
High-Level Petri Nets as
Type Theories in the Join Calculus

Maria Grazia Buscemi and Vladimiro Sassone

DMI, Università di Catania, Italy
buscemi@dmi.unict.it, vs@dmi.unict.it

Abstract. We study the expressiveness of the join calculus by compa-
rison with (generalised, coloured) Petri nets and using tools from type
theory. More precisely, we consider four classes of nets of increasing ex-
pressiveness, Πi, introduce a hierarchy of type systems of decreasing
strictness, ∆i, i = 0, . . . , 3, and we prove that a join process is typeable
according to ∆i if and only if it is (strictly equivalent to) a net of class
Πi. In the details, Π0 and Π1 contain, resp., usual place/transition and
coloured Petri nets, while Π2 and Π3 propose two natural notions of
high-level net accounting for dynamic reconfiguration and process crea-
tion and called reconfigurable and dynamic Petri nets, respectively.

1 Introduction

The join calculus [5,7] is an algebra of mobile processes with asynchronous name-
passing communication that simplifies the π-calculus by enforcing the hypothesis
of unique receptors. This means that there is at most one process receiving
messages on a name, and is a distinctive feature of the join calculus that makes
it suitable for distributed implementations, as channels may be allocated at their
receptor process. The present work focuses on a version of the join calculus,
studying its expressiveness by establishing a tight link to Petri nets.

Petri nets [16,17] are a fundamental model in concurrency, representing ba-
sic distributed machines that, although rudimentary, may exhibit complex in-
teraction behaviours when processes (transitions) compete for shared resources
(tokens). Operational in nature, Petri nets have been studied extensively from
the semantic viewpoint (see [18] for some references).

The analogy between join terms and nets is relatively simple, and was first
noticed in [1] and, recently, in [14]. Names, messages, and elementary definiti-
ons of the join calculus (cf. §2) correspond respectively to places, tokens, and
transitions of Petri nets (cf. §3). The correspondence, however, runs short soon
because nets are not a value-passing formalism and can express no mobility.
Regrettably, they have a static, immutable network topology. This suggests to
look for suitable extensions of Petri nets – in particular nets with mobility – that
might be profitably applied to the study of mobile networks.

Supported by MURST project TOSCA. The authors wish to thank BRICS, Basic
Research in Computer Science and project MIMOSA, INRIA Sophia Antipolis.

F. Honsell and M. Miculan (Eds.): FOSSACS 2001, LNCS 2030, pp. 104–120, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

High-Level Petri Nets as Type Theories in the Join Calculus 105

In the present paper we consider three extensions of place/transition Petri
nets (Π0) obtained by adding one by one, in a hierarchical fashion, the features
needed to achieve the full expressiveness of join calculus. Namely, value-passing,
accounted for by (a version of) coloured nets (Π1), mobility as network recon-
figurability, achieved by introducing reconfigurable nets (Π2), and dynamically
growing, open networks, modelled by the notion of dynamic nets (Π3).

High level nets exist in several shapes and versions. The distinctive features
of the mobile nets presented here is that input places of transitions are private
and presets are immutable. A reconfigurable net can deliver tokens in different
places at each firing, according to the input it receives, while a dynamic net can
spawn a new net to life. But they cannot change the input arcs of any transitions.
As in [13], where an algebra with such properties has been considered, we believe
that this is the key to a tractable compositional semantic framework, the key to
control generality. Most noticeably, it corresponds to unique receptiveness in the
join calculus. A further naturality criteria in our view is that, as it turns out,
dynamic nets can be proved equivalent to the join calculus.

The technical bulk of this work is characterising classes of join terms corre-
sponding to the classes of the high-level nets discussed above. More precisely, our
approach consists of designing four type systems ∆i, i = 0, . . . , 3, that single out
the terms corresponding to the nets in Πi, respectively for i = 0, . . . , 3. In parti-
cular, for a fixed, semantic-preserving, well-behaved translation [[]], a join term
P is typeable in ∆i if and only if [[P]] belongs to Πi. System ∆0 is aimed at con-
straining terms to place/transition nets and, therefore, forbids dynamic process
creation and nontrivial messages, ∆1 relaxes the latter limitation, but enforces
a strict distinction between channels and values, supporting value-passing but
forbidding any mobility. Such distinction is then relaxed in ∆2. System ∆3 re-
laxes the dynamicity constraint and, therefore, turns out to be trivial, i.e., each
term is typeable in ∆3. That is, dynamic nets coincide with join terms. Finally,
we provide a system ∆4 that sums the features of all the others.

It is worth remarking that these systems are very rudimentary from the
type theoretic viewpoint: there are no complex types or rules, nor sophisticated
issues such as polymorphism [8,15] or similar. However, we believe that our
formalisation is quite interesting, suggestive, and worth pursuing, because the
nature of join-terms makes it natural to express our conditions in systems of
rules. Nevertheless, this paper remains a paper about comparing models. As a
matter of fact, relating join calculus and Petri nets may be beneficial for both.
On one of the edges of the connection, in fact, the join calculus may provide Petri
nets with a compositional framework, together with behavioural semantics such
as testing [10] and bisimulation [3]. Also, it may suggest interesting, semantically
well-founded extensions of Petri nets, such as reconfigurable and dynamic nets
here, mobile nets in [1], and functional nets in [14]. On the other edge, it opens
the join calculus to an entire body of results on the semantics of noninterleaving
concurrency, such as those supported by monoidal categories (see, e.g., [4]).

