
Typing and Subtyping Mobility

in Boxed Ambients�

Massimo Merro and Vladimiro Sassone

University of Sussex

Abstract. We provide a novel type system for Bugliesi et al.’s Boxed
Ambients that combines value subtyping with mobility types. The former
is based on read/write exchange types, the latter builds on the notion
of ambient group. Mobility types allow to specify where an ambient is
allowed to stay, closing existing expressiveness gaps in the literature at
no additional complexity costs. Subtyping is aimed at achieving maximal
generality on both communication and mobility types. We then introduce
co-capabilities to express explicit permissions to access ambients. In this
setting, ambient types are refined to specify who is allowed to enter an
ambient, making a promising framework to model open systems.

Introduction

The calculus of Mobile Ambients, [8], abbreviated MA, is a novel process calculus
to describe mobile agents which focuses on three fundamental notions: location
awareness [9], mobile computation [4], and local communication. Papers such
as [8,5,7,3] demonstrate that MA can describe the run-time behaviour of mobile
agents very effectively. In MA, the term n[[[P]]] represents an agent, or ambient,
named n, executing the code P . Intuitively an ambient represents a mobile,
bounded, and protected space in which a computation takes place.

Ambient names, such as n, are used to control access to the ambient compu-
tation space and may be dynamically created, as in the π-calculus [16], by the
construct (νννn)P The ability to move and open ambients is regulated by capa-
bilities that processes possess by prior knowledge or acquire by communication.
As an example, the system

k[[[inn.R1 | R2]]] | n[[[openk.P | m[[[outn.Q1 | Q2]]]]]]

contains two ambients, k and n, running concurrently. The first, k, can migrate
to n by virtue of its capability inn. The second, n, contains a sub-ambient
m[[[. . .]]], in addition to the capability openk which allows the opening of any
ambient named k if any such ambient exists in the computation space of n.
� Research supported by ‘MyThS: Models and Types for Security in Mobile Dis-

tributed Systems’, EU FET-GC IST-2001-32617. The first author was funded by
EPSRC grant GR/M71169.

L. Brim et al. (Eds.): CONCUR 2002, LNCS 2421, pp. 304–320, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Typing and Subtyping Mobility in Boxed Ambients 305

Unlike other process calculi, MA focuses primarily on process mobility rather
than process communication. As a consequence, the need emerged soon of study-
ing static techniques for constraining the mobility behaviour of ambients. In [6],
the authors exhibited a type system to control whether or not an ambient is
mobile or may be opened. Subsequently, [5] refined that type system enriching
the type of ambient name n with a description of the ambients n may cross.
In order to circumvent the need for dependent types, ambients in programmer-
defined groups. The type of an ambient is then annotated with the capability of
crossing – either from outside, via in, or from inside, via out – the border of
ambients of certain groups.

In our opinion, the current mobility types of [5] have some limitations:

 Types are rather complex, due to the presence of the open capability, which
allows ambients to acquire new behaviours by opening contained ambients.

 No subtyping on mobility has been achieved.

 The interaction of subjective moves (triggered by a process running inside

an ambient) with the open construct tends to produce typings where all
ambients are typed mobile. This obliges the authors of [5] to extend MA
with objective moves, which move ambients from the outside.

 An anomaly arises in border-crossing control. Consider the system:

Odysseus[[[inHorse.outHorse.DESTROY TROY]]]
�
� Horse[[[inTroy]]]

�
� Troy[[[TROJANS]]]

where Odysseus plans to enter Troy for the well-known deed, with the well-
known method. This system is typeable in [5] under type assumptions of the
form: 1

Odysseus : amb[Achaean, cross[Toy]]
Horse : amb[Toy, cross[City]]
Troy : amb[City,]

They express that Odysseus is an ambient of group Achaean which is allowed
to cross the boundary of ambients of group Toy; Horse is an ambient of
group Toy, which may cross ambients of group City; finally, Troy is an
ambient of group City. Suppose now Odysseus moves into the Horse, which
subsequently moves into Troy, so that the system evolves to:

Troy[[[TROJANS | Horse[[[Odysseus[[[outHorse.DESTROY TROY]]]]]]]]].

Odysseus may then move out of the Horse and take the TROJANS by
surprise whom believed he did not have permission to traverse Troy’s walls.

 Ambients cannot determine which agents are allowed to traverse their bound-
aries.

This paper aims at finding an appropriate formalism that addresses the ques-
tions above within the ambient framework. It is well-known that many of the
difficulties of MA are caused by the open capability [2]; it thus seems a commend-
able endeavour to investigate variants of the ambient calculus that drop open.
1 We use simplified types here; in [5] types are more complex.

306 Massimo Merro and Vladimiro Sassone

Boxed Ambients [2], abbreviated BA, is a variant of MA, from which it inherits
the primitives in and out with exactly the same semantics. As for communi-
cation, BA relies on a completely different model which results from dropping
the open capability, and adopting communication across ambient boundaries,
between parent and children, similar to those found in the Seal calculus [18].
As pointed out in [2], BA retains much of the expressive power of MA while
enhancing the flexibility of typed communication with finer-grained, more ef-
fective mechanisms. This makes BA particularly suitable for modelling classical
security policies for resource protection and access control. For instance, in [1]
BA is used to model mandatory access control policies within a multilevel secu-
rity system, including both military security (no read-up, no write-down) and
commercial security (no read-up, no write-up).

We introduce a type system to control mobility in BA which profits of the
absence of the open capability. As in [5], we use ambient groups to express and
enforce properties of names indirectly, as properties of groups of names, but
avoiding dependent types. The absence of open simplifies types considerably, as
both communication and mobility behaviour of children do not influence the
types of their parents. Our types for ambient names consist of four components:
the group to which the ambient belongs; a component that describes the mobility
constraints of the ambient, viz. where the ambient is allowed to go/reside; one
that characterises the communications in which the ambient is involved; and,
finally, a set of markers that specify what the ambient name can be used for.
Processes and capabilities have similar types, though not identical. In particular,
their mobility types express where processes and capabilities may drive to, rather
than where they are allowed to stay.

