
 659

A TCP/IP Network Emulator

K. W. Lien, J. S. Reeve
Communications Research Group, School of Electronics and Computer Science

University of Southampton SO17 1BJ, United Kingdom
Emails: kwl02r@ecs.soton.ac.uk, jsr@ecs.soton.ac.uk

Abstract
In this paper, a Linux based framework of TCP/IP
network emulator is introduced. Several
advantages can be noted. Firstly, the maintenance
of large numbers of processors is unnecessary.
Secondly, compared with simulators constructed
with conceptual codes, our emulator framework
makes it easier to test the interaction and
behaviour of TCP/IP in real Linux network
environments. Thirdly, the wired network
topology is fully controlled by a single processor,
enabling us to separate TCP/IP behaviour over the
wireless network, which helps distinguish
performance functions that occur due to noisy
wireless links. The framework was tested on two
Linux processors over an IEEE 802.11b wireless
network. The simulated outputs showed that the
complex topology of the heterogeneous network
was “realistically” constructed. Hence, the
emulator could help TCP research in the future.

Keywords: TCP, Network Emulator, Simulation

1. Introduction

Current wireless networks usually incorporate wired
backbone networks, and applications use the client
server model, in which the server (file storage) is
located in the wired network (fixed host) and the
service file is requested from the mobile host. The
role of TCP under the application layer is to provide
stable and correct end-to-end data transmission, so
that TCP interaction with other wireless protocols has
been the subject of widespread study to enhance data
access speed in wireless communication. Performance
evaluation of TCP is usually a challenging task in
heterogeneous environments, so network simulation
tools are widely used for this purpose.

Our emulator separates the simulated topology into
two parts: wired network simulation and wireless

network emulation1. In the wired network simulation,
the complex topology of wired network is simulated
in a Linux processor (simulated host) by reusing the
real Linux TCP/IP stacks multiple times. Hence, an
almost “realistic” environment of wired networks is
created. The network traffic is then redirected from
the simulated host and connected with the real
wireless network. Due to the high variation in
wireless networks, a real wireless network is chosen
to form a wireless network topology. We claim that
these two parts assemble into an almost “realistic”
simulated environment. It is especially useful for the
end-to-end performance estimation of wireless
applications or TCP/IP at which data transmission
from the fixed host crosses the complex network
cloud and ends at the mobile host. The emulator is
easily constructed and a fully open source under the
GNU General Public Licence (GPL) 2 . It can
contribute the future TCP simulations over the
wireless network.

This paper is organized as follows. In section 2, we
first investigate features of numbers of simulators in
detail. In section 3, we introduce the main features of
our emulator and in section 4 we describe the
architecture of the emulator. In section 5, we
introduce the main concepts of our implementation
and execution results. In section 6, we conclude our
work.

2. Background Work

Network simulation tools can be classified into two
types: the network simulator and the network
emulator. Generally, a simulator is constructed in a
single processor. High flexibility and easy extension
are two main features of the simulator. It is usually
used for the testing of new network protocols. In
contrast with the simulator, the emulator can be

1 The “emulation” is described as the network simulation over the real

network environment.
2 The emulator source code is currently available by email request.

 660

constructed in a processor or multi-processors. It uses
for the research what is considered realistic output.

Two technologies are mainly used to construct the
simulator or the emulator: using the “conceptual
network protocol” [1], [2] and reusing “the real
network kernel” of the operating system (OS) [3]-[7].
Simulators designed with conceptual protocol are
usually implemented as an individual program, just
like a network application. It is easily set up and
integrated. The main drawback of this kind of
simulator is that the investigation of the interaction
and the behaviour of the protocols over the real
network are highly restricted. Compared with the
simulator constructed with the conceptual protocol, it
is easier to observe the protocol behaviour of the real
network in the simulator designed with the “real
network kernel”. However, this kind of simulator is
OS or OS kernel version specific. Mahrenholz [8] has
designed a new type of emulator combining the ns-2
simulator [1] with the real network for wireless
emulation. The restriction of this emulator is that the
conceptual wireless modules are implemented for the
wireless simulation, so the interaction of TCP/IP with
the real wireless environment might not be truthfully
demonstrated.