Here we actually consider a generalisation of the join calculus in that join
patterns may not be linear, a choice that we discuss at length in §2.

106 M.G. Buscemi and V. Sassone

Related Work. Although focus and approach here differ radically from [1], our
models are clearly related to those of Asperti and Busi. While we aim at re-
presenting the join calculus precisely, the dynamic nets of [1] are more loosely
inspired by it and are more general than ours. In particular, they do not enforce
privateness of input places – that is unique receptors – as our nets do. The ana-
logy between Petri nets and join calculus has also provided the inspiration for
Odersky’s functional nets [14]. Although loc. cit. is quite different in spirit from
the present paper, the relationships between Odersky’s framework and our ideas
here are worth of further investigation. This, together with the fine comparison
with [1], we leave to a later paper.

Structure of the Paper. The paper is organised as follows. In §2 we recall the
basic definitions of the join calculus, while §3 introduces Petri nets, ∆0 and
relates typeability to PT nets. The following sections repeat the same pattern for
coloured, reconfigurable, dynamic nets and the respective type systems. Finally,
§7 introduces ∆4. Due to space limitations all proofs are omitted.

2 The Join Calculus

We shall focus on a monadic version of the join calculus [5,7], writing its ope-
rational semantics in terms of a reduction system as in [15]. For a thorough
introduction the reader is referred to the literature. Let Nm be an infinite set
of names and let x, y . . . , u, v, . . . range over Nm. Join terms, definitions, and
patters are given by the following grammar.

Terms P, Q ::= 0 | x〈y〉 | P | Q | def D in P

Definitions D, E ::= J . P | D ∧ E

Join Patterns J, K ::= x〈y〉 | J | K

Thus, a join term P is either the ‘null’ term, an emission x〈y〉 of message y
on channel x, a parallel composition of terms, or a local definition. A definition
D is a set of elementary definitions J . P matching join patterns J to terms P .

The sets of defined names dn, received names rn, and free names fn are
defined below, and then extended to sets of terms in the obvious way.

rn(x〈y〉) = {y} rn(J | K) = rn(J) ∪ rn(K)

dn(x〈y〉) = {x} dn(J | K) = dn(J) ∪ dn(K)
dn(D ∧ E) = dn(D) ∪ dn(E) dn(J . P) = dn(J)

fn(x〈y〉) = {x} ∪ {y} fn(P | Q) = fn(P) ∪ fn(Q)
fn(D ∧ E) = fn(D) ∪ fn(E) fn(J . P) = dn(J) ∪ (fn(P) r rn(J))

fn(def D in P) = (fn(P) ∪ fn(D)) r dn(D)

A renaming σ is a map from names to names that is the identity except on
a finite number of names. We indicate by dom(σ) the set of names on which σ

High-Level Petri Nets as Type Theories in the Join Calculus 107

is not the identity, and by cod(σ) its image, using function application for the
renaming of free names in terms.

Definition 1. The structural congruence ≡ is the smallest substitutive (i.e.,
closed for contexts) equivalence relation on terms that satisfies the following
rules, where θ and σ are one-to-one renamings such that dom(θ) ⊆ rn(D),
cod(θ) ∩ fn(D) = ∅ and dom(σ) ⊆ dn(D), cod(σ) ∩ fn(θD, P) = ∅.

def D in P ≡ def σθD in σP (1)
P | def D in Q ≡ def D in P | Q fn(P)∩dn(D)=∅ (2)

def D in def E in P ≡ def D ∧ E in P dn(E)∩(dn(D)∪fn(D))=∅ (3)

plus equations stating that 0 is the unit for | and that the operators | and ∧ are
associative and commutative.

Taking dom(σ) = ∅, rule (1) expresses the α-equivalence of definitions up
to a renaming of their received names, while considering dom(θ) = ∅ we obtain
α-equivalence of terms up to renaming of defined names. Rule (2) formalises
the scope extrusion of names, and rule (3) states that, under conditions that
avoid name clashes, definitions can equivalently be gathered together by the ∧
connective. Interestingly, rule (3) is problematic in the design of polymorphic
type systems for the join calculus [8,15], essentially because it may introduce
polymorphic (mutual) recursion. This, however, is not an issue in the present
setting. On the contrary, the law is instrumental in establishing our results.

The operational semantics adopted here corresponds to the original one based
on the chemical abstract machine [2]. Terms within a reduction context play the
role of ‘molecules’, definitions determine the ‘reactions’. The reduction context
determines which join pattern is matched in a definition and binds its received
names. The reduction rule replaces in the context the matched pattern by the
right-hand side of its definition.

Definition 2 (cf. [15]). The reduction −→ is the smallest substitutive relation
on ≡-classes that satisfies the following rule:

def D ∧ J . P in C[σJ] −→ def D ∧ J . P in C[σP] if dom(σ) ⊆ rn(J),

where D may be absent (if J .P is the only definition), C is a reduction context,
i.e.,

C ::= [] | def D in C | P | C,

and C[P] denotes the reduction context C with its hole filled by P .

On Linearity. Here we no longer require join patterns to be linear, i.e., we allow
names to occur several times in patterns. There are two aspects to this. The
first one consists of renouncing the linearity of defined names in join patterns. It
presents no further difficulties for implementations [11], and we see no reason not
to consider it. In terms of Petri nets it corresponds to adding multiplicities to

108 M.G. Buscemi and V. Sassone

arcs. More problematic in distributed implementations is relaxing the linearity of
received names, because this amounts to equating values on different channels.
Nevertheless we decided to adopt it, as it corresponds to a form of pattern
matching essential in coloured Petri nets. It is worth remarking that our work
is largely independent of this choice: we could as well keep linearity of received
names at the price of disallowing matching in our coloured nets, and our results
would stay, mutatis mutandis.

3 Place Transition Nets

A multiset on a set P is a function µ:P → N. We shall use µ(P) to denote the
set of finite multisets, i.e., markings, on P . The sum of µ0, µ1 ∈ µ(P) is the
multiset µ = µ0 ⊕ µ1 such that ∀p ∈ P. µ(p) = µ0(p) + µ1(p).

Petri nets consists of places, transitions, and tokens. In view of relating nets
and join terms, we identify places with names. In addition to Nm – that will
play the role of public places (free names) – we shall consider an infinite set ω
of distinguished private places (bound names). In the following, Nmω stands for
the union Nm + ω.

Definition 3 (PT Nets). A place/transition net is a tuple N = (T, ∂0, ∂1, µ0),
where T is a finite set of transitions, ∂0, ∂1:T → µ(Nmω) are the pre- and post-
set functions, and µ0 ∈ µ(Nmω) is the initial marking. We shall use Π0 to refer
to PT Petri nets.

Thus, to simplify notations, we include in every net all the names of Nmω

with the understanding that only marked places, i.e., those carrying tokens, and
places connected to some transitions are effectively to be considered in the net.
In particular, the empty net, that we denote by ∅, formally consists of all the
places in Nmω, but no tokens and no transitions. Analogously, the net consisting
of a distribution of tokens on a multiset of places µ, has all places but only µ(x)
tokens in each x ∈ Nmω. With abuse of notations, we shall use µ to denote both
the multisets and the corresponding net. Also, for µ0, µ1 ∈ µ(Nmω), tranµ0 µ1
stands for the net with a unique transition t with ∂0(t) = µ0 and ∂1(t) = µ1.

Following our intuition, isomorphisms preserve free names. This is detailed
in the definition below, where we use id for identities, + for function coproducts,
and take the liberty of identifying functions with their extensions to multisets.

Definition 4. Nets (T, ∂0, ∂1, µ0) and (T ′, ∂′
0, ∂

′
1, µ

′
0) are isomorphic if there

exist isomorphisms ft:T → T ′ and fp:ω → ω such that ∂′
i ◦ft = (idNm +fp)◦∂i,

for i = 0, 1, and (idNm + fp)(µ0) = µ′
0.

Observe that nets that only differ for the use of names in ω are isomorphic,
yielding a form of α-conversion. In the following, isomorphic nets will be regarded
as equal. In particular, as we shall see, net isomorphism corresponds to structural
congruence of join terms.

High-Level Petri Nets as Type Theories in the Join Calculus 109

Definition 5. Let N = (T, ∂0, ∂1, µ0) and N ′ = (T ′, ∂′
0, ∂

′
1, µ

′
0) be nets. Deno-

ted by ⊗, parallel composition juxtaposes nets, merging public places without
confusing the private ones. Formally,

N ⊗ N ′ = (T + T ′, ∂0 + ∂′
0, ∂1 + ∂′

1, µ0 ⊕ µ′
0), if ω(N) ∩ ω(N ′) = ∅,

where ω(N) denotes the names in ω that are used in N , i.e., that are either mar-
ked or connected to some transition. Observe that the side condition on private
names can always be achieved up to isomorphism. Clearly, ⊗ is commutative
and associative.

Denoted by νx, restriction ‘hides’ the place x ∈ Nm replacing it by a fresh name
i ∈ ω, i.e., a name not occurring in ω(N). Formally, for N = (T, ∂0, ∂1, µ0)

νxN = N [x ↔ i], i is fresh in N

where N [x ↔ i] is the net (T, ∂′
0, ∂

′
1, µ

′
0) whose µ′

0 and ∂′
j coincide respectively

with µ0 and ∂j (j = 0, 1), but for the values they yield on x and i, that are
exchanged, i.e., for δ ∈ {∂0, ∂1, µ0}, we have that δ′(k) is equal to δ(i) if k = x,
to δ(x) if k = i, and to δ(k) otherwise.

For X = {x1, . . . , xn} ⊆ Nm, we use νXN to mean νx1(· · · νxn
N). This is a

correct definition because νxνyN = νyνxN for each x, y, up to isomorphism.

The evolution of nets is described in terms of the ‘firing’ of its transitions.
As usual, the firing of t consumes and produces resources, as prescribed by the
pre- and post-set functions ∂i. In the present setting, using ⊗ and νX to form
net contexts, this can be expressed as the least substitutive relation [·〉 such that

tranµ0 µ1 ⊗ µ0 [·〉 tranµ0 µ1 ⊗ µ1.

This should be read as saying that, in any context, a marking matching the
preset of a transition can be replaced by the associated post-set.

Observe that we stop at the single transition semantics of nets, rather than
considering also the usual step semantics. We do so in order to match the stan-
dard reduction semantics of the join calculus, and it is not a hard limitation.
We could easily extend the results to the classical step semantics, provided we
equip join terms with multiple concurrent reductions.

The Type System ∆0

The purpose of ∆0 is to single out those join terms that are PT Petri nets. In
order to achieve this we need to prevent any form of name passing and mobility,
imposing a static network structure to terms. In particular, since definitions
represent transitions, it is fundamental that their right-hand sides consist of
messages only. Also, corresponding to the fact that there is only one atom (token)
of information delivered in PT nets, we enforce that only empty messages may be
exchanged. For notational convenience, we assume in the following the existence
of a distinguished name • ∈ Nm that represents the empty tuple.

110 M.G. Buscemi and V. Sassone

The types of ∆0 are � and ��, with τ ranging over them. There are three
kinds of type judgement:

` P : �� (P is ok and no def in occurs in it)
` P : � (P is ok) ` D : � (D is ok).

The typing rules are the following.

(P-Zero) (P-Mess) (P-Par)

` 0 : �� ` x〈•〉 : ��
` P : τ ` Q : τ

` P | Q : τ

(P-Def) (P-Sub)

` D : � ` P : �
` def D in P : �

` P : ��
` P : �

(D-Pat) (D-And)

` P : ��
` J . P : �

rn(J)={•}
` D : � ` E : �

` D ∧ E : �

The rules are elementary. The key is (D-Pat) that allows only simple processes
as right-hand sides of definitions, while (P-Mess) ensures that only emissions
of • are well typed and, together with (P-Par), that only parallel composition
of messages can be used inside definitions. We use ∆0 ` P as a shorthand for
typeability, i.e., ` P : �, in the system ∆0 above.

Proposition 1 (Subject Reduction). If ∆0 ` P and P −→ Q, then ∆0 ` Q.

Translating ∆0 Terms to PT Nets

We intend to define a translation from ∆0-typed join terms to PT nets that can
be extended to other type systems and other classes of nets. Therefore, we first
give a general map on all join terms, and then prove that it restricts to a well
defined encoding of terms typeable in ∆0 into PT nets. By induction on the
structure of terms, [[]] is defined as follows.

[[0]] = ∅

[[x〈v〉]] = (x, v) [[J . P]] = tran[[J]] [[P]]
[[P | Q]] = [[P]] ⊗ [[Q]] [[D ∧ E]] = [[D]] ⊗ [[E]]
[[def D in P]] = νdn(D)([[D]] ⊗ [[P]])

where [[J]] is J seen as a multiset, i.e., [[x〈v〉]] = (x, v) and [[J | K]] = [[J]] ⊕ [[K]].
Roughly speaking, we map names to places, messages to markings, and defi-

nitions to (groups of) transitions. Since we shall soon consider nets whose tokens
carry information, we use (x, v) to denote a marking of place x with value v.
Of course, in the current case v always equals •, and (x, •) should be read as

High-Level Petri Nets as Type Theories in the Join Calculus 111

an exotic way to mean x. In more details, J . P is mapped into a transition
whose pre-set is essentially J and whose post-set is the encoding of P , while |
and ∧ are mapped homomorphically to ⊗. Similarly for def D in P , where the
use of restriction ensures the correct treatment of local definitions. Here it is
important to understand the different roles of x〈v〉 because, depending on the
context, (x, •) is treated as the net consisting of a single token in place x, or as
an arc connecting place x to a transition. We shall get back to this in §4.

Example 1. Let P be the ∆0-typeable term def x〈•〉 . y〈•〉 in x〈•〉. Then, using
the standard representation of Petri nets enriched with labels that decorate
public places with their name, the translation of P is

[[P]] = νx

(
tran{x}{y} ⊗ (x, •)

)
=

y
.

Observe that, in force of the restriction νx, the name x does not appear.

As announced, the encoding is well defined on well-typed terms.

Proposition 2 (Correctness). If ∆0 ` P , then [[P]] is a PT net.

In addition to the previous proposition, we can prove a completeness theorem
for ∆0, expressed as follows.

Theorem 1 (Completeness). The translation [[]] is an isomorphism between
the set of terms typeable in ∆0 and PT nets in Π0.

The rest of this section is devoted to illustrating that the [[]] is very tight a
connection, preserving both structural congruence and dynamic behaviour.

Proposition 3. Let P and Q be join terms typeable in ∆0. Then,

P ≡ Q if and only if [[P]] = [[Q]].

Observe that there is a one-to-one correspondence between transitions in [[P]]
and simple definitions J . Q in P . Here and in the following we use N [t〉 N ′ to
mean that N becomes N ′ by firing transitions t, and use P −t→ Q to signify
that P reduces to Q by means of the simple definition from which the transition
t of [[P]] was generated.

Proposition 4. Let P be a join term typeable in ∆0. Then,

P −t→ Q if and only if [[P]] [t〉 [[Q]]

This implies that P −→∗ Q if and only if there exist transitions t1, . . . , tn
such that [[P]] [t1〉 · · · [tn〉 [[Q]]. Also, P has a barb x ∈ fn(P), i.e., P ≡ C[x〈v〉] for
C a context that does not bind x, if and only if x is marked in [[P]]. Together with
surjectivity and compositionality of [[]], this describes a very strong relationship,
allowing to identify (the system represented by) P and (that represented by) [[P]].
In other words, it allows us to identify typeability in ∆0 with Π0.

