
Properties of Distributed Timed-Arc Petri Nets

Mogens Nielsen1, Vladimiro Sassone2,�, and Jǐŕı Srba1,��

1 BRICS� � �, Dept. of Computer Science, University of Aarhus
2 University of Sussex

Abstract. In [12] we started a research on a distributed-timed exten-
sion of Petri nets where time parameters are associated with tokens and
arcs carry constraints that qualify the age of tokens required for enabling.
This formalism enables to model e.g. hardware architectures like GALS.
We give a formal definition of process semantics for our model and in-
vestigate several properties of local versus global timing: expressiveness,
reachability and coverability.

Introduction

Verification of concurrent and parallel systems plays nowadays an important
role in the concurrency theory, with a number of successful applications. Algo-
rithmic methods have been developed for process algebras generating infinite
state systems, timed process algebra, Petri nets, lossy vector addition systems,
counter machines, real time systems and many others. In particular, the idea to
equip automata with real time appeared to be very fruitful and there are even
automatic verification tools for such systems as UPPAAL [9] and KRONOS [5].
The main idea behind timed automata is to equip a standard automaton with

a number of synchronous clocks, and to allow transitions to be conditioned on
clock values and to affect (reset) clocks. One of the objections to this formalism is
the assumption of perfect synchrony between clocks. For many applications this
assumption is justified, but for others it is unrealistic. Clearly, geographically
highly distributed systems are prime examples, but the issue has been addressed
also for hardware design; e.g. in work on so-called Globally Asynchronous Locally
Synchronous (GALS) systems [11].
Following these arguments we suggested in [12] a new model called distributed

timed-arc Petri nets (DTAPN). One of the reasons for choosing Petri net for-
malism is the explicit representation of locality.
Several models that take time features into account have been presented in

the literature (for a survey see [4,17]). For example timed transitions Petri nets
were proposed in [13] where transitions are annotated with their durations. A
model in which time parameters are associated to places is the timed places

� Author partly supported by MUST project TOSCA.
�� Author partly supported by the GACR, grant No. 201/00/0400.

� � � Basic Research in Computer Science, Centre of the Danish National Research
Foundation.

R. Hariharan, M. Mukund, and V. Vinay (Eds.): FSTTCS 2001, LNCS 2245, pp. 280–291, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Properties of Distributed Timed-Arc Petri Nets 281

Petri nets of [16]. We shall analyse timed-arc Petri nets [3,7], a time extension
of Petri nets where time (age) is associated to tokens and transitions are labelled
by time intervals which restrict the age of tokens that can be used to fire them.
In this model, time is considered to be global, i.e., all tokens grow older with
the same speed. In spite of the fact that reachability is decidable for ordinary
Petri nets [10], it is undecidable for global timed-arc Petri nets [15]. On the other
hand, coverability is decidable for such a model [14,1], which is also known to offer
‘weak’ expressiveness, in the sense that it cannot simulate Turing machines [2].
In [12] a new model is suggested where time elapses in a place independently

on other places, taking the view that places represent ‘localities’. The idea of
local clocks is generalised in the DTAPN model, where we use an equivalence
relation on places to specify which pairs of places must synchronise. As special
instances we get local timed-arc Petri nets (LT nets), where no synchronisations
are forced, and global timed-arc Petri nets (GT nets), with full synchronisation.
In this paper we give a formal definition of process semantics which provides

a reading of the differences between the LT and the GT net models and of their
relative strengths. Among the motivations behind LT nets, they seem to be a
weaker model than the global time one and some interesting properties could
be verified algorithmically. Nevertheless, we prove that the general reachability
problem for LT nets is undecidable. However, we show that a small modification
of the problem (a slight restriction of the set of allowed initial markings) makes
reachability decidable for LT nets, but not for GT nets. Finally, we argue that
coverability is decidable for all DTAPNs.

1 Distributed Timed-Arc Petri Nets

Definition 1 (Distributed timed-arc Petri net).
A place/transition Petri net (PT) is a tuple (P, T, F ), where P is a finite
set of places, T is a finite set of transitions such that T ∩ P = ∅, and F ⊆
(P × T ) ∪ (T × P ) is a flow relation.