3. Emulator Features

Our simulation environment is separated into two
parts: a simulated wired network and a real wireless
network as shown in Fig. 1. A simulated wired
network is fully constructed on a Linux processor
(simulated host), this host acts as a “wired network
box” in which wired network topologies are simulated
by reusing the real Linux TCP/IP stack of the
simulated host multiple times. In this way, the fixed
host (FH), routers and links are simulated inside this
“network box”. There are two main advantages.
Firstly, wired network parameters, such as link
features, queuing disciplines and TCP settings are
controlled through the simulated host. Secondly, the
complex topology of wired networks is simulated at
one processor; hence, the maintenance of large
processor arrays is unnecessary.

The simulated host then connects with the real
wireless network, instead of the simulated wireless
network because of the emulator is designed to
realistically construct a heterogeneous environment
for the TCP/IP performance evaluation and behaviour
observation. Therefore, through the connection of real
wireless network, wireless features, such as quick
handover and radio jamming are naturally included.
Hence, the emulator could closely imitate the real
network environment. Moreover, through the
connection with different types of wireless network,
the emulator can be used for different TCP
performance estimates over different wireless
protocols.

R1
R3

R2
R4

RnFH

Wired Network

Access Point
MH

Wireless Network

Estimate of Protocol Behaviour/Performance

MH
FH

Linux Processor (Simulated Host)

Wired Network Simulation

FH: Fixed Host MH:Mobile Host Rx: Router

Wireless Network Emulation

Fig. 1 The generality view of how an emulator forms a

heterogeneous network environment.

The emulator is Linux module containable. Even
though a “virtual wired network” is constructed inside
the simulated host, the Linux kernel of TCP/IP
architecture is fully maintained. This means that the
Linux network modules are containable with our
emulator framework. For instance, different fair
queuing disciplines could be selected for specific link
simulations. Most of them have been implemented as
Linux modules. Hence, our emulator is flexible for
different simulated topologies by only loading the
selective modules and without compiling the new
kernel.

Numbers of simulated network parameters are
integrated through the standard Linux network
interface. For instance, optional TCP mechanisms,
such as selective acknowledgement (SACK), TCP
timestamps and the window size, are adjustable
through the system call interfaces under the directory
“/proc/sys/net/”. Two main advantages are displayed:
firstly, users learn effortlessly to set the parameters
for the emulator; secondly, existing Linux
“ManPages” are naturally included as documentations
of the emulator. Hence, both user learning time and
emulator development time are reduced.

Linux network applications and utilities are
implemented for simulation and analyzing tools. For
instance, “ftp” is used to generate a simulated traffic
flow and “ping” is used for round-trip time (RTT)
measurements. The advantage of this feature is that
the tools used are precisely those used in monitoring
real networks.

4. Emulator Architecture

The emulator consists of five main parts: 1. packet re-
routing, 2. packet arrival, 3. packet departure, 4. link
simulation and 5. packet drop generation. Fig. 2
shows the simple relationship among these five parts,
which are described in detail below.

 661

 TCP/IP Stack

TUN

pkt_arv()

pkt_leav()

 Upper layer

 Link_sim()
��������������������

� ����	�
 �� ����	�
 �� ����	�
 �� ����	�
 �
 � � � ��
 �
 � � � ��
 �
 � � � ��
 �
 � � � ��
 �

�� ��

�� ��
�� ��

�� ��

�� ��

�� ��

�� ��

Fig. 2 The five main parts of the emulator.