We then equip our type system with a non-trivial form of subtyping which
deals with both mobility and communication aspects. Subtyping on mobility is
based on the idea that a process can be used wherever processes with a more
liberal behaviour (in terms of potential moves) is expected. For communication,
generality is again our motor. We employ read/write types which specify sep-
arately the type of legal inputs and outputs for processes, and allow a general
subsumption rule, so as to push both kinds of subtyping as far as possible. For
such a system of inference we prove a set of properties expressing formally the
intuitions behind our types. These, together with a subject reduction theorem,
make explicit the safety guarantees upheld by the present framework.

Our types for BA meet the first four requirements discussed previously. To go
further and attack the last requirement, in §4 we extend the syntax of BA with
co-capabilities, which express explicit permission to traverse boundaries. The
idea of introducing co-actions is borrowed from process calculi such as CCS [15]
or the π-calculus [16]. Our co-capabilities, are inspired by [19] and [13], where
explicit information about the crossing ambient may be required. Thus, for ex-
ample, in

m[[[inn.Q1 | l[[[outm.Q2]]]]]]
∣
∣ n[[[P]]]

∣
∣ R

Typing and Subtyping Mobility in Boxed Ambients 307

m may move into n if P has the form inm.P1 | P2, in which case the system
evolves to

n[[[m[[[Q1 | l[[[outm.Q2]]]]]] | P1 | P2]]]
∣
∣ R

Alternatively, l may emigrate from m if R has the form out l.R1 | R2, and then
the system evolves to

m[[[inn.Q1]]]
∣
∣ l[[[Q2]]]

∣
∣ n[[[P]]]

∣
∣ R1

∣
∣ R2.

We call the calculus with co-capabilities BSA, for Boxed Safe Ambients. Co-
capabilities in BSA are exercised by the target computation by (possibly) naming
the ambient allowed to traverse a boundary. In this manner, they allow to en-
hance ambient types by augmenting the type of n with the set of groups of
the ambients allowed to cross n’s boundary. The results for BA are smoothly
lifted to BSA. We believe that BSA is a promising framework for the analysis of
open systems, because no ambients can be entered – and thus attacked – by an
intruder unless the intruder’s group name appears in the type of the ambient.

The paper proceeds as follows. In §1 we review the untyped Boxed Ambients
and their standard semantics; §2 introduces the typed variant of Boxed Ambients
and presents the relative subject reduction theorem; §3 show how our types tackle
the Troy’s war example above. In §4, we introduce Boxed Safe Ambients and
their typing rules, illustrating their expressiveness again on the example of §3.
The paper ends with a discussion of related works. In this extended abstract all
proof are omitted, as is much of the discussion; complete proofs can be found
in [14].

1 The Boxed Ambients

In this section we review the Boxed Ambient calculus as introduced in [2].
The syntax of processes is given in Table 1, where N denotes an infinite set
of names. Inactivity, composition, restriction and replication are inherited from
mainstream concurrent calculi, most notably the π-calculus [16]. Specific of the
ambient calculus are the ambient construct, V [[[P]]], and the prefix via capabilities,
V.P . Capabilities are obtained from names; given a name n, the capability inn
allows entry into n, the capability outn allows exit out of n. Meaningless terms
such as inn[[[P]]] or n.P are ruled out by the type system in the next section.

Communication is (i) synchronous (though an asynchronous version has been
considered [2]); (ii) polyadic, we use boldface when appropriate to represent tu-
ples concisely, as in (xxx)η.P and 〈VVV 〉η.P ; and, most importantly, (iii) located and
across boundaries. Syntactically, located communication is obtained by means
of tags specifying the location where the communication has to take place. More
precisely, outputs (and similarly inputs) can take one of three forms: (i) 〈VVV 〉n.P ,
a message for sub-ambient n from its parent; (ii) 〈VVV 〉↑.P , a message for the par-
ent from a sub-ambient; (iii) 〈VVV 〉�.P , a local communication within the current
ambient boundaries. We will omit � in both 〈VVV 〉�.P and (xxx)�.P , so recovering
the usual MA notation.

308 Massimo Merro and Vladimiro Sassone

Table 1 The Boxed Ambients

Names: n, m, . . . , x, y, . . . ∈ N

Locations:
η ::= n names

�
� ↑ enclosing ambient
�
� � local

Processes: Values:
P ::= 000 nil process V, U ::= n name

�
� P1 | P2 composition

�
� in V may enter into V

�
� (νννn)P restriction

�
� out V may exit out of V

�
� !P replication

�
� V1.V2 path

�
� V [[[P]]] ambient
�
� V.P prefixing
�
� (xxx)η.P input
�
� 〈VVV 〉η.P output

We use a number of notational conventions. Parallel composition has the
lowest precedence among the operators. The process V.V ′.P is read as V.(V ′.P).
As usual, we omit trailing dead processes, writing V for V.000, 〈VVV 〉 for 〈VVV 〉.000,
and n[[[]]] for n[[[000]]]. Restriction (νννn)P and input prefix (xxx)η.P acts as binders
for names n and xxx, respectively. The set of free names of P , fn(P), is defined
accordingly.

The dynamics of the calculus is given in the form of a reduction relation as in
Table 2. As customary in process calculi, the reduction semantics is based on an
auxiliary relation called structural congruence, ≡, which brings the participants
of a potential interaction to contiguous positions. The reader is referred to [2] for
its formal definition. The reduction rules are divided in two groups: the mobility
rules and the communication rules. The former are exactly as in MA; the latter
add to the usual local communication of MA the location-based communication
across boundaries. In the communication rules we assume that tuples have the
same arity, a condition that later will be enforced by the type system.