A distributed timed-arc Petri net (DTAPN) is a tuple N = (P, T, F, c, E,D),
where (P, T, F ) is a Petri net and:

– c : F |P×T → D × (D ∪ {∞}) is a time constraint on transitions such that
for each arc (p, t) ∈ F , if c(p, t) = (t1, t2) then t1 ≤ t2,

– E ⊆ P × P is an equivalence relation on places (synchronisation relation),

– D ∈ {R
+
0 ,N0} is either continuous or discrete time.

Let x ∈ D and c(p, t) = (t1, t2). We write x ∈ c(p, t) whenever t1 ≤ x ≤ t2. We
also define •x = {y | (y, x) ∈ F}, x• = {y | (x, y) ∈ F}, for x ∈ P ∪ T and use
B(X) to denote the set of all finite multisets on a set X. In what follows, we
assume that •t �= ∅ for every t ∈ T .
A marked PT net is a net (P, T, F ) together with an initial marking M ∈

B(P ). A marking of a DTAPN (P, T, F, c, E,D) is a function M : P → B(D). A



282 Mogens Nielsen, Vladimiro Sassone, and Jǐŕı Srba

marked DTAPN is a pair (N,M), for M a marking of N with all tokens of age
0. Each place is thus assigned a number of tokens, and each token is annotated
with a real (natural) number (age). Let x ∈ B(D) and a ∈ D. We define x <+ a
to add the value a to every element of x, i.e., x <+ a = {b+ a | b ∈ x}.
The dynamics of DTAPNs is defined by two types of transition relations:

firing of a transition and time-elapsing.

Definition 2 (Transition rules).
Let N = (P, T, F, c, E,D) be a DTAPN, M a marking and t ∈ T .

– We say that t is enabled by M iff ∀p ∈ •t. ∃x ∈ M(p). x ∈ c(p, t).
– If t is enabled byM , it can fire producing a markingM ′, in symbolsM [t〉M ′,
such that:

∀p ∈ P. M ′(p) =
(
M(p)� C−(p, t)

)
∪ C+(t, p)

where C− and C+ are chosen to satisfy the following equations (which may
have several solutions):

C−(p, t) =
{ {x} such that x ∈ M(p) and x ∈ c(p, t) if p ∈ •t

∅ otherwise

C+(t, p) =
{ {0} if p ∈ t•

∅ otherwise.

Note that the new tokens added to places t• are of initial age 0.
– We define a time-elapsing transition ε, for ε : P/E → D, as follows, where
[p]E denotes the E-equivalence class of p:

M [ε〉M ′ iff ∀p ∈ P. M ′(p) =M(p)<+ ε([p]E).

We write M −→ M ′ iff either M [t〉M ′ or M [ε〉M ′ for some t or ε.
Two classes of DTAPNs play prominent roles. The first one requires an ab-

solute synchronisation and was studied in the past, while the other one is a new
model suggested in [12] — completely asynchronous:

– Global timed-arc Petri nets (GT nets): E = P × P ,
– Local timed-arc Petri nets (LT nets): E = ∆P = {(p, p) | p ∈ P}.

2 GALS Architectures

In high-performance VLSI the clock management is the main source of power
consumption. Keeping one global clock synchronised is usually the bottleneck of
a processor design. In [11] the authors suggest a method to decrease the pitfalls
of global clock distribution. A processor design is partitioned into synchronous
blocks that communicate globally with each other on asynchronous basis using
a handshake mechanism. This architecture is called Globally Asynchronous and



Properties of Distributed Timed-Arc Petri Nets 283

�� ���� ��SB1:
Synchronous
Block 1

�� ��
��

������ ����

�� ���� ��SB2:
Synchronous
Block 2��

�� ��������

�� ���� ��SB3:
Synchronous
Block 3

��
Handshake
signals ��

Fig. 1. GALS architecture

	
��
���p1
[0,t1]

����������� 	
��
���p2
[0,t2]