4.1. Packets Route In-Out the TCP Stack

The emulator forms a virtual wired network by re-
routing packets in and out of the TCP/IP stacks of the
Linux simulated host multiple times. The framework
presented in the Harvard network simulator [3] is re-
designed here. Based on this framework, the “Private
virtual IP address" mechanism is implemented to
construct the virtual nodes. The “As-seen-by-node(i)”
algorithm is used to form multiple routing paths
between virtual nodes and TUN virtual devices. Each
TUN device acts as an individual physical network
device. Through the above mentioned mechanisms, a
network topology is built up and network traffic is re-
routed between the TCP/IP stacks and TUN devices,
as displayed in Fig. 2 (label 1). Therefore, a complex
wired network is constructed in one Linux processor.

Even though the concept of using virtual nodes and
virtual devices inside the kernel for network
simulation is not novel and has been implemented in
[3]-[7], our framework differs from other projects in
the following points: firstly, the mechanisms
presented in [3] were implemented in our research
from the FreeBSD to the Linux operating system;
secondly, we further enhance the mechanisms
connecting with the real wireless network through two
additional functions described in section 4.2 and
section 4.3; thirdly, the architecture of the Linux
TCP/IP stacks is fully maintained so that the emulator
can incorporate with Linux network modules for
function extensions.

4.2. Packet Arrives at the Simulated Host

The pkt_arv() function deals with the emulated traffic
incoming from the real network. It starts when the
packet is received by the Linux Network Address
Translation (NAT) module and ends when the packet
is received by the application. The flowchart
summarizing the algorithm for packet arrival in Fig. 3
is described below.

1. Simulation of non-executing state: If the emulator
is not executed on the simulated host, the packet
is processed as normal processes under the Linux
processor.

Simulation
Start? Normal Case

Trigger NAT

Is next node the
host node?

Packet sends to the
next layer

1. Update IP
 address
2. Simulate link
 delay

Yes

Packet arrives

No

Yes

No

routing and link simulation

1

2

3

4

Fig. 3 The flow chart for a packet arriving at the simulated host.

2. Simulation of executing state: If the simulation is
executed, nat_trig() function is called to invoke
the Linux NAT module and delivers the “Private
virtual IP address” information into the NAT
module. Then, the function of the NAT
prerouting chain is triggered to rewrite the
packet's IP address as a specific “virtual address”.
In this way, incoming packets from a real
network can be connected with the “As-seen-by-
node(i)” routing mechanism and go to the “route
state” as described below. It is important to note
here that the emulator reuses any of the existing
Linux functions instead of rewriting them, so that
the development time is reduced and additional
Linux functionalities can be used.

3. Route state: When the packet goes into the route
state, the packet starts to re-route between
TCP/IP stacks and TUN devices as mentioned in
section 4.1. Each time the packet arrives at the
TCP/IP stacks, the packet's next routing path is
referenced from the “As-seen-by-node(i)”
mechanism setting in the kernel routing table. If
the next node is the virtual host, the pkt_arv()
function leaves the route state directly and goes
into the host state. If the next node is a virtual
router, the packet re-routes again. Hence, if 10
virtual routers are set in the network topology,
route state will be executed 10 times. Each time
the packet arrives at the TUN device, the
link_sim() function is invoked to deal with the
link relative simulation. A detailed description of
the link_sim() function is given in section 4.4.

4. Host state: The packet is prepared to pass up to
the upper layer (i.e. TCP, UDP or ICMP).

 662

4.3. Packet Leaves the Simulated Host

The pkt_leav() function deals with the emulated
traffic outgoing from the application layer. It starts
when the packet is received by the Linux TCP/IP
stacks and finishes when the packet is received by the
Linux NAT module. The flowchart summarising the
algorithms for pkt_leav() in Fig. 4 is described below.

1. Route state: It deals with the same tasks of route
state as described in the pkt_arv() function.

Is next node
remote PC?

1. Update IP
 address
2. Simulate link
 delay

1.Re-calculate IP
 and TCP checksum
2.Trigger NAT

Yes

Packet from the
application or utility

No

Yes

TCP services?