2 Typing Mobility in Boxed Ambients

The original types for BA of [2] control that communication is well-typed, wher-
ever it happens. As processes in BA can communicate both locally and upwards,
each ambient needs to state explicitly both the local topic of conversation and
the topic of the conversation in its parent ambient. There is no need to keep
explicit track of communications in the children, as this information is available
as the topic of conversation locally in each children.

In this section we extend the types of [2] to control both communication and
mobility. The Typed Boxed Ambients are obtained by adding type annotations to
the syntax of Table 1 and inheriting the construct (νννG)P of [5] for group creation.

Typing and Subtyping Mobility in Boxed Ambients 309

Table 2 Reduction Rules

−→−→−→ is the least relation on processes closed under | Q, (νννn) , n[[[]]] such that:

mobility

n[[[inm.P | Q]]]
�
� m[[[R]]] −→−→−→ m[[[n[[[P | Q]]] | R]]] (Red In)

m[[[n[[[outm.P | Q]]] | R]]] −→−→−→ n[[[P | Q]]] | m[[[R]]] (Red Out)

communication

(xxx).P | 〈VVV 〉.Q −→−→−→ P{VVV/xxx} | Q (Red Comm Local)

(xxx)n.P | n[[[〈VVV 〉.Q | R]]] −→−→−→ P{VVV/xxx} | n[[[Q | R]]] (Red Comm Input n)

(xxx).P | n[[[〈VVV 〉↑.Q | R]]] −→−→−→ P{VVV/xxx} | n[[[Q | R]]] (Red Comm Output ↑)
〈VVV 〉n.P | n[[[(xxx).Q | R]]] −→−→−→ P | n[[[Q{VVV/xxx} | R]]] (Red Comm Output n)

〈VVV 〉.P | n[[[(xxx)↑.Q | R]]] −→−→−→ P | n[[[Q{VVV/xxx} | R]]] (Red Comm Input ↑)
congruence

P ≡ Q Q −→−→−→ R R ≡ S implies P → S (Red Struct)

The operator (νννG)P binds G in P ; the set of free groups of P , fg(P), is defined
accordingly. As in [5], groups may appear in the type annotations of both in-
put and name restriction, and the definition of structural congruence must be
extended to keep into account the new group operator.

2.1 The Types

The type system revolves around three main types: ambient types, process types
and capability types ; these are all interrelated to each other (actually mutually
recursive) and annotated with information on both communication and mobility.
A grammar for the types is given in Table 3.

The first component of ambient types is the group G which the ambient
belongs to. Process (resp. capability) types have a similar component that es-
tablishes the group of the ambients where the process (resp. capability) can be
executed.

The second component of ambient types describes the mobility constraints
within the ambient, expressed in terms of groups rather than actual names.
More precisely, in the mobility type mob[S], S represents the (set of groups of)
ambients where the ambient in question may reside. As ambients are finally
moved by processes, information about mobility must be attached to processes
too. Specifically, a process must declare the set of groups of ambients it may
drive the enclosing ambient to. For the same reason, since capabilities can be
used to form processes, we need to add the same component to capability types
as well.

The third component of ambient types disciplines communication along the
lines of [2]. In a communication type com[E,F], the exchange type E represents
the local topic of conversation, and F the one in the parent. As processes com-
municate with each other both inside and across ambients, type safety requires

310 Massimo Merro and Vladimiro Sassone

Table 3 Types for Boxed Ambients

Groups: G, H, . . .

Finite sets of groups: G, D, S, . . . U The universal set of groups

Ambients types:
A ::= ambχ[G, M, C] ambient of group G, for χ-actions, χ ⊆ {i, o, c, r, w},

with mobility type M, and communication type C
Process types:

Π ::= proc[G, M, C] process that can be enclosed in an ambient of group G,
may drive it to ambients whose groups are in M,
and communicates as described by type C

Capability types:
K ::= cap[G, M, F] capability that can appear in an ambient of group G,

may drive it to ambients whose groups are in M,
with exchange type F for local communication

Mobility types:
M ::= mob[G] mobility specifications

Communication types:
C ::= com[E, F] E is the exchange type for local communications,

F is the exchange type for upward communications
Exchange types:
E, F ::= rw[I, O] read/write values of type I and O (valid if O � I)

Message types:
I, O ::= ⊥ bottom message type

�
� W1 × . . . × Wktuple (111 is the null product)
�
� 	 top message type

Value types:
W, Y ::= A ambient name

�
� K capability

that the exchange of messages must be compatible with the communication type
associated to the ambient. It thus follows that processes have a communication
type exactly as the above. Things are slightly different for capabilities. Capabili-
ties determine where a process carries its enclosing ambient. Although ambients
cannot be opened, the processes they contain can still interact with the receiv-
ing ambients by means of upward communication. As a consequence, in order
to guarantee safety in mobility, capability types must contain the information
about the type of the conversation at destination.

The final component of ambient types – that we denote as an index attached
to the keyword amb – is a set χ ⊆ {i, o, c, r, w} which determines the ambient
name can be used for, viz. in and out actions, creation of an ambient, read-
ing from and writing to a subambient. This allows to give out names together
with restricted capabilities, and refines the capability-passing mechanism of the
ambient calculus in that it transmits full knowledge of ambient names, yet se-
lectively releasing rights to act on it. As a matter of notation, we write ambiow
for amb{i,o,w} and similarly for all χ.