�����������

Synchronous
Block 1

hand-
shake

�����������
�����������

Synchronous
Block 2

	
��
���p′
1

	
��
���p′
2

Fig. 2. Modelling of handshake mechanism between SB1 and SB2

Locally Synchronous (GALS) architecture. The authors applied this technology
to a realistic design with million gates, saving about 30% of power energy with
negligible overhead. Fully asynchronous solutions to the problem have been also
examined, for an overview see e.g. [8].
Distributed timed-arc Petri nets, in particular LT nets in the fully asyn-

chronous case, appear to be a good model for such architectures. Let us now
focus on the design of GALS. Figure 1, from [11], represents the basic concept
of GALS architecture for three synchronous components. For each of the syn-
chronous blocks SB1, SB2 and SB3 we design a GT net, joining them together
by means of a handshake communication as in Figure 2 (in which every arc
from a place p to a transition t is labelled by the time interval c(p, t)). This
creates the final DTAPN with a synchronisation relation respecting the place
partitioning given by the blocks SB1, SB2 and SB3. The transition ‘handshake’
forces the blocks SB1 and SB2 to synchronise and after this transition is fired
new tokens of age 0 appear in places p′

1 and p
′
2. Then SB1 and SB2 can con-

tinue their un-synchronised performance. If we set t1 = t2 = ∞ then there are
no time constrains on the maximal waiting time for the handshake communica-
tion. However, by changing the values t1 and t2 we may forbid a late handshake
synchronisation.
Further examples of LT nets and DTAPNs, as e.g. timed producer/consumer

systems or Fischer’s mutual exclusion protocol, have been described in [12].

3 Process Semantics for DTAPN

We aim at providing a common ground on which to assess relative expressiveness
of GT nets and LT nets. In this section, building upon the idea of PT net



284 Mogens Nielsen, Vladimiro Sassone, and Jǐŕı Srba

��������0
[2,3]		

p1 ��������0
[5,8] 		

p2

t1

		

t2

		��������p3 �������� p4

Fig. 3. Dependent transitions in a GT net and independent in an LT net

processes [6], we formalise a notion of processes of DTAPNs and establish their
properties with respect to firing sequences.
The subtle differences between computations of LT and GT nets that we want

to address can be illustrated with the help of the net of Figure 3. Were this net
an ordinary net, transitions t1 and t2 would be completely independent. Things
are not so neat when we consider the time constraints. If the net is a GT net,
i.e. time is global, after firing t2, the transition t1 cannot possibly fire anymore.
If instead we consider the net under the local time interpretation, t1 and t2 can
again be considered completely independent, as the one’s firing cannot affect the
other’s enabledness.

Definition 3 (Process Nets).
A process net is a PT net Π = (P, T, F ) such that Π is acyclic, i.e., for x, y ∈ Π,
x ≺Π y implies y �≺Π x, and Π is deterministic, i.e., for each p ∈ P , |•p| ≤ 1
and |p•| ≤ 1, where ≺Π denotes the transitive closure of F .

Each place p of a process net Π has exactly zero or one transition in its
preset. We define �p = t if •p = {t} and �p = ⊥ if •p = ∅. By min(Π) we denote
the set of ≺Π -minimal places of Π, i.e., min(Π) = {p ∈ P | �p = ⊥}. Process
nets are implicitly considered marked, with initial marking min(Π). With abuse
of notation, in the following we shall write p ∈ Π and t ∈ Π avoiding explicit
mention of the components P and T ofΠ, as this is not likely to create ambiguity.
Analogously, we usually drop the subscript from ≺Π .

Definition 4 (PT Process).
A map σ : (P, T, F,M) → (P ′, T ′, F ′,M ′) of marked PT Petri nets is a function
σ : P ∪ T → P ′ ∪ T ′ mapping P to P ′ and T to T ′ such that σ(M) = M ′, and
for all t ∈ T , σ(•t) = •σ(t) and σ(t•) = σ(t)•.
A process π of (N,M) is a map π : Π → (N,M), for Π a finite process net.

The notion of slice, which provides a snapshot of a running process’ state,
plays a role in our development. We say that x, y ∈ Π are concurrent if neither
x ≺ y nor y ≺ x. A slice of π is a maximal set of concurrent places of Π. E.g., the
PT net underlying the net of Figure 3 has precisely four slices: {p1, p2}, {p1, p4},
{p2, p3}, {p3, p4}. We use S≺ = {t | t ≺ s, s ∈ S} and S≺ = {t | s ≺ t, s ∈ S} to
indicate the two parts a slice S partitions the transitions of Π into.
Processes of DTAPNs rest upon the notion of PT net process, enriching it

with a suitable treatment of time constraints. Each firing of a transition is time-
stamped with the time elapsed since the process began, according to each of the
‘clocks’ (E-equivalence classes) involved.



Properties of Distributed Timed-Arc Petri Nets 285

Definition 5 (DTAPN Net Processes).
Let N = (P, T, F, c, E,D,M) be a marked DTAPN. A process of N is a process
π : Π → N of the underlying PT net together with a �-totally preordered family
δ = {δt : P/E ⇀ D}t∈Π of partial functions such that δt(x) is defined if and only
if π(•t ∪ t•) ∩ x �= ∅ and for each arc (p, t) of Π

δt([π(p)]E)− δ�p([π(p)]E) ∈ c(π(p), π(t)),

where, by convention, δ⊥(x) = 0 for all x, and where δt � δt′ if δt(x) ≤ δt′(x)
for all x ∈ dom(δt) ∩ dom(δt′).

The condition above enforces the time constraints c on the arcs by bounding
appropriately the difference between tokens’ creation and consumption times.
The special case of δ⊥ deals with 0-aged tokens in the initial marking. For GT
nets, each δt reduces to a single time-stamp according to the (unique) global
clock. In the case of multiple clocks, the preorder � ensures that the time do-
main is consistent, ruling out situations in which concurrent transitions have
incompatible perceptions of the time elapsed. Notice that the linearity condition
does not mean sequential processes, as we may have both δt � δt′ and δt′ � δt.

Slices need refinement to adapt to our timed model. Observe, in fact, that
{p1, p4} can never be a slice of any process when the net in Figure 3 is considered
as a GT net, as the behaviour in which t2 occurs before t1 is not realisable. We
shall thus define a slice of a DTAPN process to be a slice S of the underlying
PT process such that δt � δt′ , for all t ∈ S≺ and all t′ ∈ S≺.

We now proceed to prove an important sanity condition for our processes, by
relating them to firing sequences and markings. In order to extract a marking
from a slice, the following definition determines the age of tokens in each places
as the difference between the time-stamp of the slice according to clock x (viz.
max(S, x)) and the time (according to the same x) when the token was generated.
This allows us to pass from the absolute time on processes’ transitions to the
relative one found in firing sequences’ markings.

Definition 6 (Markings Compatible with a Slice).
Let (π : Π → N, δ) be a process of a marked DTAPN N and S a slice thereof.
Marking MS is associated to S if only places in π(S) are marked, and for each
p̄ ∈ π(S),

MS(p̄) = {max(S, [p̄]E)− δx([p̄]E) | x = �p, π(p) = p̄}
where max(S, x) = max{δt(x) | t ∈ •S, x ∈ dom(δt)}, convening that max ∅ = 0.
The set of markings of N compatible with S is

m(π, S) = {M | MS [ε〉M, for ε a time-elapsing transition of N}.

Theorem 1. Let (N,M) be a DTAPN and (π, δ) a process thereof. For each
slice S of π and each M ′ ∈ m(π, S) there exists a firing sequence M −→∗ M ′.

Proof. By induction on the size of S≺. The base case is easy, for S≺ = ∅. In
the induction step, we must have t ∈ S≺ with t• ⊆ S. Among these, choose t



286 Mogens Nielsen, Vladimiro Sassone, and Jǐŕı Srba

one with �-maximal δt, that exists by hypothesis on δ, so to ensure that S \ t•
is a slice. By induction hypothesis, there is a firing sequence M →∗ M1, where
M1 is a marking in m(π, S \ t•) such that M1[t〉M2. Then, by an appropriate
time-elapsing transition, M2[ε〉M ′, as required. ��

Theorem 2. Let (N,M) be a DTAPN. For each firing sequence M −→∗ M ′ of
N , there exists a process (π, δ) such that M ′ ∈ m(π, S), for S a slice of π.

Proof. Easy, by induction on the length of the firing sequence. ��
The difference between GT nets and LT nets is reflected in our formalisation

above in two related aspects. Firstly, GT nets have fewer processes, due to the
more stringent synchronisation constraints. Secondly, these processes have fewer
slices, that is a smaller internal concurrency. This is nicely summarised in �,
that is a ‘loose’ preorder in the case of LT nets, and essentially becomes a ‘tight’
linear order for GT nets.

4 Reachability and Coverability

LT and GT nets can be compared on the grounds of various decidability ques-
tions. Ruiz, Gomez and Escrig recently proved in [15] that reachability is un-
decidable for GT nets. Their proof does not imply undecidability for LT nets,
because it relies on synchronised places. In principle, it may seem that the model
of LT nets is less powerful than the one of GT nets. Nevertheless, we demon-
strate that reachability for LT nets is undecidable as well. The proof is based
on a reduction from the halting problem of Minsky machine with two counters.
Notice that this contrasts with the result by Mayr [10] stating the decidability of
reachability for ordinary Petri nets. The reachability problem for local timed-arc
Petri nets can be formulated as follows.

Problem: Reachability for LT nets.
Instance: A marked LT net (N,M) and a final marking M ′.
Question: M −→∗ M ′ ?

Definition 7 (Minsky machine with two counters).
Minsky machine R with two counters c1 and c2 is a finite sequence

R = (L1 : I1, L2 : I2, . . . , Ln : In)

where L1, . . . , Ln are pairwise different labels, I1, . . . , In are instructions such
that I1, . . . , In−1 are exactly of one of the following types:

– increment: cr := cr + 1; goto Lj

– test and decrement: if cr = 0 then goto Lj else cr := cr − 1; goto Lk

where 1 ≤ r ≤ 2 and 1 ≤ j, k ≤ n. The last instruction In is always a special
instruction halt.



Properties of Distributed Timed-Arc Petri Nets 287

	
��
���cr

	
��
���pi
[0,0] 

 ti

��



	
��
���pj

Fig. 4. Increment instruction

A machine R starts its execution (with given input values of c1 and c2) from
the instruction I1 and it halts if it reaches the instruction halt in a finite number
of steps. Otherwise it diverges. The halting problem for a machine R with the
initial values of counters c1 = c2 = 0 is known to be undecidable. The following
variant of the problem is easily seen to be undecidable as well.

Problem: Halting problem with empty counters.
Instance: A Minsky machine R with c1 = c2 = 0.
Question: Does R halt and both counters are empty?

Given a Minsky machine R = (L1 : I1, L2 : I2, . . . , Ln : In) we construct
a local timed-arc Petri net N with continuous time which weakly simulates the
machine R. We define N = (P, T, F, c,∆P ,R

+
0 ) where

P = {pi | 1 ≤ i < n, Ii of type increment}
∪ {pi, p

1
i , p

2
i , p

3
i , p

4
i , p

5
i | 1 ≤ i < n, Ii of type test and decrement}

∪ {pn, c1, c2, ps, pe},

T = {ti | 1 ≤ i < n, Ii of type increment}
∪ {ti, t1i , t2i , t3i , t4i , t5i , t6i | 1 ≤ i < n, Ii of type test and decrement}

∪ {ts, te},

F and c are described in the text below.

For every instruction Li : cr := cr + 1; goto Lj , with 1 ≤ i < n and 1 ≤ r ≤ 2,
we add the arcs between places and transitions depicted in Figure 4. For every
instruction Li : if cr = 0 then goto Lj else cr := cr − 1; goto Lk, with
1 ≤ i < n and 1 ≤ r ≤ 2, we add the arcs depicted in Figure 5. Moreover we add
a starting and an ending transition, as illustrated in Figure 6. Initial and final
markings M and M ′ are

M(p) =




{0} if p = ps

{0, 0} if p ∈ {c1, c2}
∅ otherwise,

M ′(p) =
{{0} if p = pe

∅ otherwise.

We prove thatM −→∗ M ′ if and only if R halts on the input c1 = c2 = 0 with
both counters empty. Thus we show that reachability for LT nets is undecidable.

Lemma 1. If R halts with both counters empty then M −→∗ M ′.



288 Mogens Nielsen, Vladimiro Sassone, and Jǐŕı Srba

ti


	
��
���pk

	
��
���pi

[0,0]

���������������������

[0,0] 		

	
��
���cr

[0,0]

��

[2,2]

���
��

��
��

��
��

��
��

��
��

��

[1,1]



�����������������������

[2,2] ��������������������� 	
��
���pj

t1i

��																			

		

t6i

��

	
��
���p1
i

[0,0] 		

	
��
���p5
i

[0,0]

��

t2i

��
























		

t5i

��

	
��
���p2
i

[0,0] 

 t3i

�����������������������


	
��
���p3

i

[0,0] 

 t4i 

	
��
���p4
i

[0,0]

��

Fig. 5. Test and decrement instruction

	
��
���c1

[2,2]

����������� 	
��
���c2

[2,2]

��









	
��
���c1

[2,2]

����������� 	
��
���c2

[2,2]

��










	
��
���ps
[0,0] 

 ts



	
��
���p1 	
��
���pn
[0,0] 

 te



	
��
���pe

Fig. 6. Start and end of the simulation

Proof. Suppose that after a finite sequence of instructions executed by R the
machine stops in the instruction Ln : halt with both counters empty. Then we
can simulate this sequence in N as follows.
First, we let the four tokens in places c1 and c2 reach the age 2 and then we

fire the starting transition ts, which puts a token into place p1 and in both c1
and c2 remains one token of age 2. An increment instruction Ii is simulated by
firing the transition ti without any time elapsed. If Ii is a test and decrement
instruction and the corresponding place cr contains a token of age 0, we fire the
transition ti. Again there is no time-elapsing transition. If the place cr contains
only one token of age 2 then we fire the sequence of transitions t1i , t

2
i , t

3
i , t

4
i , t

5
i , t

6
i .

First, three tokens of age 0 are added and then the token of age 2 is removed
by the transition t4i . Then we allow to pass one time unit in the place cr, which
means that cr now contains three tokens of age 1. We consume one of them
by firing the transition t5i and let pass another time unit in cr. Then we fire
the transition t6i . The resulting marking contains one token of age 2 in cr, one
token of age 0 in pj and the place c3−r is untouched. Eventually a token of age
0 appears in the place pn and the places c1 and c2 contain one token of age 2
each. That means that we can fire the ending transition te and reach M ′. ��
Lemma 2. If M −→∗ M ′ then the machine R halts with both counters empty.

Proof. We can naturally simulate the behaviour of the net N by executing the
corresponding instructions of the machine R. The only problematic case is when



Properties of Distributed Timed-Arc Petri Nets 289

a transition t1i is fired and the counter cr is non-empty. However, we show that
if this happens then the marking M ′ cannot be reached.
First observe that the only transition that can be fired from M is ts and

there must be a time-elapsing transition before it. Thus the resulting marking
contains one token of age 0 in p1 and one token of age 2 in both c1 and c2.
Notice that whenever a token of age strictly greater than 2 appears in c1 or
c2 (we call such a token dead), M ′ is not reachable. The same happens if a
token of age different from 0 appears in some of the places p1, p2, . . . , pn. Thus
a time-elapsing transition cannot occur if we aim to reach the marking M ′. The
values of counters c1 and c2 are represented by the corresponding number of
tokens of age 0 in the places c1 and c2 respectively, with one additional token of
age 2. Suppose that we fire a ‘cheating’ sequence t1i , t

2
i , t

3
i , t

4
i , t

5
i , t

6
i such that cr

contains except for one token of age 2 also a non-zero number of tokens of age
0. By examining all possibilities of firing this sequence (we want to avoid dead
tokens), we end up with having at least two tokens of age 2 in cr and moreover
all tokens in cr are of age 2. Notice that we cannot fire the transition te if there is
more than one token in c1 or c2. ShouldM ′ be reachable, we have to fire another
sequence of t1i , t

2
i , t

3
i , t

4
i , t

5
i , t

6
i . However, now there are at least two tokens of age 2

in cr and all other tokens are of age 0. During firing of t1i , t
2
i , t

3
i no time-elapsing

is allowed (otherwise dead tokens appear). After t4i is fired, there still remains
at least one token of age 2 but there is no token of age 1 to enable t5i . This
means that a time unit must pass in cr to enable t5i , which causes that a dead
token of age 3 appears in cr. Thus whenever a ‘cheating’ sequence is fired, the
marking M ′ cannot be reached. This means that the simulation is faithful and
if M −→∗ M ′ then R halts with both counters empty. ��

Notice that the same construction works also for discrete time.

Theorem 3. Reachability for LT nets is undecidable.

On the other hand, it is sufficient to restrict the class of nets we consider
very slightly in order to separate local and global timed nets.

Definition 8 (Safe marking and safe DTAPN).
A marking M : P → B(D) is safe if |M(p)| ≤ 1 for every p ∈ P . A marked
DTAPN (N,M) is safe if the initial marking M is safe.

We now turn to show that the reachability problem for safe LT nets is de-
cidable. Before proving the key decidability lemma, we fix some notation. For
N = (P, T, F, c, E,D) a DTAPN, letNo denote the underlying ordinary Petri net
(P, T, F ). We define a time-forgetting function f : [P → B(D)] → B(P ), map-
ping DTAPN markings to PT net markings; the multiset f(M) has precisely as
many copies of p as there are numbers in M(p). For Mo ∈ B(P ) a marking of
No, we use T (Mo) ⊆ 2[P→B(D)] to denote the set of all timed-markings that
have in each place the same number of tokens as Mo, i.e., T (Mo) = f−1(Mo).

Lemma 3. Let (N,M) be a safe marked LT net. If f(M) −→∗ Mo
1 in No then

M −→∗ M1 in N for every M1 ∈ T (Mo
1 ).



290 Mogens Nielsen, Vladimiro Sassone, and Jǐŕı Srba

Proof. By induction on k we prove that if f(M) −→k Mo
1 inN

o thenM −→∗ M1
in N for every M1 ∈ T (Mo

1 ).

Base case: If k = 0 then Mo
1 = f(M) and it can be easily seen that M [ε〉M1

for every M1 ∈ T (f(M)). Hence M −→ M1 for every M1 ∈ T (Mo
1 ).

Induction step: Let k > 0. Assume that f(M) −→k−1 Mo
1 [t〉 Mo

2 in N
o. Let

us fix an arbitrary M2 ∈ T (Mo
2 ). We show that M −→∗ M2 in N . By minp we

denote min{M2(p)}. We define a marking M1 in N as follows:

M1(p) =



M2(p) if p ∈ P � (•t ∪ t•)
M2(p) ∪ {x} if p ∈ •t� t• and c(p, t) = (x, )(
M2(p)<+ (−minp)

)
� {0} if p ∈ t• �

•t(
M2(p)<+ (−minp)

)
� {0} ∪ {x} if p ∈ •t ∩ t• and c(p, t) = (x, ).

Obviously,M1 ∈ T (Mo
1 ). Because of induction hypothesis we know thatM −→∗

M1 in N . We prove our lemma by showing that M1 −→∗ M2. It is, however,
easy to see that M1 [t〉 M ′

1 [ε〉 M2, where

M ′
1(p) =

{
M2(p) if p ∈ P � t•

M2(p)<+ (−minp) if p ∈ t•
ε({p}) =

{
0 if p ∈ P � t•

minp if p ∈ t•.

��
Theorem 4. Reachability is decidable for safe LT nets, but undecidable for safe
GT nets.

Proof. Let (N,M) be a safe LT net. Trivially, for any marking M1 reachable
from M it is the case that f(M1) is reachable from f(M) in No. Hence, using
Lemma 3, the reachability problem for safe LT nets is reduced to the reachability
problem for ordinary Petri nets, and this problem is decidable [10]. The reason
for undecidability of reachability of safe GT nets is that in the undecidability
proof from [15] the initial marking is safe. ��
The coverability problem for GT nets was shown to be decidable — for

discrete time in [14] and for continuous time in [1]. Following these results one
proves that coverability is decidable even for DTAPNs.

Problem: Coverability for DTAPNs.
Instance: A marked DTAPN (N,M) and a final marking M ′.
Question: ∃M ′′. M −→∗ M ′′ ∧ ∀p ∈ P. M ′(p) ⊆ M ′′(p) ?

Theorem 5. Coverability for DTAPNs is decidable.

5 Conclusion

We have studied a recently introduced model of distributed timed-arc Petri nets.
The model is well motivated and captures e.g. the ideas behind the Globally



Properties of Distributed Timed-Arc Petri Nets 291

Asynchronous Locally Synchronous paradigm. We provide a formal process se-
mantics for the model and compare the expressiveness of LT nets versus GT nets.
We give answers to the most frequently studied decidability problems for Petri
net models — reachability and coverability — finding a very delicate decidability
borderline in the case of reachability for LT nets.

References

1. P.A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proc. of ICATPN
2001, volume 2075 of LNCS, pages 53–70, 2001.

2. T. Bolognesi and P. Cremonese. The weakness of some timed models for concurrent
systems. Technical Report CNUCE C89-29, CNUCE–C.N.R., 1989.

3. T. Bolognesi, F. Lucidi, and S. Trigila. From timed Petri nets to timed LOTOS.
In Proc. of the IFIP WG 6.1 Tenth International Symposium on Protocol Spec.,
Testing and Verification, pages 1–14, Amsterdam, 1990.

4. Fred D.J. Bowden. Modelling time in Petri nets. In Proceedings of the Second
Australia-Japan Workshop on Stochastic Models, 1996. http://www.itr.unisa
.edu.au/∼fbowden/pprs/stomod96/.

5. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A
model-checking tool for real-time systems. In Proc. of CAV’98, volume 1427 of
LNCS, pages 546–550, 1998.

6. U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Computation, 57:125–147, 1983.

7. H.M. Hanisch. Analysis of place/transition nets with timed-arcs and its application
to batch process control. In Application and Theory of Petri Nets, volume 691 of
LNCS, pages 282–299, 1993.

8. S. Hauck. Asynchronous design methodologies: An overview. In Proc. of IEEE,
volume 83, pages 69–93, 1995.

9. K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, 1997.

10. E.W. Mayr. An algorithm for the general Petri net reachability problem (prelim-
inary version). In Proc. of 13th Ann. ACM Symposium on Theory of Computing,
pages 238–246. Assoc. for Computing Machinery, 1981.

11. T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J. Berg, D. Lindqvist, H. Tenhunen,
and A.Postula. Evaluating benefits of globally asynchronous locally synchronous
VLSI architecture. In Proceedings of 16th Norchip, pages 50–57, 1998.

12. M. Nielsen, V. Sassone, and J. Srba. Towards a notion of distributed time for Petri
nets. In Proc. of ICATPN 2001, volume 2075 of LNCS, pages 23–31, 2001.

13. C. Ramchandani. Performance Evaluation of Asynchronous Concurrent Systems
by Timed Petri Nets. Ph.D. Thesis, Massachusetts Inst. of Tech., Cambridge, 1973.

14. V. Valero Ruiz, D. de Frutos Escrig, and O. Marroquin Alosno. Decidability of
properties of timed-arc Petri nets. In Proc. of ICATPN 2000, volume 1825 of
LNCS, pages 187–206, 2000.

15. V. Valero Ruiz, F. Cuartero Gomez, and D. de Frutos Escrig. On non-decidability
of reachability for timed-arc Petri nets. In Proc. of PNPM’99, pages 188–196, 1999.

16. J. Sifakis. Use of Petri nets for performance evaluation. In Proc. of the 3rd
International Symposium IFIP W.G. 7.3., Measuring, modelling and evaluating
computer systems , pages 75–93. Elsevier Science Publ., 1977.

17. J. Wang. Timed Petri Nets, Theory and Application. Kluwer Acad. Publ., 1998.


	1 Distributed Timed-Arc Petri Nets
	2 GALS Architectures
	3 Process Semantics for DTAPN
	4 Reachability and Coverability
	5 Conclusion
	References

