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Abstract

A two-variable polynomial approach to solve the one-variable polynomial Lyapunov equation is proposed. Lifting the
problem from the one-variable to the two-variable context allows to use Faddeev-type recursions in order to solve the
polynomial Lyapunov equation in an iterative fashion. The method is especially suitable for applications requiring exact or
symbolic computation. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let R be a real q × q polynomial matrix in the
indeterminate �, i.e.,

R(�) = R0 + R1�+ · · ·+ RL�L;
where Ri is a real q×q constant matrix for i=1; : : : ; L,
such that the polynomial det(R) is not identically zero.
Let Z be a q×q polynomial matrix in the indeterminate
� satisfying Z(�) = Z(−�)T. The equation
R(−�)TX (�) + X (−�)TR(�) = Z(�)
in the unknown q × q polynomial matrix X is called
the polynomial Lyapunov equation (PLE).
The PLE arises in various areas of mathematical

systems theory. For example, it plays a role in the
computation of integrals of quadratic functionals of
the variables of a system and their derivatives (see
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[1,11,12]). The PLE also arises in stability theory for
higher-order di�erential equations as a generalization
of the usual Lyapunov stability test for �rst-order sys-
tems (see [15,8]).
In this paper we concentrate on the particular case

in which Z attains the form Z(�) = Q(−�)T�Q(�),
where for some positive integer p, Q is a real p × q
polynomial matrix in the indeterminate � such that
QR−1 is a matrix of strictly proper rational functions
and � is a p × p signature matrix, i.e., a diagonal
matrix with ±1 entries on the main diagonal. Such
form of the PLE is commonly encountered in practice.
Thus, we will at �rst be concerned with solving the
equation

R(−�)TX (�) + X (−�)TR(�) = Q(−�)T�Q(�) (1.1)

and in Section 4, we will show that this enables us to
also solve the general form of the equation.
In this paper a new algorithm to solve the PLE is

proposed which di�ers in several respects from previ-
ous algorithms described in the literature. First of all,
the proposed approach involves lifting the problem
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from the one-variable polynomial context in which it
is originally formulated to a two-variable context. (For
another successful application of this lifting technique,
see [13].) This brings along the two-fold advantage
of exploiting the structure of the PLE (1.1) and of
shifting attention from the PLE to an associated equa-
tion, the so-called lifted polynomial Lyapunov equa-
tion (LPLE), which is de�ned on a �nite-dimensional
vector space instead.
Second, the actual algorithm for solving the PLE

proceeds by solving the LPLE by an iterative method
which is inspired by the Faddeev sequence-based
approach of [6] to solve matrix Sylvester and Lya-
punov equations. Thus designed, the method turns
out to be especially suited for applications requiring
symbolic or exact computation [9]. In contrast to the
available algorithms described in the literature, the
given method proceeds directly from the polynomial
matrices R and Q de�ning the PLE and requires
no further preprocessing or transformation to some
canonical form. An iterative approach for the solution
of the PLE in the scalar case has previously been
used in [5,8] in the context of stability tests for scalar
polynomials. However, the algorithm presented in
this paper can instead be applied to both scalar and
multivariable problems. This generality stems from
the possibility of using the calculus developed in [14]
for dealing with quadratic di�erential forms, i.e., with
quadratic functionals of the variables of a system
and their derivatives, which are intimately related to
two-variable polynomial matrices.
A few words on notation. In this paper, as in [7],

a polynomial matrix R(�) in the indeterminate � is
called nonsingular if the polynomial det(R(�)) 6= 0.
For such R the inverse is denoted with R(�)−1, the
transpose with R(�)T and the transpose of the in-
verse with R(�)−T. Following [14], if a polynomial
matrix Z(�) satis�es Z(�) = Z(−�)T it is called
para-Hermitian. If Z(�) satis�es Z(�) = −Z(−�)T it
is called skew-para-Hermitian.
The paper is organized as follows. In Section 2

we introduce several concepts regarding polynomial
matrices and shifts in a single variable. In Section
3 these notions are extended to the case of symmet-
ric two-variable polynomials and we de�ne the Lya-
punov operator as a two-variable shift operator on a
particular �nite-dimensional vector space. In Section
4 we complete the development of our framework for
the study of the PLE. Here, the PLE is lifted to the
two-variable context, thus giving rise to the LPLE. In
Section 5 the Lyapunov operator is used to formulate

a recursive algorithm to compute a solution to the
LPLE which is inspired by Faddeev’s method. From
such solution a so-called R-canonical solution to the
PLE is easily obtained. In Section 6 the algorithm is
illustrated by a worked example. A section containing
�nal remarks concludes the paper. All the proofs are
given in the appendix.

2. R-equivalence and the one-variable shift operator

In this section we introduce the notions concerning
polynomial matrices in a single variable needed in
the rest of this paper. The concepts introduced in this
section are not new, although the terminology may
di�er from that used elsewhere. See [2,3,14] for a
collection of similar results.
Let R be an element of Rq×q[�], the set of q × q

polynomial matrices in the indeterminate �. Assume
that R is nonsingular, i.e., the polynomial det(R) does
not vanish identically. Then it is easily established
(cf., e.g., [2, Chapter 2]) that R induces an equivalence
relation on the set R1×q[�] as follows.

De�nition 2.1. Two 1 × q polynomial matrices
D1; D2 ∈ R1×q[�] are called R-equivalent if there
exists a polynomial matrix P ∈ R1×q[�] such that
D1 − D2 = PR. A polynomial matrix D ∈ R1×q[�]
is called R-canonical if DR−1 is a strictly proper
rational matrix.

