the system of linear partial differential equations

@�

�
d

dx

�
w ¼ 0

(Recall: @�ð�Þ is defined as the n-variable polynomial matrix �ð	�; �Þ.) As in the 1D

case, a behavior B 2 Lw
n consisting of all trajectories that are stationary with respect

to a given QDF Q� is called variational with respect to Q�. It follows from the

definition of stationary trajectory that B is variational with respect to Q� if and only if

B ¼ ker @�ð d
dx
Þ.

We now show that every nD variational behavior is Hamiltonian.

Proposition 14 Let B 2 Lw
n be an autonomous nD behavior. Assume that B is

variational with respect to some QDF Q�, i.e. B ¼ ker @�ð d
dx
Þ; then B is

Hamiltonian.
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Proof Define a 2n-variable w� w polynomial matrix �0ð�; �Þ :¼ @�ð	�Þ 	 @�ð�Þ:
Since �ð�; �Þ is symmetric, @� is para-Hermitian, i.e., @�ð�Þ ¼ @�ð	�ÞT

. From this

we conclude that for all v;w we have

L�0 ðv;wÞ ¼
�
@�

�
d

dx

�
v

�T

w 	 vT

�
@�

�
d

dx

�
w

�
:

As a consequence, since B ¼ ker @�ð d
dx
Þ, for all v;w 2 B we have L�0 ðv;wÞ ¼ 0.

Since also

@�0ð�Þ ¼ @�ð�Þ 	 @�ð�Þ ¼ 0

we conclude (see Th. 4 of [4]) that there exists a � ¼ colð�1;�2; . . . ;�nÞ 2
ðRw�w½�1; . . . ; �n; �1; . . . ; �n�Þn

such that div L� ¼ L�0 . We will prove that � can be

choosen to be skew-symmetric, that is, �ið�; �ÞT ¼ 	�ið�; �Þ; i ¼ 1; 2; . . . ; n. Indeed,

we have

�0ð�; �Þ ¼
Xn

i¼1

ð�i þ �iÞ�ið�; �Þ

so

�0ð�; �ÞT ¼
Xn

i¼1

ð�i þ �iÞ�ið�; �ÞT

Note that from the definition of �0ð�; �Þ we have �0ð�; �ÞT ¼ 	�0ð�; �Þ. Thus

we get

�0ð�; �Þ ¼ 1
2
ð�0ð�; �Þ 	 �0ð�; �ÞTÞ

¼
Xn

i¼1

ð�i þ �iÞ
1

2
ð�ið�; �Þ 	�ið�; �ÞTÞ

By redefining �ið�; �Þ as 1
2
ð�ið�; �Þ 	�ið�; �ÞTÞ we thus get a skew-symmetric

VBDF. Observe that div L�ðv;wÞ ¼ L�0 ðv;wÞ 6¼ 0, but that div L�ðv;wÞ ¼ 0 for all

v;w 2 B. The proof of the nondegeneracy of L� is rather technical and laborious, and

is omitted.

We illustrate the content of Proposition 14 with an example.

Example 15 Consider the behavior B of the vibrating membrane of Example 4.

It can be shown that B defined in Equation (6) is stationary with respect to the

quadratic functional defined in Equation (7) and associated with the 6-variable

polynomial

�ð�t; �x; �y; �t; �x; �yÞ ¼ ��t�t 	 ��x�x 	 ��y�y
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Observe that @�ð�t; �x; �yÞ ¼ 	��2
t þ ��2

x þ ��2
y . We proceed as in the proof of

Proposition 14, and define the 6-variable polynomial

�0ð�t; �x; �y; �t; �x; �yÞ ¼ @�ð	�t;	�x;	�yÞ 	 @�ð�t; �x; �yÞ
¼ ð�t þ �tÞ�ð�t 	 �tÞ þ ð�x þ �xÞ�ð�x 	 �xÞ
þ ð�y þ �yÞ�ð�y 	 �yÞ

Observe that L�0 ¼ div L�, where

�ð�t; �x; �y; �t; �x; �yÞ ¼
�ð�t 	 �tÞ
�ð�x 	 �xÞ
�ð�y 	 �yÞ

0
@

1
A

Such 6-variable polynomial vector is proportional to that considered in Example 12.

We proceed to show that in the scalar case, that is, when the number w of external

variables equals 1, every Hamiltonian system is contained in a particular variational

one.

In order to do this, we need to characterize the property of a skew-symmetric BDF

being zero along a behavior, in terms of properties of the polynomial matrices

involved in the representation of the BDF and of the system itself. The following

result can be proven using Gröbner basis techniques (see [7]) and the results of [8].

Lemma 16 Let B 2 L1
n be represented in kernel form by a polynomial Rð�1; . . . ; �nÞ;

and let � be a 2n-variable skew-symmetric polynomial. Then L�ðv;wÞ ¼ 0 for all

v;w 2 B if and only if there exists an n-variable polynomial X such that

�ð�; �Þ ¼ Rð�ÞXð�Þ 	 Xð�ÞRð�Þ ð13Þ
Consider now the system B 2 L1

n, represented in kernel form by Rð @
@x
Þw ¼ 0.