1.Update IP
 address
2.Re-calculate IP
 checksum

No

Packet leaves

Packet leaves

1

routing and link simulation

2

4

3

1

Fig. 4 The flow chart for a packet leaving the simulated host.

2. Judge state: When the packet leaves the route
state, it means that the next node is the remote
PC. Hence, additional tasks must be done before
the packet is injected into the real network. A
main task here is to differentiate varieties of
service types. For instance, if the network service
type belongs to TCP, the packet is delivered to
the TCP state for additional processes. If the
service type belongs to other protocols, the
packet is delivered to the relative state for
additional processes. Here, the Internet Control
Message Protocol (ICMP) service is used as an
example.

3. TCP state: When the packet goes into the TCP
state, the IP and TCP checksum of the packet is
first re-calculated. Otherwise, the packet will be
dropped by the router or remote PC due to the
checksum error. Then, the nat_trig() function is
implemented again to invoke the Linux NAT
module and asks for the IP address redirection.
nat_trig() delivers the remote IP information into
the NAT module, in which the function of NAT
postrouting chain is triggered to change the
packet's IP address from the “Private virtual IP
address” to the remote PC's address. After
leaving the NAT module, the packet is injected
into the real network.

4. ICMP state: In this state, the packet's IP address
is first updated from the “Private virtual IP
address” to the remote PC's address. Then, the
packet’s IP checksum is re-calculated and
injected into the real network. Two points are
worth discussing here: firstly, the Linux NAT
module is not implemented here because the
function of NAT postrouting chain is not allowed
to serve addresses update of ICMP packets;
secondly, since the packet belonging to the
different protocols is separated, it is unnecessary
to re-calculate the TCP checksum here. Hence,
the emulator overload is reduced, especially when
long term simulation is demonstrated.

4.4. Link Simulation

The link parameters, of which there are many types,
such as link delay and link bandwidth, are simulated
in the link_sim() function, which is triggered when
packets arrive at the TUN device. After packets arrive
at each TUN device, the user space program invokes
the read() system call to gather packets from the TUN
device and then store packets into user space buffers.
The simulations of link bandwidth and link delay are
executed at this moment. When the link simulation is
done, the write()system call is implemented to pick up
packets from buffers and restored packets to the TUN
device. The link simulation is accomplished between
each read() and write() event as shown in Fig. 5.

read()
Virtual Link

write() read()
Virtual Link

write()

Network Utility

BSD Socket

TCP Layer

IP Layer

TUN Interface

IP Layer

TUN Interface

: Traffic flow

User Space
Kernel Space

1. read() packets from TUN
2. store packets into user space buffers
3. simulation of link bandwidth and delay
4. write() packets from user space buffers into TUN

{
Tasks on User Program

Fig. 5 A packet stored time between the read() and write() system

call is used to do the link simulation.

4.5. Packet Drop Generator

The Packet Drop Generator (PDG) simulates packet
loss by dropping packets on the link. When the packet
is received by the virtual link, the link PDG is
triggered to decide whether this packet is passed to
the next node or is dropped. In the emulator, each link
can be defined by the different PDG to simulate the
specific simulated topology. A uniform distribution
variable is used to determine the dropped packet, in
which all packets have equal lost probability to

 663

simulate the topology whereby drop occurs randomly
due to the environment. Usually in TCP simulations,
packet loss during the TCP three-way handshaking
step is avoided. Our PDG model uses a flag (S_flag),
which needs to be set if SYN packets are not to be
dropped. The following pseudo-code is implemented
at virtual links to simulate the packet drop situation.

Fig. 6 shows the PDG demonstration on two SACK
TCP hosts over 30 seconds in which different packet
drop rates are set at the specific link, and “ftp”
application is used to generate the traffic. The high
packet drop rate could cause packet retransmission;
hence, the lower sequence number is presented.