Values in BA consist of tuples of names and capabilities. Since our intention
is to have subtyping on values, we must separate the read and write capabilities
of exchange types, as initiated in [17]. We do this in a simple, standard way

Typing and Subtyping Mobility in Boxed Ambients 311

Table 4 Subtype Relation

(sAmb)
χ1 ⊆ χ0 ⊆ {i, o, c, r, w}

ambχ0 [G, M, C]l ambχ1 [G, M, C]
(sProc)

M0 lM1; C0 l C1

proc[G, M0, C0]l proc[G, M1, C1]

(sCap)
M0 lM1; F0 l F1

cap[G, M0, F0]l cap[G, M1, F1]
(sMob)

G0 ⊆ G1

mob[G0]l mob[G1]

(sCom)
E0 l E1; F0 l F1

com[E0, F0]l com[E1, F1]
(sExc)

I1 l I0; O0 lO1

rw[I0, O0]l rw[I1, O1]

(sMsg)
−

⊥lW1 × . . . × Wk l� (sTuple)
Wi l Yi; i ∈ 1..k

W1 × . . . × Wk l Y1 × . . . × Yk

similar to [22,20]. Our exchange types have the form rw[I,O] and represent the
capability of reading and writing values of, respectively, the message types I
and O. Message types contain tuple types W1 × . . .×Wk to exchange tuples of
values. For k = 0, the empty tuple type allows the exchange of empty messages,
that is, it allows pure synchronisation. Besides tuple types, message types in-
clude standard bottom (⊥) and top (�) types that allow to express interesting
types. One of these is zero � rw[�,⊥], the least exchange type, which describes
processes that engage in no communication. As customary with input/output
types, we require in rw[I,O] that O is a subtype of I, so that a process output
is compatible with (and more specific than) its input. Because of such restric-
tion, that will be assumed throughout the paper, the set of valid types is defined
simultaneously with the subtype relation �, whose formal definition is given in
Table 4. We will discuss the details in §2.3 below. For the purposes of this section
it suffices to say what follows.

Subtyping on communication allows processes with a communication type C in-
side ambients with a communication type C′ if C � C′. For instance, a
process that exchanges no messages can reside in a ambient regardless of its
topic of conversation.

Subtyping on mobility is essentially based on subsets of set of groups, as for-
malised by rule (sMob). A process driving to ambients with groups in D is
allowed to reside in ambients which can move into ambients whose groups
belongs to D′, with D ⊆ D′.

In §2.3 we will give a better account about subtyping.

2.2 Type Assignment

A type environment Γ is a list of assumptions about groups, names and their
types of one of two forms: G, declaring the existence of group G, or n : A, declaring
a name n of type A. Since types contain references to groups, the order of
assumptions in Γ is relevant; to describe valid environments we use judgements
of the form Γ �
 that make sure that names and groups are not repeated

312 Massimo Merro and Vladimiro Sassone

Table 5 Good Values

(Val n)
Γ, n : W, Γ ′
 �

Γ, n : W, Γ ′
 n : W

(Val pfx)
Γ
 V0 : K; Γ
 V1 : K

Γ
 V0.V1 : K
(Val in)

Γ
 V : ambi[G, M, com[E, F]]
Γ
 inV : cap[H, mob[{G}], E]

H ∈ dom(Γ)

(Val sub)
Γ
 V : W ; W � W ′

Γ
 V : W ′ (Val out)
Γ
 V : ambo[G, M, com[E, F]]

Γ
 outV : cap[H, M, F]
H ∈ dom(Γ)

and that groups are defined before being referred to. The formal definition of
type environments and domain of an environment, and the inference rules for
well-formed environments are standard [5].

Table 5 presents the typing rules for well-formed values. Rules (Val n) and
(Val sub) are straightforward. Rule (Val pfx) decrees that the type of a path
of capabilities is the common type of its components. Notice that, in the light of
(Val sub) and of the subtyping rule (sCap) of Table 4, this actually means that
paths are assigned a common super type of their component capabilities. In rule
(Val in), exploiting the subtyping rule (sAmb), we require the in-capability on
ambient name n to form inn. The conclusion states that the capability inV
can reside inside any ambient of group H, for any H ∈ dom(Γ), and can drive
its enclosing ambient into an ambient of group G (viz. V ’s group) with local
exchange type E (viz. V ’s local exchange type). Rule (Val out) is similar. Its
conclusion states that outV can drive the enclosing ambient into ambients with
groups mentioned in M (viz. V ’s mobility type) and local exchange type F
(viz. V ’s upward exchange type).

The inference rules in Tables 6 and 7 are for well-typed processes as expressed
by judgements of the form Γ � P : Π . We divide the rules in two groups, dealing
separately with mobility and communication. Table 6 focuses on mobility. Rule
(Pro pfx) builds on the subtyping rules (sCap) and (sProc) to state that the
characteristics of the capabilities present in a process must be subsumed in its
type.

Rule (Pro Amb) is crucial. It says that a process V [[[P]]] can be formed only
if we have the capability to create an ambient called V . Furthermore, P can
run inside V only if P and V agree on the group, the mobility type, and the
communication type. The resulting ambient V [[[P]]] is a process that (i) can be
executed in any ambient of group G, provided G is a place where V is allowed to
reside; (ii) will not drive an enclosing ambients anywhere; and (iii) inherits P ’s
upward exchange type as its local exchange type and, finally, has a minimal
upward exchange type. As a consequence of the requirement G ∈ S, the set S is
never empty; indeed an ambient, even if immobile, always resides somewhere.
Notice the role played here by the subtyping rule (sProc). The remaining rules
in Table 6 are straightforward.

Table 7 adapts the rules for communication of [2] taking subtyping into ac-
count.

Typing and Subtyping Mobility in Boxed Ambients 313

Table 6 Good Processes - Mobility

(Pro pfx)
Γ
 V : cap[G, M, F]; Γ
 P : proc[G, M, com[E, F]]

Γ
 V.P : proc[G, M, com[E, F]]

(Pro amb)
Γ
 V : ambc[H, mob[S], com[E, F]]; Γ
 P : proc[H, mob[S], com[E, F]]

Γ
 V [[[P]]] : proc[G, mob[∅], com[F, zero]]
G ∈ S

(Pro res)
Γ, n : A
 P : Π

Γ
 (νννn : A)P : Π
(Pro gres)

Γ, G
 P : Π

Γ
 (νννG)P : Π
G
∈ fg(Π)

(Pro 000)
G ∈ dom(Γ)

Γ
 000 : proc[G, mob[∅], com[zero, zero]]
(Pro par)

Γ
 P : Π; Γ
 Q : Π

Γ
 P | Q : Π

(Pro rep)
Γ
 P : Π

Γ
 !P : Π
(Pro sub)

Γ
 P : Π Π � Π′

Γ
 P : Π′

Table 7 Good Processes - Communication

(Pro inp �)
Γ, x1:W1, . . . , xk:Wk
 P : proc[G, M, com[rw[I, O], F]]

Γ
 (x1:W1, . . . , xk:Wk).P : proc[G, M, com[rw[I, O], F]]
I � W1 × . . . × Wk

(Pro out �)
Γ
 V1:W1, . . . , Vk:Wk; Γ
 P : proc[G, M, com[rw[I, W1 × . . . × Wk], F]]

Γ
 〈V1, . . . , Vk〉.P : proc[G, M, com[rw[I, W1 × . . . × Wk], F]]

(Pro inp ↑)
Γ, x1:W1, . . . , xk:Wk
 P : proc[G, M, com[E, rw[I, O]]]

Γ
 (x1:W1, . . . , xk:Wk)↑.P : proc[G, M, com[E, rw[I, O]]]
I � W1 × . . . × Wk

(Pro out ↑)
Γ
 V1:W1, . . . , Vk:Wk; Γ
 P : proc[G, M, com[E, rw[I, W1 × . . . × Wk]]]

Γ
 〈V1, . . . , Vk〉↑.P : proc[G, M, com[E, rw[I, W1 × . . . × Wk]]]

(Pro inp V)
Γ
 V :ambr[G, M, com[rw[I, O], F]]; Γ, x1:W1, . . . , xk:Wk
 P : Π

Γ
 (x1:W1, . . . , xk:Wk)V .P : Π
I � W1 × . . . × Wk

(Pro out V)
Γ
 V :ambw[G, M, com[rw[I, Wk × . . . × Wk], F]]; Γ
 U1:W1, . . . , Uk:Wk; Γ
 P : Π

Γ
 〈U1, . . . , Uk〉V .P : Π

2.3 Subtyping

Subtyping has a truly relevant impact on type systems for Ambients. Subtyping
on communication allows to have processes that exchange no messages in ambi-
ents regardless of the local topic of conversation. This idea has been proposed
in [22]. In the current paper we put forward the use of subtyping for mobility
types, unveiling its beneficial impact and general usefulness for the purpose. The
prime idea here is to allow a process that may drive ambients to D wherever a
processes that travels to D′, with D ⊆ D′, is expected.

Our aim of fully integrating subtyping in both mobility and communication
types is achieved in rules (sProc) and (sCap), that state the covariance of
process and capability types with their mobility and communication components.
Notice that ambient types must be kept invariant, apart from the capabilities χ
that – as typical of these ‘may-use-for’ situations – follow a contravariant typing.

314 Massimo Merro and Vladimiro Sassone

Indeed no kind of variance is admissible for mobility or communication, as they
both give rise to phony capabilities that trick processes into runtime errors. For
instance, if ambient types were to be covariant, their mobility assumptions could
be easily defied. Processes might falsely believe that, say, any ambient n at type
ambχ[, mob[S],], with G �∈ S, is allowed to stay in any (ambient of group) G. In
this manner, n might end up sitting where it should not. The same net effect
is obtained by assuming contravariance, due to the interplay with covariance
of process types in their mobility components. Similar arguments can be used
to show that (sAmb) must be invariant also in the communication component
(details can be found in [14]).

Finally, although in [2] there is no explicit subtyping on names or capabilities,
the rules corresponding to our (Val In) and (Val Out) allow inn and outn
an exchange type that is a subtype of the one declared for n. This is effectively
a form of contravariant subtyping on names. We believe that our approach has
advantages over that, as it allows deep, general subtyping on exchange types
which, as discussed in [14], constitutes a major difference with the approach
of [2].

2.4 Properties of Typing

As stated below, our subtype relation satisfies a certain number of properties.

Theorem 1 (Properties of �). The subtype relation is a partial order with
all bounded joins and meets.

Existing joins (�) and meets (�) can be expressed quite easily starting from
componentwise set union and intersection for mobility types, e.g., mob[S0] �
mob[S1] � mob[S0∪S1], from the obvious roles of ⊥ and � among message types,
and from their covariant/contravariant extension to exchange types, that is

rw[I0, O0]�rw[I1, O1] , rw[I0�I1, O0�O1] , rw[I0, O0]�rw[I1, O1] , rw[I0�I1, O0�O1].

As a whole, our type systems admits a quite simple algorithmic version – i.e., an
equivalent type system with no subsumption rules nor reflexivity and transitivity
rules for � – that helps to prove the following results, intended to formalise the
safety guarantees provided by our type system. In the following, we use ‘ ’ to
avoid naming irrelevant parts of types.

Theorem 2 (Communication Properties). Whenever for some types W1 ×
. . .×Wk and Π one of the following holds,

Γ
 (x1:W1, . . . , xk:Wk).P | 〈VVV 〉.Q : Π;

Γ
 (x1:W1, . . . , xk:Wk).P | m[[[〈VVV 〉↑.Q]]] : Π; Γ
 〈VVV 〉.Q | m[[[(x1:W1, . . . , xk:Wk)↑.P]]] : Π,

Γ
 (x1:W1, . . . , xk:Wk)m.P | m[[[〈VVV 〉.Q]]] : Π; Γ
 〈VVV 〉m.Q | m[[[(x1:W1, . . . , xk:Wk).P]]] : Π

then VVV = V1, . . . , Vk and Γ � V1 : Y1, . . . , Vk : Yk with Y1 × . . . × Yk � W1 ×
. . .×Wk.

Typing and Subtyping Mobility in Boxed Ambients 315

Theorem 3 (Mobility Properties). Whenever Γ � n[[[inm.P | Q]]] | m[[[R]]] :
Π, then

Γ � m : ambχ0 [M, ,] and Γ � n : ambχ1 [, mob[S],]

with M ∈ S, i, c ∈ χ0 and c ∈ χ1.
Moreover, if for some type Π we have Γ � m[[[n[[[outm.P | Q]]] | R]]] : Π, then

Γ � m : ambχ0 [M, mob[Sm],] and Γ � n : ambχ1 [N, mob[Sn],]

with o, c ∈ χ0, c ∈ χ1, M ∈ Sn and Sm ⊆ Sn.

Theorem 4 (Subject Congruence and Reduction). If Γ � P : Π and
P ≡ Q or P −→−→−→ Q, then there exist groups G0, . . .Gk such that G0, . . . , Gk, Γ �
Q : Π .

3 Some MyThS

As pointed out in the introduction, the system

Odysseus[[[inHorse.outHorse.DESTROY TROY]]] | Horse[[[inTroy]]] | Troy[[[TROJANS]]]

can be typed with the types of [5] under hypotheses that say very little about the
intentions of Odysseus to traverse Troy’s walls or indeed about the permission
he might hold for doing so. On the contrary, in our system the term above can
be only typed under assumptions of the kind

Odysseus : ambc[Achaean, mob[{Ground, Toy, City}],]
Horse : ambioc[Toy, mob[{Ground, City}],]
Troy : ambioc[City, ,]

that make explicit the hypotheses that Odysseus is an Achaean intentioned to
move into a City. Such information should be enough to alert the TROJANS
about an attack on Troy by Odysseus. On the other hand, under assumptions
of the form

Odysseus : ambc[Achaean, mob[{Ground, Toy}],]

the TROJANS should not fear any attack from Odysseus.
So far so good. Provided the TROJANS are in a position of believing

Odysseus’s declared intentions of just ‘moving into some Toy’ everything is in
place. But what if they suspect that the wily Odysseus might be lying about
his real intentions, that is about his real type? The situation would then be
perfectly analogous to what happens in the real-world of open-ended systems,
where we cannot ask – nor afford – to type-check all systems which we interact
with and, at the same time, we cannot trust their declarations of goodwill. What
precautions can be taken to avoid being attacked by a malicious agent? What
precautions can the TROJANS take to avoid Odysseus’s ravage?

A first solution is to have a type inference algorithm to infer a proper type
for the external code. Then, analysing the mobility type of Odysseus, Troy can

316 Massimo Merro and Vladimiro Sassone

check whether its enemy is intentioned to move in. A more robust alternative is
to provide Troy with a tool to explicitly declare the ambients allowed to move in.
For instance, one may extend the mobility types with a second component that
records the groups of those agents which are allowed to move into the ambient
(in this case Troy). This would permit checking in movements by simply testing
whether the moving ambients is accepted at destination. Unfortunately, we could
not do the same test for out actions because target ambients in out movements
may vary at run-time.

We avoid the obstacle by introducing the Boxed Safe Ambients a variant of
BA enriched with co-capabilities to express permissions to move into ambients.

4 Safe Boxed Ambients

The Boxed Safe Ambients, abbreviated BSA, are obtained by extending the
definition of Values of Table 1 as follows:

V ::= . . . as in Typed Boxed Ambients
∣
∣ inα α ∈ { n, �} allow enter of n or of all
∣
∣ outα α ∈ {n, �} allow exit of n or of all

Using co-capabilities, a BSA ambient can discriminate which ambient groups
are allowed to enter its computation space, and when. The co-capabilities of
BSA, inspired by [12,13,19], are a novel combination of existing proposals. In
particular, both in and out co-capabilities are placed in the target computation,
as in [13]. However, unlike [13], we allow both explicit and anonymous co-
capabilities as in [19] and [12], respectively. The former indicates explicitly the
name of the ambient allowed to cross the ambient boundary; the latter represents
a general permission to cross the boundary usable by all.

The reduction relation is obtained by replacing the rules (Red In) and (Red
Out) of Table 2 with the following rules.

n[[[inm.P | Q]]] | m[[[inα.R | S]]] −→−→−→ m[[[n[[[P | Q]]] | R | S]]] for α ∈ {�, n} (Red In)

m[[[n[[[outm.P | Q]]] | R]]] | outα.S −→−→−→ n[[[P | Q]]] | m[[[R]]] | S for α ∈ {�, n} (Red Out)

The types for BSA are obtained by enriching the mobility types of Table 3
with an extra information about the groups of ambients allowed to stay in the
given ambient:

M ::= mob[S,C].

The subtyping rules of Table 4 are adapted by replacing the rule (sMob) with:

(sMob)
G0 ⊆ G1, C0 ⊆ C1

mob[G0,C0] � mob[G1,C1]
.

The inference rules for well-typed values of Table 5 must be adapted to
take into account the new component of the capability types, as in Table 8.
Rules (Val inV) and (Val outV) are like the corresponding ones in Table 5.

Typing and Subtyping Mobility in Boxed Ambients 317

Table 8 Good Values in BSA (overlay on Table 5)

(Val inV)
Γ
 V : ambi[G, M, com[E, F]]

Γ
 inV : cap[H, mob[{G}, ∅], E]

(Val out V)
Γ
 V : ambo[G, mob[S, C], com[E, F]]

Γ
 outV : cap[H, mob[S, ∅], F]

(Val inV)
Γ
 V : ambi[G, M, com[E, F]]

Γ
 inV : cap[H, mob[∅, {G}], F]

(Val out V)
Γ
 V : ambo[G, M, com[E, F]]

Γ
 outV : cap[H, mob[∅, {G}], F]

(Val in �)
G ∈ dom(Γ)

Γ
 in � : cap[G, mob[∅, U], zero]

(Val out �)
G ∈ dom(Γ)

Γ
 out � : cap[G, mob[∅, U], zero]

In rules (Val inV), (Val outV), (Val inV), and (Val outV) we require H ∈ dom(Γ).

Table 9 Good Processes - Mobility (overlay on Table 6)

(Pro pfx)
Γ
 V : cap[G, M, F]; Γ
 P : proc[G, M, com[E, F]]

Γ
 V.P : proc[G, M, com[E, F]]

(Pro 000)
G ∈ dom(Γ)

Γ
 000 : proc[G, mob[∅, ∅], com[zero, zero]]

(Pro amb)
Γ
 V : ambc[H, mob[S, C], com[E, F]]; Γ
 P : proc[H, mob[S,C], com[E, F]]

Γ
 V [[[P]]] : proc[G, mob[∅, {H}], com[F, zero]]
G ∈ S

We simply add a second empty component to the mobility type, denoting that
these capabilities allow no incoming code. Dually, rules (Val inV) and (Val

outV) do not trigger movements, but allow inbound code. Thus, the resulting
mobility types in both conclusions have the first component empty, while the
second one record the groups of possible visitors (i.e. the group of V). The third
component of both capability types is the upward exchange type of V . As for
rules (Val in �) and (Val out �), they differ from the previous ones in the
second component of the mobility types where the universal set of groups U is
used to reflect the anonymous nature of the construct. Moreover, in both cases
the exchange type is zero, the least exchange type, because nothing is known
about the communication types of the incoming ambients.

The inference rules for well-typed processes are changed as in Table 9; the
remaining rules are changed in the obvious manner.

Our results extends smoothly to BSA. In particular, the Subject Reduction
Theorem 4 can be restated in formally identical terms for BSA as for BA. The
new results concern the added control power granted to BSA by co-capabilities.

Theorem 5 (Control Properties). In addition to the properties of Theo-
rems 2 and 3, whenever

Γ � m[[[inα.P | Q]]] : Π or Γ � m[[[outα.P | Q]]] : Π with α ∈ {�, n},

318 Massimo Merro and Vladimiro Sassone

then Γ � m : ambχ0 [, mob[,C],] and

– either α = � and C = U,
– or α = n with Γ � n : ambχ1 [N, ,] and N ∈ C.

4.1 Using Co-capabilities to Defend Troy

The system discussed in §3 can be rewritten in BSA as follows.

THE TROJAN WAR � Odysseus[[[inHorse.outHorse.DESTROY TROY]]]
∣
∣Horse[[[in � .inTroy]]]
∣
∣Troy[[[inHorse.TROJANS | outOdysseus .SINON]]]

Here, although the TROJANS let the Horse inside the city walls, Odysseus still
needs a co-capability, such as outOdysseus executed by SINON from Troy, to be
able to get out of the Horse. However, a behaviour like SINON ’s from a process
running in Troy can only be well-typed if Troy has a type allowing ambients of
group Achaean to enter Troy, as for instance the following one.

Troy : ambioc[City, mob[, {Toy, Achaean}],]

Of course, such a choice would be suicidal for Troy!
On the other hand, consider the system below, where we remove the security

breach represented by SINON.

THE TROJAN TRAP � Odysseus[[[inHorse.outHorse.DESTROY TROY]]]
∣
∣ Horse[[[in � .inTroy]]]

∣
∣ Troy[[[inHorse.TROJANS]]]

This situation would be perfectly safe for Troy (but dangerous for Odysseus !)
provided we can type it under the assumptions of the form

Odysseus : ambc[Achaean, ,]
Horse : ambioc[Toy, , com[E, zero]]
Troy : ambioc[City, mob[∅,C],]

with Achaean �∈ C. In fact, even though the Horse gets inside the walls no
TROJANS will ever give Odysseus permission to get out of it (and he will
be stuck to starvation inside it), as assured by the condition for Achaean �∈
C. Furthermore, the upward exchange type of the Horse prevents leakage of
information from Troy.

5 Conclusion and Related Work

We have presented a powerful type system to control communication and mo-
bility within Bugliesi et al.’s Boxed Ambients. A major feature of our approach
is the extensive use of a subtyping relation well integrated and crucially relied

Typing and Subtyping Mobility in Boxed Ambients 319

upon within the system. Our type system as a whole enjoys the expected prop-
erty of subject reduction and provides strong safety guarantees for well-typed
terms. These results are formally stated in §2 and §4 and exemplified in §3. We
are currently investigating type inference algorithms.

Our types and subtyping compare well with related proposals in the liter-
ature. In particular, while the treatment of exchange types is similar to Zim-
mer’s [22] and Yoshida and Hennessy’s [20] – in turn elaborations over Pierce
and Sangiorgi’s input/output types [17] – we know of no similar approaches to
mobility types. Work of Yoshida and Hennessy’s [21] and Castagna et al.’s [11]
use subtyping on interface types for processes of, respectively, a higher-order π
calculus and the Seal calculus. These approaches, however, are not directly con-
cerned with control of subjective mobility. On the contrary, De Nicola et al.’s [10]
focuses on mobility control using subtyping over process capabilities, but for a
Linda-like language rather far from ours.

In the second part of the paper we extended the Boxed Ambients with a ver-
sion of co-capabilities where the entering/exiting ambient can, though need not,
be explicitly mentioned. The information gathered in ambient types, together
with the power granted to the calculus by co-capabilities, allow to express prop-
erties not expressible in previous frameworks. In particular, they permit to deal
with situations typical of open-ended systems, as we exemplified by means of the
Troy’s War example. We believe that our approach here is totally compatible
with the moded types of [2] and plan in future work to investigate the matter
further.

Finally, note that within our type theory it is possible to analyse immobility
properties of ambients. Namely, n[[[P]]] is immobile when P can be assigned a type
of the form proc[, mob[∅],]. However, prescribing that an ambient cannot be
moved is a different matter. Recall that the mobility component of an ambient
type describes where ambients are allowed to stay, and not to travel to, as for
process types. Assigning mob[∅] as mobility type will therefore not help. (As a
matter of fact, and as revealed by inspection of rule (Pro Amb), S can never
be empty.) This is, we believe, a minor point that can be handled on top of
the existing framework with minimal changes. For instance, it would be enough
to think of the set of group names as partitioned in two infinite subsets: the
mobile and the immobile groups. Then, we only need to add to (Val In) and
(Val Out) the side condition that H is mobile. Ambients could then be declared
immobile by assigning them – either in Γ or in a name declarations – to an
immobile group.

References

1. M. Bugliesi, G. Castagna and S. Crafa. Reasoning about security in mobile ambi-
ents. In Proc. CONCUR 2001, volume 2154 Lecture Notes in Computer Science,
Springer, 2001. 306

2. M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. TACS 2001,
volume 2215 of Lecture Notes in Computer Science, Springer, 2001. 305, 306, 307,
308, 309, 312, 314, 319

320 Massimo Merro and Vladimiro Sassone

3. L. Cardelli and G. Ghelli. A query language based an the ambient logic. In Proc.
ESOP 2001, volume 2028of Lecture Notes in Computer Science, Springer, 2001.
304

4. L. Cardelli. Wide area computation, In Proc. ICALP 1999, volume 1644 of Lecture
Notes in Computer Science, Springer, 1999. 304

5. L. Cardelli, G. Ghelli, and A. Gordon. Ambient groups and mobility types. In Proc.
IFIP TCS 2000, volume 1872 of Lecture Notes in Computer Science, Springer,
2000. 304, 305, 306, 308, 309, 312, 315

6. L. Cardelli and A. Gordon. Types for mobile ambients. In Proc. of POPL’99, ACM
Press, 1999. 305

7. L. Cardelli and A. Gordon. Anytime, anywhere: Modal logics for mobile ambients.
In Proc. of POPL 2000, ACM Press, 2000. 304

8. L. Cardelli and A. Gordon. Mobile nmbients. Theoretical Computer Science,
240(1):177213, 2000. An extended abstract appeared in Proc. of FoSSaCS 1998,
volume 1378 of Lecture Notes in Computer Science, Springer, 1998. 304

9. I. Castellani. Process algebras with localities. In J. Bergstra, A. Ponse, and S.
Smolka, (Eds), Handbook of Process Algebra, 945-1045, North-Holland, 2001. 304

10. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: A kernel language for agents
interaction und mobility. IEEE Trans. an Software Engineering, 24(5), IEEE Press,
1998. 319

11. G. Ghelli G. Castagna and F. Zappa Nardelli. Typing mobility in the seal calcu-
lus. In Proc. CONCUR 2001, volume 2154 Lecture Notes in Computer Science,
Springer, 2001. 319

12. E Levi and D. Sangiorgi. Controlling interference in ambients. In Proc. POPL 2000,
ACM Press. 316

13. M. Merro and M. Hennessy. Bisimulation congruences in safe ambients. Proc.
POPL’02, ACM Press, 2002 306, 316

14. M. Merro and V Sassone. Typing and subtyping mobility in boxed ambients. To
appear as Technical Report available at http://www.cogs.susx.ac.uk/reports. Uni-
versity of Sussex. 307, 314

15. R. Milner. Communication und Concurrency. Prentice Hall, 1989. 306
16. R. Milner, J. Parrow, and D. Walken A calculus of mobile processes, (Parts I und

II). Information and Computation, 100:1-77, 1992. 304, 306, 307
17. B. Pierce and D. Sangiorgi. Typing und subtyping for mobile processes. Journal of

Mathematical Structures in Computer Science, 6(5):409-454, 1996. 310, 319
18. J. Vitek and G. Castagna. Seal: A framework for secure mobile computations.

In Internet Programming Languages, volume 1686 of Lecture Notes in Computer
Science, Springer, 1999. 306

19. Y Yang, X. Guan, and J. You. Typing evolving nmbients. Information Processing
Letters, 80(5):265-270, 2001. 306, 316

20. N. Yoshida and M. Hennessy. Subtyping and locality in distributed higher order
processes. In Proc. CONCUR 1999, volume 1664 of Lecture Notes in Computer
Science, Springer, 1999. 311, 319

21. N. Yoshida and M. Hennessy. Assigning types to processes. In Proc. LICS 2000,
IEEE Press, 2000. 319

22. P. Zimmer. Subtyping and typing algorithms for mobile ambients. In Proc. FoS-
SaCS 2000, volume 1784 of Lecture Notes in Computer Science, Springer, 2000.
311, 313, 319

	Typing and Subtyping Mobility in Boxed Ambients
	Introduction
	The Boxed Ambients
	Typing Mobility in Boxed Ambients
	The Types
	Type Assignment
	Subtyping
	Properties of Typing

	Some MyThS
	Safe Boxed Ambients
	Using Co-capabilities to Defend Troy

	Conclusion and Related Work