It is easily shown that every 1× q polynomial ma-
trix D admits a unique R-canonical polynomial matrix
D′ which is R-equivalent to D. Such matrix D′ can be
computed as D′ = SR = D − P′R, where P′ denotes
the polynomial part and S the strictly proper rational
part of DR−1 = P′ + S. We denote the R-canonical
representative D′ of the R-equivalence class of D with
Dmod R. Uniqueness follows from the observation
that if D′′ = D − P′′R is another R-canonical matrix
R-equivalent to D with P′′ polynomial, then (D′ −
D′′)R−1 =P′ −P′′ is both strictly proper and polyno-
mial, hence zero.
The subset of R1×q[�] consisting of all R-canonical

polynomial matrices is denoted byC1×qR [�]. It is easily
veri�ed thatC1×qR [�] is a vector space that can be iden-
ti�ed naturally with the vector space of R-equivalence
classes in R1×q[�].

Proposition 2.2. The spaceC1×qR [�] is a �nite-dimen-
sional vector space over R of dimension n =
deg(det(R)).
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We proceed to de�ne the polynomial shift operator
S acting on C1×qR [�] (see also [2]).

De�nition 2.3. The one-variable polynomial shift
operator S :C1×qR [�] → C

1×q
R [�] is de�ned as

S(D(�)):=�D(�)mod R(�).

Observe that S is linear. Its characteristic polyno-
mial is entirely determined by det(R), as described in
the following proposition which generalizes [2, The-
orem 4–6].

Proposition 2.4. Thecharacteristic polynomial�S(�)
of S is equal to �S(�)=det(R(�))=r0; where r0 denotes
the leading coe�cient of det(R(�)).

The de�nition of the shift S can be extended from
R1×q[�] toRk×q[�] in a row-by-row manner. The con-
cepts of R-equivalence and R-canonicity are extended
likewise. The subspace of R-canonical elements of
Rk×q[�] is denoted by Ck×qR [�].

3. R-equivalence and the two-variable shift operator

In this section we studyR-equivalence,R-canonicity
and the shift operator on spaces of symmetric poly-
nomial matrices in two variables. The material of this
section is in part a review of notions developed in the
context of quadratic di�erential forms, see [14]. The
section contains also new material, most notably the
study of the Lyapunov operator LR.
We denote withRq×q[�; �] the set consisting of q×q

real polynomial matrices in the two indeterminates �
and �. Observe that Rq×q[�; �] is a vector space over
R. A polynomial matrix � ∈ Rq×q[�; �] is called sym-
metric if�(�; �)=�(�; �)T. The subspace ofRq×q[�; �]
consisting of its symmetric elements is denoted with
Rq×qsym [�; �].
Let R ∈ Rq×q[�] be nonsingular. It is straightfor-

ward to see that R induces an equivalence relation on
Rq×qsym [�; �] in the following way.

De�nition 3.1. Two symmetric q×q polynomial ma-
trices �1; �2 ∈ Rq×qsym [�; �] are called R-equivalent if
there exists a polynomial matrix P ∈ Rq×q[�; �] such
that �1(�; �)−�2(�; �)=R(�)TP(�; �)+P(�; �)TR(�).
A polynomial matrix � ∈ Rq×qsym [�; �] is called R-
canonical if R(�)−T�(�; �)R(�)−1 is a strictly proper
rational matrix.

It is not di�cult to show that every � ∈ Rq×qsym [�; �]
admits a unique R-canonical two-variable symmetric
polynomial matrix �′ which is R-equivalent to �.
Such matrix �′ can be obtained as follows. Com-
pute a factorization of � as �(�; �) = M (�)TN (�)
(see [14,10] or the proof of Proposition 3.2 below
for how to perform such factorization). Now de-
�ne �′(�; �):=M ′(�)TN ′(�), where M ′ = M mod R
and N ′ = N mod R (in the sense of one-variable
R-equivalence). We denote the R-canonical represen-
tative �′ of the R-equivalence class of � ∈ Rq×qsym [�; �]
with �mod R. The subset of Rq×qsym [�; �] consisting of
all R-canonical two-variable symmetric polynomial
matrices is denoted by C

q×q
R;sym[�; �]. It is easily seen

that Cq×qR;sym[�; �] is a vector space that can be identi-
�ed naturally with the vector space of R-equivalence
classes in Rq×q[�; �]. The dimension of Cq×qR [�; �] is
established as follows.

Proposition 3.2. The space Cq×qR;sym[�; �] is a �nite-di-
mensional vector space over R of dimension n(n +
1)=2; where n= deg(det(R)).

We proceed to de�ne the two-variable shift opera-
torLR acting on the space C

q×q
R;sym[�; �] of R-canonical

two-variable symmetric polynomial matrices. For rea-
sons that will become evident in the next section, we
shall refer to this operatorLR as the Lyapunov oper-
ator associated with R.

De�nition 3.3. The Lyapunov operator LR :
C
q×q
R;sym[�; �]→ C

q×q
R;sym[�; �] is de�ned as

LR(�(�; �)):=(�+ �)�(�; �)mod R: (3.1)

Observe that LR is linear. Its characteristic poly-
nomial is entirely determined by det(R) as described
in the following proposition.