112 M.G. Buscemi and V. Sassone

4 Coloured Nets

In coloured nets, tokens carry information: the ‘colours’. Arcs between places
and transitions are labelled by arc expressions, which evaluate to multisets of
coloured tokens after binding free variables to colours. Expressions on input and
output arcs describe respectively the resources needed for the firing and those
generated by it. Although our treatment below attempts at providing an essential
version of coloured Petri nets, we maintain one of their fundamental features.
Namely, we permit a name to label several of the input arcs of a transition,
with the intended meaning that firing is allowed only if the same colour can be
fetched along all those arcs. This form of pattern matching is the reason why
we relaxed the linearity requirement of join patterns. Technically, our model is
obtained simply by allowing PT Nets to circulate tokens other than ‘•’. The
obvious choice in the present context is to identify colours with names.

Definition 6 (CNets). A coloured net is a tuple (T, ∂0, ∂1, µ0), where T is
a finite set of transitions, ∂0, ∂1:T → µ(Nmω×Nm), are the pre and post-set
functions, and µ0 ∈ µ(Nmω×Nm) is the initial marking. We use Π1 to denote
the class of coloured Petri nets.

Example 2. In the above definition we interpret the pairs (p, c) of Nmω×Nm
as representing a place p that carries a colour (name) c. The coloured net
tran{(x, v)}{(y, v)} ⊗ (x, c) is represented graphically as below on the left.

v v y
c

x v yvx
c

As usual, the role of names is twofold: in markings they represent colours, e.g.,
the constant c in x; in transitions they represent bound variables. The net above
fetches any token from x, binds it to v, and then delivers the actual value of v
to y, as illustrated by the picture above and formalised by the definition below.

Definition 7. The set of received colours of a marking µ ∈ µ(Nmω×Nm) is

rc(µ) = {x ∈ Nm | x 6= •, ∃p. (p, x) ∈ µ}.

A binding for µ is a function b:Nm → Nm which is the identity on Nmrrc(µ).
We shall let µ〈b〉 denote the multiset {(p, b(c)) | (p, c) ∈ µ}.

The firing rule for coloured nets is the substitutive relation generated by the
reduction rule below, where b is a binding for µ0

tranµ0 µ1 ⊗ µ0〈b〉 [·〉 tranµ0 µ1 ⊗ µ1〈b〉.
Isomorphisms of coloured nets are the obvious extension of those of PT nets

given in Definition 4. They allow renaming of private places, but map public
ones identically. It is important to remark that coloured nets are considered up
to α-conversion, that is renaming of received colours. In particular, coloured nets
are isomorphic if there is an isomorphism between them after possibly renaming
received names.

High-Level Petri Nets as Type Theories in the Join Calculus 113

The Type System ∆1

The purpose of type system ∆1 is to characterise coloured Petri nets among
join terms. Having introduced names, we now face the issue of distinguishing
among two kind of names: channels and parameters. In fact, coloured nets are
a strict value-passing formalism. They are not allowed to use values received
along channels as channels themselves, nor to send private names as messages.
In order to enforce this, we consider typing environments holding assumptions
on free names, viz., if they are channels or messages. Type environments are
therefore pairs of disjoint sets Γ (the channels) and ∇ (the messages). Type
judgements are exactly as before, but for the presence of type environments.

(P-Zero) (P-Mess) (P-Par)

Γ ;∇ ` 0 : �� Γ ;∇ ` x〈y〉 : ��
(

x6∈∇
y 6∈Γ

) Γ ;∇ ` P : τ Γ ;∇ ` Q : τ

Γ ;∇ ` P | Q : τ

(P-Def) (P-Sub)

Γ, dn(D);∇ ` D : � Γ, dn(D);∇ ` P : �
Γ ;∇ ` def D in P : �

Γ ;∇ ` P : ��
Γ ;∇ ` P : �

(D-Pat) (D-And)

Γ ;∇, rn(J) ` P : ��
Γ ;∇ ` J . P : �

Γ ;∇ ` D : � Γ ;∇ ` E : �
Γ ;∇ ` D ∧ E : �

The structure of the rules matches exactly those of ∆0, the only difference
being the use of Γ in (P-Def) and of ∇ in (D-Pat), so to be able to control the
use of names in (P-Mess).

Proposition 5. ∆0 ` P implies ∆1 ` P .

Proposition 6 (Subject Reduction). If ∆1 ` P and P −→ Q, then ∆1 ` Q.

A simple inspection of the rules shows that, as ∆0, system ∆1 does not
allow processes of the form def in to appear inside definitions. The other
fundamental properties of ∆1 are expressed in the proposition below.

Proposition 7. If ∆1 ` P , then P never emits messages on received names nor
emits bound names out of the scope of their definitions.

Translating ∆1 Terms to CNets

It follows as a consequence of Proposition 7 that the translation [[]] extends to
a well defined map from ∆1 typeable terms to coloured Petri nets.

Proposition 8 (Correctness). If ∆1 ` P , then [[P]] is a coloured net.

114 M.G. Buscemi and V. Sassone

Here more than before it is important to understand the three different roles
played by x〈v〉 in the translation. First, when x〈v〉 appears outside all definitions,
at top level, it is translated as the net consisting of a token v in the place x.
Secondly, when it appears in a join pattern J , it is translated in [[J]] as (x, v),
representing the input from place x on a bound variable v. Finally, when x〈v〉
appears in the body of a definition, it is translated as (x, v) by the same clause
above but, considered as a marking, it represents the output of a free or bound
variables in the place x. This is summarised by the pictures below.

[[x〈v〉]] =
x

v (top level)

[[x〈v〉]] =
v x

(in bodies)

[[x〈v〉]] =
x v

(in patterns)

Example 3. Let P be the ∆1 typeable term def x〈v〉 . y〈v〉 in x〈c〉. Then [[P]] is
the coloured net of Example 2.

Our results about ∆1 match exactly those for ∆0. They are listed below.

Theorem 2 (∆1 vs Π1). The translation [[]] is an isomorphism between the
set of terms typeable in ∆1 and coloured nets in Π1. Moreover, if P and Q are
typeable in ∆1, then

P ≡ Q if and only if [[P]] = [[Q]]

P −t→ Q if and only if [[P]] [t〉 [[Q]]

5 Reconfigurable Nets

Coloured Petri nets have a static structure, i.e., their firings only affects the
marking. While this accounts faithfully for value-passing theories, it is comple-
tely inadequate to represent dynamically changing structures. Reconfigurable
nets generalise coloured ones by adding precisely one ingredient: each firing of a
transition may deliver to a different set of output places. This equips nets with
a mechanism to model networks with reconfigurable topologies, that is networks
in which the set of components is fixed, but the connectivity among them may
change in time. Formally, this is achieved by a very smooth alteration of the
definitions of coloured nets – one that allows markings and messages to contain
private names – and of their firing rule.

Definition 8 (RNets). A reconfigurable net is a tuple (T, ∂0, ∂1, µ0), where T
is a finite set of transitions, ∂0:T → µ(Nmω×Nm) and ∂1:T → µ(Nmω×Nmω),
are, respectively, the pre and post-set functions, and µ0 ∈ µ(Nmω×Nmω) is the
initial marking. We use Π2 to denote the set of reconfigurable Petri nets.

High-Level Petri Nets as Type Theories in the Join Calculus 115

Restriction νx and parallel composition ⊗ extends straightforwardly to re-
configurable nets. Also, isomorphisms of reconfigurable Petri nets are obtained
extending those of coloured nets in the obvious way.

The firing rule is generalised by extending the scope of the binding of received
names to include the output places in addition to the names on the output arcs.

Definition 9. Let b be a binding. For µ ∈ µ(Nmω×Nmω), let X〈〈b〉〉 denote
the multiset {(bω(p), bω(c)) | (p, c) ∈ µ}, where bω = b + idω.

For b a binding for µ0, the firing is generated closing by net contexts the rule

tranµ0 µ1 ⊗ µ0〈b〉 [·〉 tranµ0 µ1 ⊗ µ1〈〈b〉〉.

Example 4. The simple reconfigurable net represented below binds v to any
name found in x – in this case c – and delivers the name x to the place to
which v is bound.

x v x vc

The Type System ∆2

In order to design a type system ∆2 corresponding to Π2 we only need to remove
the difference between channels and messages upon which ∆1 is based, which
can be done easily by removing Γ and ∇. This yields a system identical to ∆0,
apart from (P-Mess) that allows any message to be transmitted on any name.

(P-Zero) (P-Mess) (P-Par)

` 0 : �� ` x〈y〉 : ��
` P : τ ` Q : τ

` P | Q : τ

(P-Def) (P-Sub)

` D : � ` P : �
` def D in P : �

` P : ��
` P : �

(D-Pat) (D-And)

` P : ��
` J . P : �

` D : � ` E : �
` D ∧ E : �

Proposition 9 (Subject Reduction). If ∆2 ` P and P −→ Q, then ∆2 ` Q.

Proposition 10. ∆1 ` P implies ∆2 ` P .

116 M.G. Buscemi and V. Sassone

Translating ∆2 Terms to RNets

The property guaranteed by ∆2 is that there is no process of the kind def in
inside definitions, i.e., the topology of the net may change by redirecting output
edges, but the components of the net are fixed once and for all. In force of this,
we can extend to ∆2 the correspondence between well-typed terms and nets.

Theorem 3 (∆2 vs Π2). The translation [[]] is an isomorphism between the
set of terms typeable in ∆2 and reconfigurable nets in Π2. Moreover, if P and Q
are typeable in ∆2, then

P ≡ Q if and only if [[P]] = [[Q]]

P −t→ Q if and only if [[P]] [t〉 [[Q]]

6 Dynamic Nets

The obvious generalisation of reconfigurable nets is to allow the dynamic creation
of components, that we achieve by means of the notions of dynamic Petri nets.
The idea behind such structures is that the firing of a transition allocates a new
net parametric in the actual values of the received names. As the net may consists
simply of a marking and no transitions, this includes the standard definition of
PT nets. Also coloured and reconfigurable nets are, of course, special kinds
of dynamic nets. The characteristic feature of dynamic nets, that to our best
knowledge distinguishes them by other approaches in the literature and draws
a connection to [13], is that, as for reconfigurable nets, input arcs are never
modified. While it is possible to modify dynamically the post-set of a transition,
and also to spawn new subnets, it is not possible to add places to the presets of
transitions. This allows us to formalise our intuition by simply generalising the
post-set functions of nets, allowing ∂1(t) to be a dynamic net. Of course, this
means that the definition of nets becomes recursive.

Definition 10 (DNets). Let DNets be the least set satisfying the equation

DNets ∼= {
(T, ∂0:T → µ(Nmω×Nm), ∂1:T → DNets, µ0)

}
,

where T is a finite set and µ0, the initial marking, is in µ(Nmω×Nmω). A
dynamic net DN is an element of DNets. We use Π3 to refer to the set of
dynamic nets.

Once again, the operations of parallel composition and restriction, and the
notions of α-conversion and isomorphism lift smoothly to this setting.

Definition 11. Dynamic nets (T, ∂0, ∂1, µ0) and (T ′, ∂′
0, ∂

′
1, µ

′
0) are isomorphic

if, up to α-conversion, there exists a pair (ft:T → T ′, fp:ω → ω) of isomorphisms
such that (idNm + fp×idNm + fp)(µ0) = µ′

0, ∂′
0 ◦ ft = (idNm + fp×idNm) ◦ ∂0,

and, recursively, ∂1(t) and ∂′
1(ft(t)) are isomorphic for each t ∈ T .

High-Level Petri Nets as Type Theories in the Join Calculus 117

Example 5. For P = def x〈v〉 . (def y〈•〉 . x〈v〉 in y〈•〉) in x〈a〉 | x〈b〉 | x〈c〉,
the structure [[P]] is the dynamic net illustrated below together with one of its
possible firing sequences. The transition may fire three times, binding v in turn
to a, b, and c, and spawning three new nets instantiating v appropriately in N .
The free name x of N maintains its meaning across instantiations. This rules
are formalised below, and amounts to a recursive extension of binding.

����

����

����

����a

b

c
v

*

a
b c

N

N

v

x

where =
v

N

(x)

(x)

Definition 12. Let b be a binding. For X = (T, ∂0, ∂1, µ0) ∈ DNets, let X〈〈〈b〉〉〉
denote the dynamic net obtained from X by substituting free names according
to b in µ0, ∂0(t) and, recursively, applying 〈〈〈b〉〉〉 to ∂1(t), for all t ∈ T .

The firing for dynamic nets is generated as follows, for b a binding for µ0.

tranµ0 X ⊗ µ0〈b〉 [·〉 tranµ0 X ⊗ X〈〈〈b〉〉〉

The Type System ∆3

In order to capture dynamic nets in terms of the join calculus, we simply have
to relax the restriction that disallows definitions inside definitions. At the level
of type system, this can be achieved by removing the distinction between types
� and �� from ∆2. As an obvious consequence, any join term results typeable.

Proposition 11. For each join term P , ∆3 ` P .

Thus, extending our results for [[]] to ∆3 amounts to proving that dynamic
nets coincide with join terms, which is the content of the following.

Theorem 4 (∆3 vs Π3). The translation [[]] is an isomorphism between join
terms (terms typeable in ∆3) and dynamic nets in Π3. Moreover, if P and Q
are typeable in ∆3, then

P ≡ Q if and only if [[P]] = [[Q]]

P −t→ Q if and only if [[P]] [t〉 [[Q]]

7 The Type System ∆4

The information contained in ∆i, i = 0, . . . , 3 can be summarised in a single type
system ∆4 that tags terms with indices that characterise them as nets of Πi.

118 M.G. Buscemi and V. Sassone

Types range over i�� ∈ {0��, 1��, 2��, 3��} and i� ∈ {0�, 1�, 2�, 3�}. For τ = i?

a type, we write τ↓ for i and τ↑ for ?. By τ ≤ τ ′ we mean that τ↓≤ τ ′↓ and
τ↑ ≤ τ ′↑, with the convention that �� ≤ �. Type environments are pairs Γ ;∇ as
for ∆1, and type judgements are as follows:

Γ ;∇ ` P : i�� (P well-typed, in Πi, and containing no def in)

Γ ;∇ ` P : i� (P well-typed and in Πi)

Γ ;∇ ` D : i� (D well-typed and containing terms in Πi)

The typing rules are the following.

(P-Mess0) (P-Mess1) (P-Mess2)

Γ ;∇ ` x〈•〉 : 0�� (x6∈∇) Γ ;∇ ` x〈y〉 : 1��
(

x6∈∇
y 6∈Γ

)
Γ ;∇ ` x〈y〉 : 2��

(P-Def) (P-Zero)

Γ, dn(D);∇ ` D : i� Γ, dn(D);∇ ` P : i�

Γ ;∇ ` def D in P : i�
Γ ;∇ ` 0 : 0��

(P-Par) (P-Sub)

Γ ;∇ ` P : τ Γ ;∇ ` Q : τ

Γ ;∇ ` P | Q : τ

Γ ;∇ ` P : τ τ ≤ τ ′

Γ ;∇ ` P : τ ′

(D-Patt0) (D-Patt1) (D-Patt2)

Γ ;∇ ` P : 0��

Γ ;∇ ` J . P : 0� (rn(J)={•})
Γ ;∇, rn(J) ` P : i��

Γ ;∇ ` J . P : i�
Γ ;∇, rn(J) ` P : i�

Γ ;∇ ` J . P : 3�

(D-And) (D-Sub)

Γ ;∇ ` D : i� Γ ;∇ ` E : i�

Γ ;∇ ` D ∧ E : i�
Γ ;∇ ` D : i� i < j

Γ ;∇ ` D : j�

Here (P-Mess) is split into three rules, each behaving as in the corresponding
∆i; (P-Mess2) ignores type environments, so achieving the effect of ∆2. Defini-
tions can be typed by i if the terms they contain are typeable by i; (D-Patt2)
constrains to 3 the type of definitions containing a def in term, so forcing to
3 the type of enclosing processes by means of rule (P-Def). For ∆4 we have the
following results.

Proposition 12 (Subject Reduction). If ∆4 ` P and P −→ Q, then ∆4 ` Q.

Theorem 5. ∆4 ` P : i� if and only if P ∈ Πi, for i = 0, . . . , 3.

Proof. It follows by proving that ∆4 ` P : i� if and only if ∆i ` P .

High-Level Petri Nets as Type Theories in the Join Calculus 119

Conclusions and Future Work

We have provided a full correspondence between join calculus and a hierarchy
of Petri net classes. It would be interesting to study relevance and adaptability
to coloured nets of the existing polymorphic type systems [8,15] and extensional
semantic equivalence [10,3,6] for join terms. On the other hand, the body of work
on the semantics of nets suggests a noninterleaving semantics based on monoidal
categories for the join-calculus.

Our version of coloured nets simplifies considerably those in the literature.
It is worth investigating whether it can be interesting for the coloured Petri net
community by putting it at work on suitable applications.

Also, we plan to compare our nets to Milner’s named nets [12] – clearly
closely related to the nets of §3 – to Asperti and Busi’s dynamic nets [1], and to
Odersky’s functional nets [14].

Acknowledgements. We heartily thank Cedric Fournet, Alan Schmitt, and Emilio
Tuosto for their useful comments. Special thanks to Roberto Bruni, who made sub-
stantial suggestions, and to an anonymous referee, who spotted some technical flaws.

References

1. A. Asperti and N. Busi (1996), Mobile Petri Nets, Technical Report UBLCS 96-
10, Università di Bologna.

2. G. Berry and G. Boudol (1992), The Chemical Abstract Machine, Theoretical
Computer Science, 96:217–248.

3. M. Boreale, C. Fournet, and C. Laneve (1998), Bisimulations for the Join-
Calculus, In Proc. PROCOMET’98, D. Gries and W.P. de Roever (Eds.), 68–86,
IFIP, Chapman & Halls.

4. R. Bruni, J. Meseguer, U. Montanari, and V. Sassone (2000), Functorial
Models for Petri Nets, Information and Computation. To appear.

5. C. Fournet and G. Gonthier (1996), The Reflexive Chemical Abstract Machine
and the Join-Calculus, In Proc. POPL’96, 372–385, ACM.

6. C. Fournet and G. Gonthier (1996), A Hierarchy of Equivalences for Asyn-
chronous Calculi, In Proc. ICALP’98, Lecture Notes in Computer Science 1443,
844–855, Springer.

7. C. Fournet, G. Gonthier, J. Lévy, L. Maranget, and D. Rémy (1996), A
Calculus of Mobile Agents, In Proc. CONCUR’96, Lecture Notes in Computer
Science 1119, 406–421, Springer.

8. C. Fournet, C. Laneve, L. Maranget, and D. Rémy (1997), Implicit Typing
à la ML for the Join-Calculus, In Proc. CONCUR’97, Lecture Notes in Computer
Science 1243, 196–212, Springer.

9. K. Jensen (1992), Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Monographs on Theoretical Computer Science, Springer.

10. C. Laneve (1996), May and Must Testing in the Join-Calculus, Technical Report
UBLCS 96-04, Università di Bologna.

11. F. Le Fessant and L. Maranget (1998), Compiling Join-Patterns, In
Proc. HLCL’98, Electronic Notes in Computer Science 16(3), Elsevier.

120 M.G. Buscemi and V. Sassone

12. R. Milner (1993), Action Calculi, or Syntactic Action Structures, In Proc.
MFCS’93, Lecture Notes in Computer Science 711, 105-121, Springer.

13. M. Nielsen, L. Priese, and V. Sassone (1995), Characterizing Behavioural
Congruences for Petri Nets, in Proc. CONCUR 95, Lecture Notes in Computer
Science 962, 175–189, Springer.

14. M. Odersky (2000), Functional Nets, In Proc. ESOP’2000, Lecture Notes in
Computer Science 1782, 1–25, Springer.

15. M. Odersky, C. Zenger, M. Zenger, and G. Chen (1999), A Functional View
of Join, Technical Report ACRC-99-016, University of South Australia.

16. C.A. Petri (1962), Kommunikation mit Automaten. Ph.D. thesis, Institut für
Instrumentelle Mathematik, Bonn.

17. W. Reisig (1985), Petri Nets: An Introduction. EATCS Monographs on Theore-
tical Computer Science, Springer.

18. V. Sassone (2000), On the Algebraic Structure of Petri Nets, Bulletin of EATCS
72, 133–148.

	Introduction
	The Join Calculus
	Place Transition Nets
	Coloured Nets
	Reconfigurable Nets
	Dynamic Nets
	The Type System $Delta _4$