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21 26
Time (s)

S
eq

ue
nc

e
N

um
be

r
(K

B
) 0

0.002
0.004
0.006
0.008
0.01

Fig. 6 PDG implementation - The observation of sequence number

based on SACK TCP at different packet drop rates.

5. Emulator Execution Results

The emulator has been tested on two Redhat Linux
processors with kernel version 2.4.20. One Linux
processors is constructed as a simulated host and the
other acts as a mobile host. Three virtual nodes (one
host, two routers) are implemented inside the
simulated host as wired networks. The bandwidth and
delay of each virtual link are set at 10Mbps and 7
milliseconds (ms). The wireless network is
implemented over the IEEE 802.11b. The
implemented network topology is shown in Fig. 7.

FH router router
10M 10M

7ms 7ms

Mobile
Host

Simulated Host

IEEE802.11b

Linux Processor Linux Processor

Emulator Trigger

Emulator Non-Trigger

ftp
server

ftp
clientrouter router

IEEE802.11b
Fig. 7 Network topology for experiences.

5.1. Detection of Round-Trip Times

“ping” utility is the most popular way to test the
round-trip time (RTT) between two hosts. It is also
used to test whether the wired networks setting of the
simulated host is correct or not. The first “ping”
example below demonstrates the estimates of RTT
between MH and the simulated host without
executing the emulator. Hence, the reported outputs
are the RTT through the real wireless network
between the simulated host and MH.

The second “ping” example below demonstrates the
estimates of RTT between MH and the simulated host
when the emulator is triggered.

Since the propagation delay is set as 7ms for each
virtual link, total RTT between FH and MH should be
around 29ms (7*4+0.78). However, the reported RTT
is larger than this value as shown in the second “ping”
example. There are two reasons. Firstly, the extra
transmission and processing delay inside the Linux
kernel is necessary. Secondly, extra time overload is
taken to re-calculate the IP checksum before packets
are injected into the real network.

���������	
��
�
������
�������� �

�����������	����������������������

����������	��� ���

� � �
������	���� � !����������	
����! �

� � � � � �
�����"# �
����������������������������

� � � � � � � � � �������������	
�$	
����������������

� � � � � � � � � � � ���������������������%�������

� � � � � � �	���

� � � � � � � � � � � ����������������

�	���

� � � � � �
������������	
�&	
���������������

� � � � � � � � ����������������

�	��� �
��������������
���
�

�
������������	
�&	
���������������

� � � � � ����������������

ping 152.78.X.X -w 100
�'# (��)*+,-+.+.���)*+,-+.+.�/�)0�������������

01��������������)*+,-+.+./
������2�����	�0*��
����+0)����

01��������������)*+,-+.+./
������2�����	�0*��
����+-*����

01��������������)*+,-+.+./
������2�*���	�0*��
����+,,����

3 3 �

444��)*+,-+.+.��
�������
��
���444�
������������������
����5�����������������
���5��6 �	����

��
��4��
���
� ��� ��%����+07 �+,- �+8*����

ping 152.78.X.X -w 100
�'# (��)*+,-+.+.���)*+,-+.+.�/�)0�������������

01��������������)*+,-+.+./
������2�����	�0*��
���7*����

01��������������)*+,-+.+./
������2�����	�0*��
���77����

01��������������)*+,-+.+./
������2�*���	�0*��
���7)����

3 3 �

444��)*+,-+.+.��
�������
��
���444�
������������������
����5�����������������
���5��6 �	����

��
��4��
���
� ��� ��%���7�+) 77 7)+)����

 664

5.2. ftp Application for Traffic Generation

The emulator simply implements “ftp” to generate the
traffic flow. The example below shows that a
successful ftp connection has been created between
the server (FH) and the client (MH). The “get”
command is used to request the file “testfile.ps” from
the server. In this way, the traffic transmission is
generated easily on the emulated network. The
“Passive FTP” is implemented here instead of “Active
FTP” to solve port mismatch problems due to the fact
that ftp server of the emulator is behind the Linux
NAT module.