Proposition 3.4. The characteristic polynomial �LR

of the Lyapunov operator LR is given by

�LR(�):=
∏

16i6j6n

(�− (�i + �j)); (3.2)

where n=deg(det(R)) and �1; : : : ; �n are the zeros of
the polynomial det(R).

4. The lifted polynomial Lyapunov equation

In this section we complete the set up of our
framework for the solution of the PLE. We begin by
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lifting the problem of computing a solution to the PLE
from the one-variable polynomial context in which it
is originally formulated, to a two-variable polynomial
context. To this end, we now introduce a two-variable
polynomial equation associated with the matrices R,
Q and � which determine the PLE. The equation

(�+ �)Y (�; �)mod R= Q(�)T�Q(�) (4.1)

in the unknown R-canonical symmetric two-variable
polynomial matrix Y ∈ C

q×q
R;sym[�; �] is called the lifted

polynomial Lyapunov equation (LPLE). Solvability
of the PLE is equivalent to solvability of the LPLE,
as the following proposition shows.

Proposition 4.1. Let R ∈ Rq×q[�] be nonsingular; let
Q ∈ Rp×q[�] be R-canonical and let � be a p × p
signature matrix. Then the following two statements
are equivalent:

1. There exists a solution X ∈ Rq×q[�] to the PLE
(1:1).

2. There exists a solution Y ∈ C
q×q
R;sym[�; �] to the

LPLE (4:1).

The next proposition characterizes the space of so-
lutions to the PLE and generalizes [14, Theorem 4:8].

Proposition 4.2. Let R ∈ Rq×q[�] be nonsingular; let
Q ∈ Rp×q[�] be R-canonical and let � be a p × p
signature matrix. Let XR⊂C

q×q
R [�] be the set of all

R-canonical solutions to the PLE and let S be the
set of all skew-para-Hermitian polynomial matrices
S ∈ Rq×q[�]; i.e.;matrices for which S(�)=−S(−�)T.
Then the space of all solutions to the PLE is given by

XR ⊕SR= {X + SR |X ∈ XR and S ∈ S}:

Observe that Proposition 4.2 implies that the PLE
has a solution if and only if it has an R-canonical so-
lution. Consequently, the search for a solution to the
PLE can be restricted from the in�nite-dimensional
spaceRq×q[�] to the �nite-dimensional spaceCq×qR [�]
of R-canonical polynomial matrices.
From the proof of Proposition 4.1, a method for

constructing a solution X to the PLE from a given
solution Y to the LPLE becomes apparent. Indeed,
if Y is a solution to the LPLE then by de�nition of
R-equivalence there exists a polynomial matrix P ∈
Rq×q[�; �] such that
(�+ �)Y (�; �) + R(�)TP(�; �) + P(�; �)TR(�)

=Q(�)T�Q(�):

A solution to the PLE is then obtained from
P(�; �) by substituting � = −� and � = �, yielding
X (�):=P(−�; �). However, this is a rather indirect
way of computing a solution X from Y . The follow-
ing proposition shows how an R-canonical solution
X to the PLE can be expressed directly in terms of a
solution Y to the LPLE.

Proposition 4.3. Let Y ∈ C
q×q
R;sym[�; �] be a solution

to the LPLE. Then an R-canonical solution X ∈
C
q×q
R [�] to the PLE is given by

X (�):=− lim
|�|→∞

�R(�)−TY (�; �): (4.2)

Moreover; for such X it holds that (� + �)Y (�; �) +
R(�)TX (�) + X (�)TR(�) = Q(�)T�Q(�).

Propositions 4.1–4.3 show that in order to solve the
PLE one may proceed by solving the LPLE �rst and
subsequently constructing an R-canonical solution to
the PLE directly from the solution to the LPLE.
If we denote the right-hand side of the LPLE by

�(�; �):=Q(�)T�Q(�), then the LPLE can be written
compactly asLR(Y )=�, withLR the Lyapunov op-
erator. From Proposition 3.4, a necessary and su�-
cient condition for the existence of a unique solution
to the LPLE is immediate. It is remarkable that the
same condition also characterizes the existence of a
unique R-canonical solution to the PLE.

Proposition 4.4. Let R ∈ Rq×q[�] be nonsingular; let
Q ∈ Rp×q[�] be R-canonical and let � be a p × p
signature matrix de�ning the PLE and the associated
LPLE. Let �1; : : : ; �n be the zeros of det(R). Then the
following three statements are equivalent:

1. The following condition is satis�ed:

�i + �j 6= 0 for all i; j = 1; 2; : : : ; n: (4.3)

2. The LPLE has a unique (R-canonical) solution.
3. The PLE has a unique R-canonical solution.

For obvious reasons we call condition (4.3) the in-
vertibility condition for the operatorLR. Observe that
this condition is certainly satis�ed when R is Hurwitz
(see [14, Theorem 4:8] for an analogous result). The
invertibility condition is similar to well-known su�-
cient conditions for the existence of a solution to the
matrix Lyapunov and Sylvester equations (see for ex-
ample [4, Section VIII.3]).
Before turning to the statement of the iterative pro-

cedure for solving the PLE that will be presented in
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the next section, we brie
y come back to the issue,
raised in the introduction, of a general para-Hermitian
right-hand side Z(�) for the PLE.
Given Z(�), de�ne � ∈ Rq×qsym [�; �] as �(�; �):=

(Z(�)T + Z(�))=2; observe that �(−�; �) = Z(�).
As in the proof of Proposition 3.2, factor � as
�(�; �)=B(�)TWB(�)+R(�)TG(�; �)+G(�; �)TR(�).
Now de�ne Z1(�):=B(−�)TWB(�) and Z2(�):=
R(−�)TG(−�; �) + G(�;−�)TR(�), whence Z(�) =
Z1(�) + Z2(�). Observe that the PLE is linear and
consequently its solution space is the direct sum of a
particular solution X2 to a PLE with right-hand side
Z2 and the solution space of a PLE with right-hand
side Z1. Of course X2 can be chosen as G(−�; �).
Since Z1 can be brought to the form considered in Eq.
(1.1) by factoring W as W =UT�U , issues regarding
the solvability of the PLE with general right-hand
side Z and the structure of its solution space are still
completely addressed by Propositions 4.1 and 4.2.

5. A recursive procedure for solving the PLE

In this section we present a recursive procedure for
solving the PLE under the assumption that invertibil-
ity condition (4.3) is satis�ed. The method is con-
ceptually and computationally transparent in the sense
that the matrix R need not be transformed to some
desired canonical representation, and that the amount
of bookkeeping is kept to a minimum. The algorithm
is particularly suited for computation in an exact or
symbolic context.
The method is inspired by the Faddeev algorithm

for computing the resolvent (sIn − A)−1 of an n × n
matrix A. (See for example [6, 4, Section IV.4] for a
more detailed exposition.) Assume that A is invertible
and let �A(�) = det(�In − A) = �n + �1�n−1 + · · · +
�n−1�+�n be the characteristic polynomial of A. Then
�n = (−1)n det(A) 6= 0 and also �A(A) = 0 (Cayley–
Hamilton theorem). Note that it follows that A(An−1+
�1An−2+ · · ·+�n−1In)=−�nIn, whence the inverse of
A is given by A−1 =−(1=�n)(An−1 + �1An−2 + · · ·+
�n−1In). Observe that the unique solution x̂=A−1b to
the linear system of equations Ax=b can therefore be
computed by the iterative procedure:

x0:=b; (5.1)

xk :=Axk−1 + �kb (k = 1; 2; : : : ; n− 1); (5.2)

x̂:=− 1
�n
xn−1: (5.3)

In case of the LPLE, we are dealing with a linear sys-
tem of equations on a �nite-dimensional vector space,
namelyLR(Y )=�. The characteristic polynomial of
the Lyapunov operatorLR is described by Eq. (3.2).
In order to come up with a procedure for solving the
PLE we need only to adapt recursions (5.1)–(5.3) to
the case at hand. This yields the main result of this
section.

Proposition 5.1. Let R ∈ Rq×q[�] be nonsingular; let
Q ∈ Rp×q[�] be R-canonical and let � be a p × p
signature matrix. Assume that invertibility condition
(4:3) holds. Let �LR(�)=�

d+�1�d−1+ · · ·+�d−1�+
�d be the characteristic polynomial of the Lyapunov
operatorLR as given by Eq. (3:2); with d=n(n+1)=2
and n= deg(det(R)). Consider the recursion:

Y0(�; �):=Q(�)T�Q(�); (5.4)

Yk(�; �) :=LR(Yk−1(�; �)) + �kQ(�)T�Q(�);

for k = 1; 2; : : : ; d− 1: (5.5)

Then the two-variable polynomial matrix

Y (�; �):=− 1
�d
Yd−1(�; �) (5.6)

yields the unique solution to the LPLE. From Y the
unique R-canonical solution X to the PLE is given by

X (�):=− lim
|�|→∞

�R(�)−TY (�; �): (5.7)

Knowledge of the characteristic polynomial ofLR

is fundamental for application of the algorithm above.
Observe that in the context of symbolic or exact com-
putation it is not advisable to compute the character-
istic polynomial of LR from the zeros �i of det(R)
as might suggested by Eq. (3.2). An e�cient ratio-
nal algorithm to compute the coe�cients of �LR di-
rectly from the coe�cients of det(R) can be designed
using Faddeev-type recursions analogous to those of
[6, Section 5].

Proposition 5.2. Let R ∈ Rq×q[�] be nonsingular
and let n=deg(det(R)). Let the n zeros of det(R) be
denoted by �1; : : : ; �n and de�ne �(�)=�n+�1�n−1 +
· · ·+ �n−1�+ �n:=

∏n
i=1(�− �i). In addition; de�ne

�k :=0 for all k ¿n. Let d= n(n+1)=2 and consider
the following three recursions that de�ne the quanti-
ties tk ; uk and �k for k = 1; 2; : : : ; d:

t1:=− �1; tk :=−
(
k�k +

k−1∑
‘=1

t‘�k−‘

)
; (5.8)



122 R. Peeters, P. Rapisarda / Systems & Control Letters 42 (2001) 117–126

u1:=(n+ 1)t1;

uk :=(2k−1 + n)tk +
1
2

k−1∑
‘=1

(
k
‘

)
t‘tk−‘; (5.9)

�1:=− u1; �k :=−
(
uk+

k−1∑
‘=1

u‘�k−‘

)/
k: (5.10)

Then the characteristic polynomial �LR of the Lya-
punov operator LR is given by

�LR(�) = �
d + �1�d−1 + · · ·+ �d−1�+ �d: (5.11)

Note that the above result shows that the exact com-
putation of the coe�cients of the characteristic poly-
nomial of the Lyapunov operator is possible even in
cases where the computation of the zeros of det(R) is
infeasible, such as when R depends on symbolic, un-
speci�ed parameters.

Remark 1. Algorithm (5.4)–(5.7) involves the
computation of the R-canonical representative of
(� + �)Yk−1(�; �). It is easy to see that de�n-
ing Y ′

k (�):= − lim|�|→∞ �R(�)−TYk(�; �), it holds
that (� + �)Yk−1(�; �)mod R = (� + �)Yk−1(�; �) +
R(�)TY ′

k−1(�) + Y
′
k−1(�)

TR(�). There are good rea-
sons why a crude implementation of this formula for
Y ′
k−1 should be avoided. First of all, the de�nition of
Y ′
k−1 requires the knowledge of the rational matrix
R(�)−1, which in an exact computation context is a
delicate issue. Second, a limit operation is required,
and this may require a large processing time even
for rather small dimensions of the matrices involved.
The authors have devised a Faddeev-type recursion
that enables the computation of Y ′

k−1 with polyno-
mial operations only and which only requires division
between the highest-power coe�cients of certain uni-
variate polynomials. Such implementation details will
be discussed elsewhere; see also [10].

Remark 2. In many cases thematrixR(�)=R0+R1�+
· · ·+RL�L has the property that its leading coe�cient
matrix RL is nonsingular. For example, this always
happens for the scalar PLE: r(−�)x(�)+x(−�)r(�)=
q(−�)q(�), where r, q and x ∈ R[�]. An algorithm
can then be developed that takes advantage of the as-
sumption det(RL) 6= 0. Full details will be presented
elsewhere; see also [10].

6. Example

In this section we demonstrate our algorithm by
means of a worked example. We consider the solution
of a matrix PLE in which the matrices R, Q and � are
given by

R(�) =
(−3 + � −6− 3�+ 3�2

0 −2− �+ �2
)
;

Q(�) =
(
0 1
1 2

)
; �=

(
1 0
0 1

)
:

The matrix R is column reduced with column degrees
1 and 2, so that the set of R-canonical (one-variable)
matrices consists of all matrices with constant entries
in the �rst column and entries of degree at most 1
in the second column (see [7, Theorem 6:3-11]). The
matrix Q is obviously R-canonical.
The characteristic polynomial of LR is computed,

for instance using the procedure of Proposition 5.2 or
by observing that the zeros of det(R) in this example
are equal to −1, 2 and 3, as
�LR(�) = �

6 − 16�5 + 85�4 − 130�3 − 236�2

+776�− 480:
Since the constant term is nonzero, the invertibility
condition holds and the PLE is solvable with a unique
R-canonical solution X . Recursion (5.4)–(5.5) gener-
ates the following matrices:

Y1(�; �) =

(
−10 −26 + 2�

−26 + 2� −80 + 5�+ 5�

)
;

Y2(�; �) =

(
25 96− 18�

96− 18� 445− 75�− 75�+ 10��

)
;

Y3(�; �) =(
20 −8 + 24�

−8 + 24� −950 + 390�+ 390�− 130��

)
;

Y4(�; �) =(
−116 −448 + 88�

−448 + 88� 380− 820�− 820�+ 520��

)
;

Y5(�; �) =(
80 384− 96�

384− 96� 600 + 600�+ 600�− 600��

)
:
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It can be veri�ed that

Y (�; �) :=
1
480

Y5(�; �)

=




1
6

4
5
− 1
5
�

4
5
− 1
5
�

5
4
+
5
4
�+

5
4
�− 5

4
��




is indeed a solution to the LPLE LR(Y (�; �)) =
Q(�)T�Q(�). The unique R-canonical solution X
to the PLE is computed from Y as described by
Eq. (5.7):

X (�) =




−1
6

−4 + �
5

7
10

23 + 13�
20


 :

7. Conclusions

The algorithm for solving the PLE presented
here works directly with the polynomial matri-
ces that constitute the PLE; no preprocessing or
transformations to canonical forms are required.
The amount of bookkeeping necessary to perform
the computations is minimal and the procedure is
straightforward to implement. Moreover, the meth-
ods employed make the algorithm especially suit-
able for exact and symbolic computation purposes.
Indeed, (5.4)–(5.7) can be applied also when the
entries of R or Q depend on unspeci�ed (symbolic)
parameters.
The application of the two-variable polynomial

framework proposed in this paper to the solution
of other polynomial equations relevant for sys-
tems and control applications (most urgently the
polynomial Sylvester equation) is currently being
studied.

Appendix

Proof of Proposition 2.2. According to [7, Section
6:3] there exists a unimodular matrix U and a column
reduced matrix R′ such that R′=RU . For i=1; 2; : : : ; q
let the degree of the ith column of R′ be denoted by
ki. Then

∑q
i=1 ki = deg(det(R

′)) = deg(det(R)) = n.
Observe that D′ ∈ C

1×q
R [�] if and only if D′R−1 =

D′U (R′)−1 is strictly proper. According to [7, Lemma
6:3–11] this is the case if and only if each of the de-

grees of the entries of the 1× q polynomial row vec-
tor D′U is strictly less than the degrees of the cor-
responding columns of R′, i.e., if and only if for all
i=1; 2; : : : ; q the ith entry of D′U is an element of the
ki-dimensional space of polynomials in � of degree
strictly less than ki. Thus, D′U must be an element of
an n-dimensional space of 1× q matrix polynomials;
this space is in fact seen to be identical to C

1×q
R′ [�].

Since U is �xed and invertible with a polynomial in-
verse, the spaces C1×qR′ [�] and C

1×q
R [�]=C

1×q
R′ [�]U

−1

have the same dimension n.

Proof of Proposition 2.4. First, we assume that
det(R) has n distinct real zeros. This is the case
treated in the literature, see [2, Theorem 4-6]. Sup-
pose � is a zero of det(R) so that R(�) is singular.
Then there exists a nonzero vector v∞ in the left
kernel of R(�) for which v∞R(�) = 0. Consequently,
v∞R(�) = v∞(R(�) − R(�)). Obviously all entries
of R(�) − R(�) contain the polynomial factor � − �,
whence v(�):=v∞R(�)=(�− �) de�nes a 1× q matrix
polynomial. Since v(�)R(�)−1=v∞=(�−�) is nonzero
and strictly proper we have that v is a nonzero element
of C1×qR [�]. Moreover, we have that (� − �)v(�) =
v∞R(�) and therefore �v(�)mod R(�) = �v(�). This
shows that � is an eigenvalue of the shift operator S.
Since deg(det(R)) = n and dimC

1×q
R [�] = n we have

in this case that �S(�) = det(R)=r0.
In the case where det(R) has n distinct zeros

that possibly are complex, a completely analogous
argument can be used if one considers all polyno-
mials involved to be polynomials over C rather than
over R.
Finally, in the general case where det(R) may have

zeros with multiplicity larger than one, a continuity
argument can be used to complete the proof. For full
details, see [10].

Proof of Proposition 3.2. Let L be the highest power
of � or � in any entry of � ∈ C

q×q
R;sym[�; �]; then � can

be written in a unique way as

�(�; �) =
L∑
i=0

L∑
j=0

�̃ij�i�j

= (Iq; �Iq; : : : ; �LIq)�̃(Iq; �Iq; : : : ; �LIq)T;

where �̃ = (�̃ij) is an (L + 1)q × (L + 1)q
block-partitioned symmetric matrix, called the coe�-
cient matrix of �.
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Let {b1; : : : ; bn} be a basis for the n-dimensional
vector space C1×qR [�], and de�ne

B:=



b1
...
bn


 :

Then the matrix (Iq; �Iq; : : : ; �LIq)T mod R∈C
1×q
R [�]

can be written as a product KB for some uniquely
determined matrix K ∈ R(L+1)q×n. Moreover, there
exists P ∈R(L+1)q×q[�] such that (Iq; �Iq; : : : ; �LIq)T =
KB(�) + P(�)R(�).
Consequently, we can write �(�; �) = (KB(�) +

P(�)R(�))T�̃(KB(�) + P(�)R(�)) = B(�)TWB(�) +
R(�)TG(�; �) + G(�; �)TR(�), where W :=KT�̃K ∈
Rn×n and G(�; �):=P(�)T�̃(KB(�) + 1

2P(�)R(�)).
This shows that �(�; �)mod R = B(�)TWB(�), be-
cause the latter expression is obviously R-canonical
and R-equivalent to �(�; �). Conversely, every poly-
nomial matrix of the form B(�)TWB(�) with W an
n× n symmetric matrix, is an element of Cq×qR;sym[�; �].
DenotingW=(wij) withwij=wji for i; j=1; 2; : : : ; n,

we have that B(�)TWB(�) =
∑n

i=1 wiibi(�)
Tbi(�) +∑

16i¡j6n wij[bi(�)
Tbj(�) + bj(�)Tbi(�)], which

expresses B(�)TWB(�) as a linear combination of
n(n + 1)=2 symmetric two-variable polynomial ma-
trices. To prove that such matrices are linearly in-
dependent, consider the expression B(�)TWB(�) =∑n

i=1

∑n
j=1 wijbi(�)

Tbj(�) =
∑n

j=1

(∑n
i=1 wijbi(�)

T
)

bj(�). Observe that B(�)TWB(�) = 0 if and only if∑n
i=1 wijbi(�)

T = 0 for j = 1; 2; : : : ; n. But this is the
case if and only if wij = 0 for i; j= 1; 2; : : : ; n. Conse-
quently, we have established a basis for Cq×qR;sym[�; �]
consisting of n(n + 1)=2 symmetric two-variable
polynomial matrices.

Proof of Proposition 3.4. As in the proof of Propo-
sition 2.4 we �rst assume that det(R) has n real dis-
tinct zeros, denoted by �1; : : : ; �n. To each zero �i of
det(R) there corresponds an eigenvector vi(�) of the
one-variable shift map S on C1×qR [�]. Eigenvectors as-
sociated with distinct eigenvalues are linearly indepen-
dent, which provides us with a basis {v1; : : : ; vn} for
C
1×q
R [�] consisting of eigenvectors of S. According to
the proof of Proposition 3.2 a basis for Cq×qR;sym[�; �] is
given by the n(n+1)=2 symmetric two-variable poly-
nomial matrices of the form vi(�)Tvj(�)+ vj(�)Tvi(�),
with 16i6j6n. These matrices are also eigenvec-
tors of the operator LR. Indeed, it is easily seen
that (�+ �)(vi(�)Tvj(�) + vj(�)Tvi(�))mod R= (�i +

�j)(vi(�)Tvj(�) + vj(�)Tvi(�)). This fact implies that
the eigenvalues ofLR are �i+�j, i6j, and this proves
the claim on the characteristic polynomial of LR.
In the case where det(R) has n distinct zeros that

possibly are complex, a completely analogous argu-
ment can be used if one considers all polynomials in-
volved to be polynomials over C rather than over R.
In the general case where det(R) may have zeros with
multiplicity larger than one, a continuity argument can
again be used to complete the proof. The details of
this can be found in [10].

Proof of Proposition 4.1. Let X ∈ Rq×q[�] be a so-
lution to the PLE. De�ne �(�; �):=Q(�)T�Q(�) −
R(�)TX (�) − X (�)TR(�). Then obviously �(�; �) is
symmetric and �(−�; �) = 0. According to [14, The-
orem 3.1] this implies the existence of a symmetric
matrix polynomial Y ∈ Rq×qsym [�; �] such that �(�; �)=
(� + �)Y (�; �). Observe that (� + �)Y (�; �)mod R =
Q(�)T�Q(�). Observe also that in general Y does not
solve the LPLE, since it need not be R-canonical. We
now show that the R-canonical representative Y ′ of
Y does solve the LPLE. By de�nition of R-canonicity
there exists a matrix P ∈ Rq×q[�; �] such that
Y (�; �) = Y ′(�; �) + R(�)TP(�; �) + P(�; �)TR(�):

It is then easy to verify, by mere substitution, that (�+
�)Y ′(�; �)mod R = Q(�)T�Q(�). Hence Y ′ is indeed
an R-canonical solution to the LPLE.
Conversely, let Y be a solution to the LPLE. Then

by de�nition of R-canonicity there exists a matrix P ∈
Rq×q[�; �] satisfying
(�+ �)Y (�; �) + R(�)TP(�; �) + P(�; �)TR(�)

=Q(�)T�Q(�):

By substituting −� for � and � for �, it follows that
X (�):=P(−�; �) yields a solution to the PLE.

Proof of Proposition 4.2. If X is a solution to the
PLE and S is skew-para-Hermitian, then it is easy
to verify that X + SR is also a solution to the PLE,
because the PLE is linear and R(−�)TS(�)R(�) +
R(−�)TS(−�)TR(�)= 0. Therefore, the set XR⊕SR
consists entirely of solutions to the PLE.
To see that it contains all solutions, let X be a so-

lution to the PLE and let X ′ be its R-canonical repre-
sentative. Then there exists a polynomial matrix S ∈
Rq×q[�] such that X = X ′ + SR. Since X solves the
PLE it holds that

Q(−�)T�Q(�)
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=R(−�)TX (�) + X (−�)TR(�)
=R(−�)TX ′(�) + X ′(−�)TR(�)
+R(−�)T[S(�) + S(−�)T]R(�):

Upon premultiplication by R(−�)−T and postmultipli-
cation by R(�)−1 it follows that

R(−�)−TQ(−�)T�Q(�)R(�)−1
=X ′(�)R(�)−1 + R(−�)−TX ′(−�)T
+S(�) + S(−�)T:

Note that the expression on the left-hand side
is a strictly proper rational matrix in �, since Q
is R-canonical. Also, the �rst two terms on the
right-hand side are strictly proper in �, since X ′ is
R-canonical. Hence, S(�) + S(−�)T is strictly proper
too. Since it is a polynomial matrix, it follows that
S(�) + S(−�)T = 0, so S is skew-para-Hermitian.
Hence Q(−�)T�Q(�)=R(−�)TX ′(�)+X ′(−�)TR(�)
and X ′ solves the PLE. Consequently X is indeed
contained in XR ⊕SR, as was to be proved.

Proof of Proposition 4.3. Let Y be a solution to the
LPLE. Proceeding as in the proof of Proposition 3.2,
Y can be factored as Y (�; �) = B(�)TWB(�) for some
R-canonical one-variable polynomial n × q matrix B
representing a basis for C1×qR [�] and some n× n con-
stant symmetric matrix W . Observe that since B is
R-canonical, �B(�)R(�)−1 is proper. Consequently,
B∞:=lim|�|→∞ �B(�)R(�)−1 is a well-de�ned con-
stant matrix. It holds that �B(�)mod R(�) = �B(�)−
B∞R(�). Consequently,

(�+ �)Y (�; �)

=[(�B(�)mod R(�)) + B∞R(�)]TWB(�)

+B(�)TW [(�B(�)mod R(�)) + B∞R(�)]

=S(B(�))TWB(�) + B(�)TWS(B(�))

+R(�)T(B∞)TWB(�)

+B(�)TWB∞R(�);

where S denotes the one-variable polynomial
shift operator associated with R. Note that the
�rst two terms of the last expression are both
R-canonical. Consequently, (� + �)Y (�; �)mod R =
S(B(�)T)WB(�) + B(�)TWS(B(�)) = Q(�)T�Q(�).
Now observe that the limit de�ning X in (4.2) ex-
ists, since X (�):= − lim|�|→∞ �R(�)−TY (�; �) =
−lim|�|→∞ �R(�)−TB(�)T	B(�) = −(B∞)T	B(�),
which is R-canonical. Consequently (�+ �)Y (�; �) +

R(�)TX (�) + X (�)TR(�) = Q(�)T�Q(�) and X is an
R-canonical solution to the PLE.

Proof of Proposition 4.4. Equivalence of (1) and (2)
follows from the observation that the LPLE has a
unique R-canonical solution for every possible choice
of the right-hand-side matrix if and only if the op-
erator LR is invertible. From Proposition 3.4, it fol-
lows that this is the case if and only if condition
(4.3) holds.
In order to show the contrapositive of implication

(3) ⇒ (1), we assume that the invertibility condi-
tion is not satis�ed and henceforth LR is singular.
Consequently there exists a nonzero solution Y ∈
Rq×qsym [�; �] to the homogeneous LPLELR(Y )=0. Ap-
plying Proposition 4.3, we conclude that there exists
an R-canonical solution X to the homogeneous PLE
for which (�+�)Y (�; �)+R(�)TX (�)+X (�)TR(�)=0.
This solution X is nonzero, because (�+�)Y (�; �) ob-
viously is nonzero for nonzero Y . It follows that the
homogeneous PLE admits nonzero R-canonical solu-
tions and so statement (3) does not hold.
Finally, in order to prove implication (2) ⇒ (3),

we assume that (3) does not hold. If the PLE does
not have an R-canonical solution, then according to
Propositions 4.2 and 4.3 the LPLE also does not have
a solution and therefore (2) does not hold. Otherwise,
the PLE admits at least two di�erent R-canonical so-
lutions, say X1 and X2. Then X :=X1−X2 is a nonzero
R-canonical solution to the homogeneous PLE. De-
�ne �(�; �):=R(�)TX (�)+X (�)TR(�). Note that � is
nonzero, since R(�)−T�(�; �)R(�)−1 =X (�)R(�)−1 +
R(�)−TX (�)T is zero if and only if the one-variable
strictly proper rational matrix XR−1 is zero, which
holds if and only if X is zero. The polynomial matrix
�(�; �) is symmetric and �(−�; �)=0. Hence, by [14,
Theorem 3.1] there exists a nonzero symmetric matrix
polynomial Y ∈ Rq×qsym [�; �] such that �(�; �) = (� +
�)Y (�; �). We conclude that (�+�)Y (�; �)mod R=0,
directly from the de�nition of�. Hence, the Lyapunov
operator admits a nontrivial kernel and (2) does not
hold, a contradiction.

Proof of Proposition 5.1. Observe that since LR

maps the �nite-dimensional space Cq×qR;sym[�; �] onto
itself and since the invertibility condition holds,
LR is bijective. From Proposition 4.1, it follows
that solving the PLE is equivalent to �nding Y (�; �)
such thatLR(Y (�; �)) =Q(�)T�Q(�). Consequently,
Y (�; �)=L−1

R (Q(�)
T�Q(�)). Recursions (5.4)–(5.6)

are the counterpart of the Faddeev sequence-based
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recursion (5.1)–(5.3). The validity of Eq. (5.7) fol-
lows immediately from Proposition 4.3.

Proof of Proposition 5.2. For k = 0; 1; 2; : : : ; de�ne
the quantities tk by tk=

∑n
i=1 �

k
i , (k=0; 1; 2; : : :). Obvi-

ously t0=n. A relationship between the coe�cients �k
de�ned in the proposition and the elementary symmet-
ric functions tk is established by theNewton identities,
see [4]: −k�k = tk +

∑k−1
‘=1 t‘�k−‘, (k = 1; 2; : : : ; d);

these are equivalent to recursion (5.8).
Next, consider the polynomial �LR(�) = �d +

�1�d−1+ · · ·+�d−1�+�d=
∏
16i6j6n(�−(�i+�j)).

Let the quantities uk be de�ned as the following
symmetric functions of the d zeros �i + �j of �LR :
uk =

∑
16i6j6n(�i + �j)

k , (k = 0; 1; 2; : : :). The cor-
responding Newton identities in this case take the
form −k�k = uk +

∑k−1
‘=1 u‘�k−‘, (k = 1; 2; : : : ; d).

These identities are equivalent to recursion (5.10).
Therefore, it only remains to prove that the symmet-
ric functions tk are related to the symmetric functions
uk by means of recursion (5.9). This is achieved by
considering properties of the Faddeev algorithm of
[6, Section 5] for the symmetric matrix Lyapunov
equation.
Let the n × n polynomial matrix R′ be de�ned by

R′(�):=�In − C, where C is some matrix of which
the characteristic polynomial is equal to �. Then the
operator LR′ also has the characteristic polynomial
�LR . The operatorLR′ acts on the �nite-dimensional
space Cn×nR′ ;sym[�; �], which coincides with the space of
all n× n symmetric constant matrices since R′ is col-
umn reduced with all column degrees equal to 1. It is
not di�cult to establish that LR′ acts on symmetric
n× n constant matrices as
LR′ : Y 7→ CTY + YC:

Note that for each k=0; 1; : : : ; d, the symmetric func-
tion uk can be obtained as the trace of the operator
Lk
R′ , given by

Lk
R′ : Y 7→

k∑
‘=0

(
k
‘

)
(CT)‘YCk−‘

=
1
2

k∑
‘=0

(
k
‘

)
[(CT)‘YCk−‘ + (CT)k−‘YC‘]:

It follows by the same arguments as used in the proof
of [6, Lemma 5:1], that the trace of an operator M
of the form M : Y 7→ PYQT + QYPT, acting on

n× n constant symmetric matrices, and with P and Q
real matrices of size n × n, is given by trace(M) =
trace(P)trace(Q) + trace(PQ). Hence, the trace uk of
Lk
R′ is given by

uk =
1
2

k∑
‘=0

(
k
‘

)
[trace(C‘)trace(Ck−‘) + trace(Ck)]

= 2k−1tk +
1
2

k∑
‘=0

(
k
‘

)
t‘tk−‘;

for k = 0; 1; : : : ; d. Note that trace(Ck) = tk . Finally,
recursion (5.9) follows as t0 = n.
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