Assume that B is Hamiltonian with respect to the VBDF L� ¼ colðL�1
; L�2

; . . . ;
L�n

Þ. Consider the equationXn

i¼1

ð�i þ �iÞ�ið�; �Þ ¼ Rð�ÞXð�Þ 	 Xð�ÞRð�Þ ð14Þ

in the unknown n-variable polynomial Xð�Þ. According to the above lemma, the

Equation (14) has a solution X 6¼ 0. Now substitute �i and �i with 	�i and �i

respectively, obtaining Rð	�ÞXð�Þ 	 Xð	�ÞRð�Þ ¼ 0. Conclude from this that the

n-variable polynomial R0ð�Þ :¼ Xð	�ÞRð�Þ satisfies R0ð�Þ ¼ R0ð	�Þ. Define

B0 :¼ ker Xð	 d
dx
ÞRð d

dx
Þ. Then B0

is autonomous, and obviously B � B0
. Define a

2n-variable polynomial �ð�; �Þ by

�ð�; �Þ :¼ 1
2

R0ð�Þ þ 1
2

R0ð�Þ:
Then �ð�; �Þ satisfies @� ¼ R0 so B0 ¼ ker @�ð d

dx
Þ Consequently, B0

is stationary

w.r.t. Q�.
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We illustrate this procedure with an example.

Example 17 Consider the model for the vibrations of an infinitely long beam

illustrated in Example 13. We proceed to solve the Equation (14) and observe that

with �ð�; �Þ defined as in Equation (12), the following holds:Xn

i¼1

ð�i þ �iÞ�ið�; �Þ ¼ ð�2
t þ a2�2

x Þ 	 ð�2
t þ a2�2

xÞ ¼ Rð�Þ 	 Rð�Þ

that is, Xð�Þ ¼ 1 in Equation (14). Conclude from this, substituting 	� in place of �
and � in place of �, that Rð	�Þ ¼ Rð�Þ. Now define

�ð�; �Þ :¼ 1
2
ðRð�Þ þ Rð�ÞÞ ¼ 1

2
ð�2

t þ a2�2
x þ �2

t þ a2�2
xÞ

and observe that since @� ¼ R, B is the set of stationary trajectories with respect to

Q�.

Example 18 Consider the behavior of an infinite vibrating plate illustrated in

Example 2. It is a matter of straightforward (though tedious) verification to see that

the behavior described by Equation (3) is Hamiltonian with respect to the VBDF

induced by

�ð�; �Þ ¼
�ð�t 	 �tÞ

�3
x 	 �3

x 	 �2
x�x þ �x�

2
x þ �x�

2
y 	 �x�

2
y 	 �2

y�x þ �x�
2
y

�3
y 	 �3

y 	 �2
x�y 	 �y�

2
x þ �2

x�y þ �2
y�y þ �2

x �y 	 �y�
2
y

0
@

1
A

With easy calculations it can be shown thatXn

i¼1

ð�i þ �iÞ�ið�; �Þ ¼ ð��2
t þ �2

x þ 2�2
x �

2
y þ �4

y Þ 	 ð��2
t þ �2

x þ 2�2
x�

2
y þ �4

yÞ

¼ Rð�Þ 	 Rð�Þ

Substituting 	� in place of � and � in place of �i, we obtain that Rð	�Þ ¼ Rð�Þ. Now

define

�ð�; �Þ :¼ 1
2
ðRð�Þ þ Rð�ÞÞ

¼ 1
2
�ð�2

t þ �2
t Þ þ 1

2
ð�2

x þ �2
xÞ þ ð�2

x �
2
y þ �2

x�
2
yÞ þ 1

2
ð�4

y þ �4
yÞ

and observe that since @� ¼ R, B is the set of stationary trajectories with respect to

Q�.

6. CONCLUSIONS AND FURTHER WORK

We have used the formalism of bilinear- and quadratic differential forms in order to

study Hamiltonian and variational linear systems. We have shown that for systems
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described by ordinary linear constant-coefficient differential equations, a system is

Hamiltonian if and only if it is variational (see Proposition 8). The main results

regarding systems described by linear, constant-coefficient PDEs are Proposition 14,

in which we state that a variational system is also Hamiltonian. We also showed how

to construct, for the scalar case, a variational system that contains a given Hamiltonian

one, by solving a polynomial equation involving the underlying skew-symmetric

bilinear differential form.

Due to space limitations and to the need to concentrate on those aspect of our work

which are more closely related to modeling, we have been forced to omit several

interesting results which we briefly consider in the following.

Most notable among the results of [1] are the definition of controllable

Hamiltonian system and the characterization of Hamiltonianity for autonomous-

and controllable systems in terms of various representations (kernel, image, state-

space). Other important results regarding 1D systems will be treated elsewhere: for

example, the relationship of our definition of Hamiltonian system with LQ-optimal

control, which leads to a generalization of the Hamiltonian system as it is commonly

intended in the state-space setting, is the subject of a forthcoming paper.

A great deal of work remains to be done for the construction of a representation-

free theory of Hamiltonian and variational systems described by linear, constant-

coefficient PDEs. In particular, issues such as the equivalence- or lack of it- of

Hamiltonian and variational system with more than one external variable; the

characterization of the Hamiltonian and the variational property of a behavior in terms

of properties of its representations; and the design of effective algorithms which,

starting from a representation of the system, test the system for Hamiltonianity,

variationality, construct the quadratic functionals with respect to which the system is

stationary, etcetera, need to be addressed.
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