5.3. Monitoring Network Status

“tcpdump” utility is used to monitor packet
transmission on a link. The example below shows that
the packets are monitoring on a MH eth0 device. The
traffic flow is generated by “ftp” connection, as
described in section 5.2. Through outputs from
“tcpdump”, TCP parameters, such as the packet
sequence number, the TCP window size, the packet
drop situation and packet size, are clearly observable
and gathered for statistics. This is useful for
performance evaluation and behaviour observation of
TCP over heterogeneous networks. “tcpdump” is not
only used for traffic monitoring on an eth0 device. We
further implement “tcpdump” to monitor traffic flow
at each TUN device. Hence, we could advance the
study of TCP behaviours inside inner networks.

6. Conclusion

In this paper, a simple framework for a TCP/IP
emulator has been introduced, in which only two
Linux hosts are necessary to form almost “realistic”
mixed wired and wireless networks. The wired
network topology is fully constructed and controlled
from a Linux host. We further implement two
additional functions to connect the simulated host
with another Linux host located in the wireless
network. The emulator framework also incorporates

Linux module interfaces so that development costs are
reduced and additional functionalities readily
included. The simulation parameters are adjusted
through the normal Linux network interfaces. We
have incorporated a packet drop generator so that we
can simulate wireless links that have a given bit error
rate. Graphs of packet sequence number against time
show that the introduction of wireless link errors still
results in a connection with constant but reduce
bandwidth.

The emulator has been demonstrated through numbers
of popular network utilities. The results show that a
complex topology of heterogeneous network is
realistically constructed and the simulated outputs are
easier to monitor. Hence, the emulator can contribute
to future TCP/IP study over heterogeneous networks.

Acknowledgment
The authors would like to thank Dr. S. Y. Wang. who
gave us detailed descriptions of his simulator under
BSD UNIX.

References
[1] S. McCanne and S. Floyd. ns-LBNL Network

Simulator. http://www.isi.edu/nsnam/ns/.

[2] OMNet++ Object-oriented Discrete Event
Simulation System. http://www.omnetpp.org/.

[3] S. Wang and H. Kung, “A Simple Methodology
for Constructing Extensible and High-Fidelity
TCP/IP Network Simulator,” in Proc.of IEEE
INFOCOM'99, New York, USA, Mar. 1999, pp.
1134--1143.

[4] L. Rizzo, “Dummynet: A Simple Approach to the
Evaluation of Network Protocols,'' ACM
Computer Commun. Review, vol. 27, no. 1, pp.
31-41, 1997.

[5] L. Brakmo and L. Peterson, “Experiences with
Network Simulator,” in Proc. of SIGMETRICS,
Philadelphia, USA, May 1996, pp. 80--90.

[6] S. Wang et al., “The Design and Implementation
of the NCTUns 1.0 Network Simulator,''
Computer Networks, vol. 42, no. 2, pp. 175-197,
June 2003.

[7] M. Carson and D. Santay, “NIST Net: a Linux-
based Network Emulation Tool,” ACM
SIGCOMM Computer Communication Review,
vol. 33, no. 3, pp. 111-126, 2003.

[8] D. Mahrenholz and S. Ivanov, “Real-Time
Network Emulation with ns-2,” in Proc. of 8-th
IEEE International Symposium on Distributed
Simulation and Real Time Applications, Budapest
Hungary, Oct. 2004.

���������	
�	�	��

� �������������)*+,-+.+.+�

*7��9 ����	������
�+�

����
��+�

'��������
��������

����$����������
	�+���

�)*+,-+.+.+7��)��������
��+�

�)��: ���
���;'# < =" ������������������
�������

>�����
	�+��>��7�701)0�?�����+�

**0��������������	���+�

7�701)0�?���������
���+�

� ���
�������������� �
� ����
��/�	
����
�����������

� ��/7,/*,+10)�))��)*+,-+.+.+7*,,0�$�

