
Jeeg: A Programming Language for
Concurrent Objects Synchronization

Giuseppe Milicia
BRICS - Basic Research in Computer Science

University of Aarhus, Denmark

milicia@brics.dk

Vladimiro Sassone
School of Cognitive and Computing Sciences

University of Sussex, United Kingdom

vs@susx.ac.uk

ABSTRACT
We introduce Jeeg, a dialect of Java based on a declara-
tive replacement of the synchronization mechanisms of Java
that results in a complete decoupling of the ‘business’ and
the ‘synchronization’ code of classes. Synchronization con-
straints in Jeeg are expressed in a linear temporal logic which
allows to effectively limit the occurrence of the inheritance
anomaly that commonly affects concurrent object oriented
languages. Jeeg is inspired by the current trend in aspect
oriented languages. In a Jeeg program the sequential and
concurrent aspects of object behaviors are decoupled: spec-
ified separately by the programmer these are then weaved
together by the Jeeg compiler.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Concurrent programming structures, Inheri-
tance; D.1.3 [Programming techniques]: Concurrent Pro-
gramming

General Terms
Languages, Design

Keywords
Java, Inheritance Anomaly, Temporal Logic

1. INTRODUCTION
In the late eighties, the first experiments in mixing object

oriented programming languages and concurrency unveiled
serious difficulties in merging the two concepts [1, 3]. Typ-
ically, the code for concurrency control, interwoven in the
business code of classes, represented an obstacle to code in-
heritance, making it essentially impossible even in simple,
common situations. The term inheritance anomaly [16] was
coined to refer to the issue. Indeed, the problems arising
from the interaction of inheritance and concurrency were

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JGI’02, November 3–5, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-599-8/02/0011 ...$5.00.

considered so severe as to suggest removing inheritance from
concurrent object oriented languages entirely [1].

Commonly, in object oriented code, the set of messages
accepted by an object is not uniform in time. Depending on
the object’s state, some of its methods will be unavailable,
as e.g., pop from a empty stack, or put on a full buffer. In
sequential situations, it is sometimes conceivable for clients
to keep track of which methods are enabled and which are
not. For instance, it could be required of the stack user to
know at any given point in time whether or not the stack
is empty. In a concurrent scenario, however, this is clearly
not an option. Clients have no way of knowing about other
clients, and any cooperation in this respect requires non-
trivial, specific protocols. Our only option is to interweave
the stack code with code that controls access from clients.
Concurrent objects must take direct control of their synchro-
nization code, and the phenomenon of inheritance anomaly
sets in, forcing programmers to override inherited code in
order to refine the synchronization code therein. The situ-
ation can be exemplified in a simple case by the following
idealized pseudo-code of a buffer.

class Buffer {
...

void put(Object el) {
if ("buffer not full ") ...

}

Object get() {
if ("buffer not empty ") ...

}
}

Suppose now that to enhance Buffer we wish to add, for
instance, method freeze that makes it read-only. Whatever
the original chunks of code for "buffer not ...", chances
are that they must be totally rewritten to take into account
the new enabling condition.

Generally speaking, the inheritance anomaly has been
classified in three broad varieties [16] that we review below.

Partitioning of states. Inspired by the example above,
one may disentangle code and synchronization conditions by
describing methods enabling according to a partition of the
object’s states. To describe the behavior of class Buffer, for
instance, the state can be partitioned in three sets: empty,
partial, and full, the former containing the states in which
the buffer is empty – so that get is inhibited – the latter
those in which it is full – so that is put to be disallowed.

212

One can then specify

put: requires not full

get: requires not empty

and refine the code of get and put to specify the state transi-
tions. For instance, get would declare the conditions under
which the buffer becomes empty or partial:

Object get() {
...

if ("buffer is now empty ") become empty;

else become partial;

}
The inheritance anomaly here surfaces again, as derived
classes may force a refinement of the state partition. As
an example, consider adding a method get2 that retrieves
two elements at once. Alongside empty and full, it is nec-
essary to distinguish those states where the buffer contains
exactly one element. Clearly, the state transitions specified
in get and put must be re-described accordingly.

History-sensitiveness of acceptable states. When
method enabling depends on a object’s past history rather
than, as above, on its object’s state, a different form of in-
heritance anomaly occurs. Suppose for instance that we
want to refine our buffer with a method gget that works
like get but that cannot be executed immediately after a
get. Clearly, that can only be achieved in Java adding code
to get to keep track of its invocations. That is, we have to
rewrite the entire class. We will revisit this problem later
on. A similar situation arises enforcing a password expira-
tion policy whereby the method login cannot be executed
k times without an intervening call to passwd.

Modification of acceptable states. A third kind of
anomaly happens with mix-in classes, that is classes cre-
ated to be mixed-into other classes to add to their behavior.
The typical situation arises when one wishes to enrich a
class with a method that influences the acceptance states
of the original class’ methods. Our previous example of
the method freeze belongs essentially to this category of
anomaly. Similarly, it is reasonable to expect to be able to
design a

class Lock {
...
void lock() { ...; }
void unlock() { ...; }

}

to be used to add lock capabilities to clients classes by means
of the standard inheritance mechanism. But, clearly enough,
(multiple) inheritance of Lock and Buffer does nothing to-
wards creating a lockable buffer, unless we completely re-
code get and put to keep into account the state of the Lock

component of the object.
Although modern programming languages provide con-

currency and inheritance, the inheritance anomaly is most
commonly ignored. Indeed, Java and C# are mainstream
concurrent object oriented languages whose synchronization
primitives are based exclusively on (a procedural use of)
locks and monitors.

Although no generally accepted solution has emerged so
far, several approaches have appeared in the literature that
mitigate the inheritance anomaly. Our proposal, Jeeg, fo-
cuses on Java. Jeeg is a dialect of Java based on method

guards whose particularity is to address history-sensitive in-
heritance anomaly. As in guard based languages, methods
are labeled by formulae that describe their enabling condi-
tion. The novelty of the approach is that we use (a ver-
sion of) Linear Temporal Logic [22] (LTL), so as to allow
expressing properties based on the history of the computa-
tion. Exploiting the expressiveness of LTL, Jeeg is able to
single out situations such as those described in the exam-
ples above, thus ridding the language from the correspond-
ing anomalies. Due to the nature of the problem, it is of
course impossible to claim formally that a language avoids
the inheritance anomaly, or solves it. The matter depends
on the synchronization primitives of the language of choice,
and new practice in object oriented programming may at
any time unveil shortcomings unnoticed before and leading
to new kinds of anomalies. Nevertheless, since the expres-
sive power of LTL is clearly understood, one of the pleasant
features of Jeeg is to come equipped with a precise charac-
terization of the situations it can address. More precisely,
we will see that all anomalies depending on sensitivity to ob-
ject histories expressible as star-free regular languages can,
in principle, be avoided in Jeeg.

The current implementation of Jeeg relies on the large
body of theoretical work on LTL, that provides powerful
model checking algorithms and techniques. Currently, each
method invocation incurs an overhead that is linear in the
size of the guards appearing in the method’s class. Also, the
evaluation of the guards at runtime requires mutual exclu-
sion guarantees that have a (marginal) computational cost.
When compared with the benefit of a substantially increased
applicability of inheritance, we feel that this is a mild price
to pay, especially in the common practical situations where
code overriding is infeasible or cost-ineffective. At the same
time, we are working on alternative ways to implement the
ideas of Jeeg, aiming both at a lower computational over-
head and at more expressive logics.

Jeeg is related to the aspect oriented programming (AOP)
paradigm. Synchronization constraints, expressed declara-
tively, are totally decoupled from the body of the method,
so as to enhance separation of concerns.

The structure of the paper is as follows: §2 presents the
language, while §3 cures the classical inheritance anomalies
with it; §4 treats the expressive power of Jeeg. More details
on the language and its current implementation are provided
respectively in §5 and §6. Finally, we discuss related and
further work.

2. A TASTER OF JEEG
Jeeg differs from Java for the use of new synchroniza-

tion primitives which replace the wait(), notify(), and
notifyAll() constructs. In Jeeg the synchronization code
of a class is not inlined in its methods; rather it is specified
separately. This can be done either via a sync section of the
class definition or via an XML file associated with the class
(see [19]). In the former case, a Jeeg class has the following
structure:

public class MyClass {
sync {

....
}
// Standard Java class definition
...

}

213

The sync section consists of a sequence of declarations of
the form:

m : φ;

where m is a method identifier and φ, the guard, is a formula
in a given constraint language to be described shortly. Meth-
ods associated with a guard are said guarded. Intuitively,
m : φ means that at a given point in time a method invoca-
tion o.m() can be executed if and only if the guard φ eval-
uated on object o yields true. Otherwise, the execution of m
is blocked until φ becomes true. The resumption of m at that
point follows the familiar rules of the Java notifyAll prim-
itive. Guarded methods are executed in mutual exclusion at
the level of objects. Indeed, from a Java perspective, every
guarded method is implicitly synchronized. Synchronization
constraints in Jeeg are thus exclusively at the method level :
there is no synchronized keyword and it is not possible to
define guarded regions. Although it may appear that our
synchronization mechanism becomes too coarse, please note
that synchronized regions can always be refactored into syn-
chronized methods with an overhead which is negligible in
most situations.

The expressive power of this model of synchronization de-
pends of course on the choice of the constraint language.
Indeed, if we limit φ to Java boolean expressions we obtain
a declarative version of the standard synchronization mech-
anism of Java.

2.1 The constraint language
Choosing the constraint logic is a trade-off between ex-

pressiveness and efficiency, as the truth of formulae must
be verified at every method invocation. We need a logic
more expressive than Java boolean expressions that, how-
ever, does not substantially worsen the computational cost
of formula evaluation. A logic that suits our purpose is
linear temporal logic (LTL) [22]. As we shall see, (a varia-
tion of) LTL used in the context of Jeeg gives a substantial
improvement on the expressiveness of Java boolean expres-
sions, tackling in particular the history-sensitive inheritance
anomaly, while keeping the overhead on evaluation time on
the linear scale.

LTL introduces time in propositional and first order logic.
It becomes possible to reason about dynamic, evolving sys-
tems by expressing properties referring to what happened in
the past or to what will happen in the future. For example,
one can write:

Previous (x > 0)

which holds of those system states whose preceding state
validates the proposition ‘x is greater than 0.’ Or also:

(x > 0) Since (y < 0),

true if at some point in time y was less than 0 and at all
subsequent instants (that is since then) x has been positive.

The syntax of our constraint language of choice, CL is as
follows.

φ ::= AP | !φ | φ && φ | φ || φ | Previous φ | φ Since φ

A formula φ of CL is defined starting from atomic formu-
las AP, denoted by p, q, . . ., which are Java boolean expres-
sions. We consider exclusively pure boolean expressions,
with no side-effects, method invocations, or references to ob-
jects (other than the implicit references to self); also, φ can

public class Counter {

private int n = 0;

public void inc() { n++; }
public void dec() { n--; }

}

Table 1: A simple counter

n=0 n=2n=1 n=1
inc () inc () dec()

Figure 1: History

only refer to private/protected fields of the class it belongs
to. Note that we could allow particular methods which can
be assumed to have no side-effects, e.g. Object.equal(), in
an ad-hoc manner. CL has the obvious conjunction &&, dis-
junction || and negation ! connectives. In addition to these,
it provides two temporal past operators: previous and since,
whose informal meaning we described before. This logic is
a variation of LTL known as past tense LTL [13]. By com-
bining the basic operators it is possible to define two in-
teresting, self-explanatory, auxiliary ones: Sometime φ ,
true Since φ and Always φ , !Sometime !φ. For the pro-
grammer’s convenience, these operators are predefined in
the Jeeg implementation.

All this would not be very helpful in our attempt to tackle
the history-sensitive anomaly without a way to refer to the
history of object method invocation. The notion of event
introduced below serves this purpose.

Definition (Event). An event for object o is the execution
of one of its methods.

From this basic notion we can define Hπ(o), the history of
object o in (a concurrent) computation π. Informally, this
is the sequence of the events of o in π, in the order they
occur, together with the states they connect. Thanks to
our assumption that guarded methods run in mutual exclu-
sion, each computation unambiguously defines a sequence
of method invocations for each object involved. So, with-
out loss of generality, as far as o is concerned, the generic
computation π will have the shape

h0
0 · · ·h0

j0o.m1h
1
0 · · ·h1

j1o.m2h
2
0 · · ·h2

j2 . . .

where mi’s are all the activations of a guarded methods of o
in π and hi

0 · · ·hi
ji

are sequences of Java heaps (which arise
by assignments to public variables or method invocations –
either of unguarded and other objects’ methods.) As guards
may only refer to private/protected variables, their value can
only be affected by invocation of methods of o. It is therefore
a possible to assume h0

0h
1
0h

2
0 · · · as the sequence of states of

o for the evaluation of temporal guards, forgetting the other
intermediate states. Also, only the part of hk

0 containing
the values of non-reference private/protected variables of o,
say σk, is needed. Therefore, for the simple counter class in
Table 1, the execution of

Counter c = new Counter();
c.inc();c.inc();c.dec();

gives rise to the history in Figure 1. Interwoven executions

214

public class Bbuf {

protected Object[] buf;
protected int MAX;
protected int current = 0;

Bbuf(int max) {
MAX = max;
buf = new Object[MAX];

}
public synchronized Object get()
throws Exception {

while (current<=0) { wait(); }
current--;
Object ret = buf[current];
notifyAll();
return ret;

}
public synchronized void put(Object v)
throws Exception {

while (current>=MAX) { wait(); }
buf[current] = v;
current++;
notifyAll();

}
}

Table 2: Concurrent bounded buffer in Java

of concurrent objects can easily get way more complex than
this. Nevertheless, the notion of history of each single object
remains relatively simple.

It will be convenient to think of event mi as a reference to
a special identifier event in σi. So, we end up writing

Hπ(o) ≡ σ0σ1σ2σ3 . . .

with the understanding that σi binds the identifier event

to (a value representing method) mi. (References to event

are undefined in σ0.) For example, in the third state in
Figure 1, event yields inc. Identifier event can be used in
CL formulas. In this way, history information finds its way
into our constraint language.

Next, we give a formal semantics to CL by defining the
relation Hπ(o) |= φ expressing that property φ holds of ob-
ject o after a computation π. Let Σ denote Hπ(o). For all
indexes k in Σ, we define Σ |=k φ, that is φ holds at time k,
by structural induction on φ as follows.

Σ |=k p iff p is true at σk

Σ |=k !φ iff not Σ |=k φ

Σ |=k φ || ψ iff Σ |=k φ or Σ |=k ψ

Σ |=k Previous φ iff k > 0 and Σ |=k−1 φ

Σ |=k φ Since ψ iff Σ |=j ψ for some j ≤ k,

and Σ |=i φ for all j < i ≤ k

Finally, we convene that Σ |= φ iff Σ |=0 φ.

3. THE INHERITANCE ANOMALY
An example of inheritance anomaly, borrowed from [16]

and already mentioned in the Introduction, applies to class
Bbuf in Table 2, a simple implementation of a bounded
buffer in Java. Consider defining a subclass of Bbuf that

public class Gbuf extends Bbuf {
boolean afterGet = false;

public Gbuf(int max) { super(max); }

public synchronized Object gget()
throws Exception {

while ((current<=0)||(afterGet)) {
wait();

}
afterGet = false;
return super.get();

}
public synchronized Object get()
throws Exception {

Object o = super.get();
afterGet = true;
return o;

}
public synchronized void put(Object v)
throws Exception {

super.put(v);
afterGet = false;

}
}

Table 3: The class Gbuf in Java

provides an additional method gget that removes an ele-
ment from the buffer only if the last operation performed by
the buffer is not a get. The class Gbuf in Table 3 is a possi-
ble solution. It illustrates a characteristic occurrence of the
inheritance anomaly. Ideally, we would expect method gget

to be independent from the methods defined in the parent
class. A deeper analysis shows that gget can only be im-
plemented if both the inherited methods are redefined. Our
solution in Table 3 rewrites less code than the one in [16],
where the example was introduced. This is due to a care-
ful use of delegation to the super class (and comes at the
price of some extra synchronization). Notice, however, that
the essence of the problem is unchanged: the addition of
the method gget forces us to revise the implementation of
seemingly unrelated inherited methods.

This kind of anomaly arises because gget is a history-
sensitive method. In general, the inheritance anomaly de-
pends on the synchronization primitives present in the lan-
guage, and different primitives result in different varieties
of anomaly [16]. In particular, languages based on method
guards and their cousin technologies (such as Java moni-
tors) are prone to history-sensitiveness of acceptable states.
This is indeed the case of Jeeg, as its synchronization mecha-
nisms are based on a variation of method guards. Therefore,
a good test of expressiveness for Jeeg is given by handling
subclassing by history sensitive methods, and gget above.
The additional expressive power added to method guards
by the temporal aspects of CL suffices to solve several occur-
rences of the inheritance anomaly. In this section we exem-
plify such expressiveness, while in the following we quantify
it formally.

Consider the Jeeg version of the class Bbuf as defined in
Table 4. We can define a class Gbuf in Jeeg as in Table 5.
This example shows how the use of the temporal operator
Previous avoided the occurrence of the inheritance anomaly.
We no longer need to introduce an instance variable to keep
track of the last operation performed. CL gives us enough

215

public class Bbuf {

sync {
put : (current < MAX);
get : (current > 0);

}

protected Object[] buf;
protected int MAX;
protected int current = 0;

Bbuf(int max) {
MAX = max;
buf = new Object[MAX];

}
public Object get() throws Exception {

current--;
Object ret = buf[current];
return ret;

}
public void put(Object v) throws Exception {

buf[current] = v;
current++;

}
}

Table 4: The Bbuf class in Jeeg

public class Gbuf extends Bbuf {

sync {
gget: (Previous (event != get)) && (current > 0);

}

public Gbuf(int max) { super(max); }

public Object gget() throws Exception {
current--;
Object ret = buf[current];
return ret;

}
}

Table 5: The Gbuf class in Jeeg

expressive power to do without.
As already discussed in the Introduction, a kind of inheri-

tance anomaly that plagues guard-based languages arises in
the case of mix-in classes. In [16], the authors use multi-
ple inheritance to show this variant of the anomaly. Java
and Jeeg do not provide multiple inheritance, but the use
of interfaces results in similar problems. Consider the class
LockBuf in Table 6. This is a subclass of the class Bbuf

that implements the Lock interface resulting in a lockable
buffer. A locked buffer must not accept any other mes-
sage than unlock. One would expect the newly introduced
methods to be orthogonal to the inherited ones (this would
seem even more natural if they were inherited by multiple
inheritance). Naturally, in Java, we cannot simply imple-
ment the Lock interface to have a lockable buffer, as meth-
ods put and get need to be redefined to account for the
new locked and unlocked states, possibly introducing a new
boolean variable locked to distinguish the two states the
buffer can be into. Jeeg solves the problem elegantly, as can
be seen in Table 6, again by exploiting the temporal oper-
ators of the constraint language. Indeed, lock and unlock

public interface Lock {
public void lock();
public void unlock();

}

public class LockBuf extends Bbuf implements Lock {

sync {
get : (super.getConstr) &&

(! Previous (event==lock));
put : (super.putConstr) &&

(! Previous (event==lock));
lock : (! Previous (event==lock));
unlock : true;

}

public LockBuf(int max) { super(max); }

public void lock() { }

public void unlock() { }
}

Table 6: A lockable buffer

are history-sensitive methods. Note that the synchroniza-
tion constraints of the inherited methods are overridden,
while the method definitions are not. As explained in §5
below, in Jeeg method definitions and their synchronization
constraints are orthogonal and can be overridden/inherited
separately. As expected, the syntax super.getConstr al-
lows us to refer to the synchronization constraint of a given
method, get in this case, as defined in the super class. In
general, for the constraint attached to method m in the super
class, we write super.mCostr.

4. EXPRESSIVENESS OF JEEG
When introducing a new synchronization primitive in a

concurrent object oriented language, it is often difficult to
assess its impact on the inheritance anomaly in a quantita-
tive manner. Building on the large body of results on LTL,
such analysis is however possible for Jeeg. In particular,
we will adapt to our context a characterization of LTL ex-
pressiveness in term of ‘star-free’ regular languages. (For a
thorough introduction to LTL the reader is referred to [6].)

The question we are interested in is: to what degree does
Jeeg rule out the inheritance anomaly? According to [16], in
a language like Java the anomaly arises when the observable
behavior of an object is more complex than what can be
ascertained from its internal state. For instance, the internal
state of a Bbuf object cannot account for the information of
whether or not the last method to be executed was a get.
Therefore, in order to define gget, we need to refine the
internal state of the object, which comes at the price of
code rewriting. The constraint language of Jeeg, however,
allows to describe sequences of events and so to ascertain
more behaviors from the same state. In general, as long as
CL can describe a certain sequences of events, we can write
a constraint that avoids the need of state refinement. A
measure of how much of the inheritance anomaly disappears
in Jeeg can thus be obtained by measuring which sequences
of states are definable in CL. For the purpose of this section,
we assume AP finite.

216

Definition (General Regular Expressions). Given a
finite alphabet A, the regular expressions over A are defined
by the following grammar:

re ::= a | re · re | re+ re | ¬r | re∗
where a ∈ A denotes the language consisting of the string a,
and ·, +, ¬ and ∗ represent respectively language concatena-
tion, union, negation with respect to A∗ and Kleene closure.
The star-free regular expressions are the regular expressions
with no occurrence of ∗.

A classical result about LTL says that the sets of state se-
quences definable by LTL formulae on atomic propositions
AP coincide with the star-free regular languages on the al-
phabet ℘(AP), the powerset of AP. Spelling this out, a set of
state sequences X is the set of all Σ that satisfy a given φ
of LTL if and only if X is a star-free regular language. (The
reader is referred to [26] for the details.)

Applied to our framework, this result gives a first answer
to our question above: CL can define the sets of sequences of
states that are star-free regular languages on finite subsets
of AP. To refine this statement, let us observe we can replace
a finite set of atomic propositions {p1, · · · , pk} by a single
atomic proposition: the conjunction p1 && · · · && pk. Let
AC be the subset of AP consisting of atomic propositions
well-formed for a class C. For Σ = σ0 · · ·σi a sequence of
states of the private/protected fields of C and P = p0 · · · pi

a sequence in AC, we say that Σ satisfies P if pk is true in
σk for all 0 ≤ k ≤ i.

Theorem (Characterizing CL). Let C be a class and X
a set of state sequences. Then, for a given CL formula φ on
C, X = {Σ | Σ |= φ} if and only if there exists a star-free
regular expression re on AC such that Σ ∈ X iff Σ satisfies
P , for some P ∈ re.

It is interesting to specialize this result when AP is re-
stricted to conjunctions of atomic formulae of the kind
event == m. In such case, CL expresses properties of se-
quences of events – as states are only distinguishable in that
respect – and captures precisely those sets of sequences of
events that are star-free regular languages on the alphabet
of method identifiers.

The characterization in terms of regular languages pro-
vides also intuition about what cannot be expressed in CL

and, therefore, will result in the occurrence of inheritance
anomalies. We show an admittedly contrived example be-
low.

Example. Consider a class representing a simple shared re-
source which can be simultaneously held by multiple clients:

public class SharedResource {
sync {

request: true;
release: true;

}
public void request() { ... }
public void release() { ... }
...

}

Before using the resource, clients are supposed to call the
method request. When the client does not need the re-
source anymore, it should call the method release. To keep
the example simple, we assume clients to respect this pro-
tocol.

We want to define a class SeizableResource which al-
lows clients to gain exclusive access to the shared resource.
An additional method exclusiveRequest must be provided.
Clearly, this method should be allowed to execute only when
no other client is using the resource. To accomplish this we
must make sure that any call to the method request is fol-
lowed by a call to the method release. Unfortunately this
constraint cannot be expressed by LTL. Indeed from a lan-
guage point of view, we want to know whether the history
of the object is a word in the language:

M ::= request M release | MM | ε | ...

where the dots stand for any method identifier in the class
SharedResource. It is well known that this language, a lan-
guage of balanced parentheses, is not star-free nor regular.
As a consequence, it is not possible to write a synchroniza-
tion constraint for the method exclusiveRequest in CL,
that is to find a formula that describes the states where
exclusiveRequest is enabled. What we need to do is to
keep track manually of whether the resource is being used
or not:

public class SeizableResource extends SharedResource {
sync {

request : ! (Previous
(event==exclusiveRequest));

exclusiveRequest :
(! (Previous

(event==exclusiveRequest))
) && (reqCount==relCount);

}

int reqCount = 0;
int relCount = 0;

public void request() { reqCount++; ... }

public void release() { relCount++; ... }

public void exclusiveRequest() { ... }
}
The derived class uses two counters, reqCount and relCount,
to ascertain whether the resource is currently used by any
client. To accomplish this bookkeeping it is necessary to
redefine the base-class methods request and release.

The example above is typical. A constraint which cannot
be expressed in LTL must involve some form of recurrent
counting. (For an in depth discussion on these issues we
refer to [6, 25].)

5. DIGGING DEEPER INTO JEEG
In this section we look deeper into the interaction between

Jeeg synchronization primitives and the other available lan-
guage features. The reader is referred to [19] for the details.

Synchronized and unsynchronized methods
In Jeeg, methods for which a synchronization constraint is
specified are executed in mutual exclusion. In Java terms,
they are synchronized. On the other hand, methods for
which no synchronization constraint is specified have no
mutual exclusion guarantee. Clearly, an undisciplined use
of unsynchronized methods may lead to mutual exclusion
problems. This is particularly relevant in our setting as the
evaluation of a guard must be atomic in order to be mean-
ingful. If an unsynchronized method attempts to modify an

217

public class XBuf extends Bbuf {

sync { get2 : (current > 1); }

public Pair get2() {
current--;
Object ret1 = buf[current];
current--;
Object ret2 = buf[current];
return new Pair(ret1, ret2);

}
}

Table 7: Inheriting synchronization constraints

attribute of the object while a guard is being evaluated we
may end up with an inconsistent result. A trivial example
will clarify the situation.

public class Counter {
sync { process : count%20==0; }
protected count=0;
...
public inc() {count++;...}
public process() {...}

}

In the example above the method inc is not executed in
mutual exclusion, as a consequence it can modify the value
of count during a call to the method process and the eval-
uation of its guard. Naturally, a call to inc can change the
value of the guard for process after its evaluation, and this
would leave the method process to be executed in an incon-
sistent state. A similar situation would occur if guards were
allowed to use public attributes. To avoid these situations,
the attributes occurring in a guard must be accesses in mu-
tual exclusion with the evaluation of the guard. Therefore in
Jeeg attributes used in guards can only be modified by syn-
chronized methods. In the case of static attributes the lock
must be on the class rather than on the object. As a con-
sequence, they can be only modified by static synchronized
methods.

Another issue related to unsynchronized methods is that
the step-wise history of the object is not well defined as re-
gards to their execution order. Indeed, there can be two
methods active at the same time. To force an ordering be-
tween unsynchronized methods we adopt the policy of ac-
counting for methods in the history according to the moment
their execution finishes. Notice however that in a multipro-
cessor system, this may depend on the relative speeds of
threads. It is therefore bad programming practice in such
systems to rely on guards whose truth values depend on the
relative ordering of unsynchronized methods.

Method overloading
From a synchronization point of view, Jeeg does not distin-
guish between different versions of an overloaded method.
The synchronization granularity stops at the method identi-
fier level. This distinction could be easily introduced by bas-
ing synchronization constraints on method signatures rather
than identifiers.

Inheritance and method overriding
Consider a subclass XBuf of Bbuf as defined in Table 7.
There we assume the existence of a support class Pair which

public class Resource {
int ownerID;
boolean busy;
....
sync {

acquire : ! busy;
release : true;

}
public void acquire(int ID) {

ownerID = ID;
busy = true;

}
public void release() { busy = false; }

}

public class ReadOnlyResource extend Resource {
sync { acquire : true; }

}

Table 8: A resource hierarchy

public class SerBuf extends Bbuf {

public Object get() {
current--;
// A byte representation of buf[current]
byte[] b = ...
return b;

}
}

Table 9: A serializing buffer

only wraps up two values as an object. The new class does
not override any method of its base class, therefore the meth-
ods are inherited together with their synchronization con-
straints. The additional constraint for the new method is
independent of the existing ones.

In Jeeg method definitions and their synchronization con-
straints are completely decoupled. This scales up to method
overriding and indeed it is possible to selectively override the
method definition, its synchronization constraint, or both.

The example in Table 6 shows a class which does not over-
ride the bodies of its get and put methods but overrides
their synchronization constraints, making them stricter. In
this case we say that the synchronization constraint for the
super-class has been covariantly redefined. In [7], the author
favors this manner of synchronization overriding. There is,
however, no general agreement on this issue. As an example
the language Rosette [24] is based on weakening the syn-
chronization constraints in the derived classes, and other
authors argue in favor of this choice [21, 20]. In Jeeg both
manners of synchronization overriding are possible, indeed
we believe that both techniques have their use in different
situations. As an example of a derived class which makes
the synchronization constraints of the parent less stringent
consider the a simple class representing a resource (Table 8).
The base class Resource allows the acquire method to be
called only when the resource is not already taken. The de-
rived class ReadOnlyResource must adopt a less stringent
policy: as it models a read-only resource, it can be shared
without mutual exclusion problems. It makes then sense to
allow multiple clients to share the resource.

In Table 9 we see the other extreme, a class which over-

218

rides a method but does not override its synchronization
constraint which remains the inherited one. The method get

returns the object stored in the buffer as a chunk of bytes.
Clearly this does not affect its concurrent behavior and it is
safe to keep its synchronization constraint unchanged.

Jeeg and Exceptions
Method execution might be stopped by the occurrence of a
unhandled exception. With respect to the object history two
possibilities arise. We could choose to keep the method in
the history or to ignore it. It is possible to provide examples
favoring one or the other approach. Both solutions pose no
implementation challenges. In the current implementation,
we chose to put in the history only methods which completed
their execution.

6. IMPLEMENTATION
Currently, Jeeg is implemented as a pre-processor1 which

given a Jeeg source file generates an equivalent .java file
and compiles it to byte-code. The resulting class files rely
on a runtime system which must be in the CLASSPATH of the
Java Virtual Machine (JVM). A requirement on the JVM
is that it must be Java 2 compliant. The purpose of the
runtime system is to implement a run-time evaluator for
the CL formulae used in the program.

Run time evaluation of Constraints
Language CL is essentially a variation of LTL based on past-
tense temporal operators. Every time a guarded method is
called its execution depends on the truth value of a certain
temporal formula: its synchronization constraint. If the con-
straint evaluates to true the method is executed, otherwise
it is blocked until the condition becomes true.

Run-time evaluation of LTL formulae is not uncommon.
In a wider context the problem can be stated as follows:

Given a finite trace Σ and a LTL formula φ, does Σ |= φ ?

This problem occurs frequently when trying to apply model
checking techniques to the verification of Java or C++ pro-
grams [23, 8, 10, 5].

Traditionally, LTL model checking is accomplished by first
translating the LTL formula into a Büchi automaton [4] and
then proving properties on them [11, 4]. Although [23] dis-
cusses why such a solution is not ideal to the runtime veri-
fication on finite traces, this approach is used by the JPaX
runtime analysis tool [8].

Dealing with past tense operators gives us an advantage.
The dynamic programming algorithm presented in [23] re-
quires as input the trace of the program to evaluate a certain
formula, indeed it traverses the program trace backwards.
This means that the algorithm is not ‘online’, i.e. it cannot
be executed together with the program it refers to. By dual-
ity, however, the same algorithm becomes online for the past
fragment [9]. The algorithm has complexity O(m) where m
is the size of the LTL formula. An alternative approach
would rely on modifying the automata-based algorithm pro-
posed in [8] to adapt them to past tense operators.

An implementation has thus at least two choices available.
The current Jeeg implementation relies on a variation of the
dynamic programming algorithm. We found this to be the
most natural choice. The algorithm is efficient, and indeed

1Available from www.brics.dk/~milicia/Jeeg/

n=2n=1
inc()

Previous

now=false
before=false

x==1

now=false
before=false

Previous

now=false
before=false

x==1

now=true
before=false

Previous

now=true
before=false

x==1

now=false
before=true

inc()
n=0

Figure 2: Evaluation algorithm

we discovered that several weakenings the logic would not re-
sult in a faster algorithm. Intuitively, given a Jeeg program
and its set of synchronization constraints the compiler gen-
erates a run-time evaluation algorithm for them and weaves
it into the business code of the program. At every step in the
object history, i.e. method execution, the evaluator updates
the truth values of the synchronization constraints.

The evaluation algorithm consists of (repeated) visits to
the syntax tree of the formula. To focus the ideas, let us
consider the example of the temporal formula

Previous (x == 1)

and its corresponding tree (Figure 2). Every node of the tree
represents a subformula of the original temporal formula
and is labeled by two attributes, ‘now ’ and ‘before’ which
respectively hold the truth value of the corresponding sub-
formula at the current time and one step before. The task
of the algorithm is to visit the tree and update the values of
the two attributes for every node.

In §2.1 we adopted a strong semantics for the temporal
operators, that is we assumed that Previous can only be
applied at times greater than zero. As a consequence, at
the initial instant the ‘before’ attribute of every subformula
is set to false. The truth value of the ‘now ’ attribute is
initialized when the object is created and depends on the
initial state of the object. The algorithm performs a simple
depth first visit of the tree and for every node φ applies,
depending on its type, an appropriate update rule. In the
description of the update rules that follows, we use l and r to
refer, respectively, to the current node’s left- and right-wise
child. The attributes of the children are denoted by the
standard dot-notation, and we use a multiple assignment
operator with the obvious meaning.

previous before, now := now, l.before
always before, now := now, before and l.now
sometimes before, now := now, before or l.now
since before, now := now, r.now or (now and l.now)
and before, now := now, l.now and r.now
not before, now := now, not l.now
AP before, now := now, evalNode()

To clarify the working of the algorithm, consider a simple
formula Previous (x == 1) and a trivial counter class as the
one we presented in Table 1. Figure 2 shows the evolution of
the attributes in the formula tree with respect to the history
of the object c when we execute the following code.

219

Counter c = new Counter();
c.inc(); c.inc(); c.dec();

It is easy to see that the complexity of the run-time evalua-
tion algorithm is linear in the size of the formula tree. The
run-time overhead involved is thus linear in the size of the
synchronization constraints.

Synchronization Manager
For the evaluation algorithm to be sound, formulae must
be evaluated at every step in the program history, i.e. after
every method execution. This is accomplished by a syn-
chronization manager through a mechanism of method call
interception (MCI), typical of the implementation of aspect
oriented languages.

The synchronization manager takes control after a method
call. Then it checks whether the synchronization constraint
for the method is verified. Note that the constraint must not
be evaluated at this stage, its truth value is already avail-
able. This is the case as the truth value of synchronization
constraints is updated after the execution of a method. If
the constraint is true the control goes back to the method
code, otherwise the synchronization manager performs a
wait() and put the method on hold. After the execution
of a method is accomplished, the control shifts back to the
synchronization manager. At this point the synchronization
constraints are evaluated. Since the execution of a method
may change the state of the object, after updating the value
of the synchronization constraints, the manager takes care
of notifying the blocked methods which may then attempt
to proceed again.

To perform its tasks the synchronization manager must
have access to the private/protected fields of the object. We
accomplish this by making the synchronization manager an
inner class of the object it manages.

A complete example showing the Java code generated
from a Jeeg source file can be found in [19].

A note on performance
We performed extensive benchmarks on our prototype im-
plementation. The results are encouraging. The overhead
introduced by Jeeg is felt first at object creation time, when
the synchronization manager is initialized, and then every
time a synchronized method is called. As an example con-
sider the Java and Jeeg implementation of the Gbuf class (see
Tables 3 and 5). Using the JDK 1.4 under Windows 2000
and Linux 2.4.18 the performance difference between the
two implementations is negligible. Under heavy load (¿100
threads using the object) on a low-end machine (Celeron
300Mhz) method calls were about 5ms slower for the Jeeg
program. This is due to the longer time the Jeeg object
remains locked while the synchronization manager performs
its duty. Better performing machines did not exhibit this
behavior even in the presence of more than 1000 threads.

More complex constraints result in slower performances.
However, even in presence of large constraints (size over
64), performances were still acceptable. We refer the reader
to [19] for a thorough discussion.

7. RELATED WORK
The idea of specifying synchronization constraints in pro-

gramming (as opposed to verifying) using a temporal logic
has, to the best of our knowledge, not been explored before.

Indeed, only recently the problem of run-time evaluation
of LTL formulae has come to the attention of the research
community [5, 23].

The idea of a complete separation between the definition
of a method and its synchronization constraints is known to
be helpful in avoiding the inheritance anomaly [16, 15, 14].
In this work, we uphold the concept by making synchroniza-
tion code and method definitions totally independent, to the
degree that they need no be specified in the same file. In this
respect Jeeg is inspired by the current trends in component
based and aspect oriented programming [12].

Frølund proposed a methodology for selective inheritance
of synchronization constraints [7]. His proposal, based on
method guards, favors the covariant redefinition of synchro-
nization constraints in derived classes. As remarked in §5,
this way to synchronization redefinition is not universally
accepted. Indeed, some languages [24, 17] take the opposite
view and allow the derived class to make the synchronization
constraints less stringent, that is contravariant. Examples
exist supporting both approaches; Jeeg allows both man-
ners of overriding. From the point of view of the inheritance
anomaly, Frølund’s methodology is subject to the common
problems of method guards, i.e. the history dependent vari-
ants of the anomaly.

Meseguer [17], analyzed the problem of the inheritance
anomaly in the context of his rewriting logic based language
Maude [18]. Meseguer’s work aimed at removing the need
for synchronization code in the first place. This technique,
based on rewriting logic, is closely tied to the Maude sys-
tem and we are not aware of adaptions to imperative object
oriented languages such as Java.

Different lines were pursued by Matsuoka and Yonezawa:
the first based on the notion of reflection [16], the second
aiming at reducing the amount of synchronization code to a
minimum [16].

An approach more in line with aspect oriented program-
ming is presented in [2]. Although their use of Abstract
Communication Types (ACT) does provide a way to tackle
the history sensitive anomaly in a modular fashion, it is still
based on ad-hoc coding. Every instance of the anomaly re-
quires the programmer to write a specific ACT to solve it.
The problem is thus moved from the object to the ACT
rather than solved.

8. CONCLUSIONS
We introduced Jeeg, a dialect of Java were synchroniza-

tion constraints are written in linear temporal logic and are
specified in a declarative manner. We showed by examples
that the additional expressive power of our synchronization
language, CL, is helpful in treating the inheritance anomaly.
Also, we provided a characterization of the expressiveness
of CL in terms of regular languages that yields a precise de-
scription of the sequences of events we can express. Finally,
we described the current implementation of Jeeg.

Propositional linear temporal logic seems to offer us the
best balance between computational overhead and expres-
siveness. It would indeed be interesting to base Jeeg on
quantified linear temporal logic (QLTL) or monadic sec-
ond order logic (MSOL), ‘second order’ variations of LTL
of greater expressiveness. In particular, QLTL and MSOL
stay to regular languages as LTL stays to star-free regular
languages. However, while giving us the power to express
synchronization policies as complex as regular languages or

220

more, these options would present an increased computa-
tional cost that we are currently investigating.

Concerning the implementation, we are exploring the pos-
sibility of optimizing the LTL evaluation procedure by using
ad-hoc static-analysis techniques and sophisticated schedul-
ing protocols. The current implementation of the Jeeg com-
piler is available at http://www.brics.dk/~milicia/Jeeg/.

9. REFERENCES
[1] P. America. POOL: Design and experience. OOPS

Messenger, 2(2):16–20, Apr. 1991.

[2] L. Bergmans. Composing concurrent objects. PhD
thesis, University of Twente, 1994.

[3] J.-P. Briot and A. Yonezawa. Inheritance and
synchronization in concurrent OOP. In European
Conference on Object-Oriented Programming
(ECOOP’87), volume 276 of Lecture Notes in
Computer Science, pages 32–40. Springer-Verlag, 1987.

[4] E. Clarke, O. Grumberg, and S. Peled. Model
checking. The MIT press, 1999.

[5] D. Drusinsky. The temporal rover and the ATG rover.
In SPIN Model Checking and Software Verification,
volume 1885 of Lecture Notes in Computer Science,
pages 323–330. Springer-Verlag, 2000.

[6] E.A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, pages 996–1072, Amsterdam, 1990.
Elsevier Science Publishers.

[7] S. Frølund. Inheritance of synchronization constraints
in concurrent object-oriented programming languages.
In ECOOP ’92, European Conference on
Object-Oriented Programming, volume 615 of Lecture
Notes in Computer Science, pages 185–196.
Springer-Verlag, 1992.

[8] D. Giannakopoulou and K. Havelund.
Automata-based verification of temporal properties on
running programs. In Automated Software Engineering
2001 (ASE’01), San Diego, California, November
2001. IEEE Computer Society.

[9] K. Havelund and G. Rosu. Monitoring Java programs
with Java Path Explorer. In First Workshop on
Runtime Verification (RV’01), volume 55 of Electronic
Notes in Theoretical Computer Science, July 2001.

[10] K. Havelund and G. Rosu. Monitoring programs using
rewriting. In Automated Software Engineering 2001
(ASE’01), San Diego, California, November 2001.
IEEE Computer Society.

[11] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5):279–295,
May 1997. Special Issue: Formal Methods in Software
Practice.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP’97 –
Object-Oriented Programming, volume 1241 of Lecture
Notes in Computer Science, pages 220–242.
Springer-Verlag, 1997.

[13] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of
the past. In R. Parikh, editor, Proceedings 3rd
Workshop on Logics of Programs, Brooklyn, NY,
USA, 17–19 June 1985, volume 193 of Lecture Notes
in Computer Science, pages 196–218. Springer-Verlag,

Berlin, 1985.

[14] C. V. Lopes and K. J. Lieberherr. Abstracting
process-to-function relations in concurrent
object-oriented applications. Lecture Notes in
Computer Science, 821:81–99, 1994.

[15] S. Matsuoka, K. Wakita, and A. Yonezawa.
Synchronization constraints with inheritance: What is
not possible — so what is? Technical Report TR
90-10, Department of Information Science, the
University of Tokyo, 1989.

[16] S. Matsuoka and A. Yonezawa. Analysis of inheritance
anomaly in object-oriented concurrent programming
language. In A. Gul, W. Peter, and Y. Akinori,
editors, Research Directions in Concurrent
Object-Oriented Programming, pages 107–150. MIT
Press, 1993.

[17] J. Meseguer. Solving the inheritance anomaly in
concurrent object-oriented programming. In
Proceedings of the ECOOP ’93 European Conference
on Object-oriented Programming, LNCS 707, pages
220–246. Springer-Verlag, July 1993.

[18] J. Meseguer and T. Winkler. Parallel programming in
Maude. In Proceedings of Research Directions in
High–Level Parallel Programming Languages, volume
574 of Lecture Notes in Computer Science, pages
253–295, Berlin, Germany, June 1992. Springer.

[19] G. Milicia and V. Sassone. Jeeg: A programming
language for concurrent objects synchronization.
Technical report, BRICS, 2002. Available from
http://www.brics.dk/~milicia/Jeeg.

[20] O. Nierstrasz and M. Papathomas. Viewing objects as
patterns of communicating agents. In Proceedings of
the OOPSLA/ECOOP ’90 Conference on
Object-oriented Programming Systems, Languages and
Applications, pages 38–43, Oct. 1990. Published as
ACM SIGPLAN Notices, volume 25, number 10.

[21] O. Nierstrasz and M. Papathomas. Towards a type
theory for active objects. ACM OOPS Messenger,
Proceedings OOPSLA/ECOOP 90 Workshop on
Object-Based Concurrent Systems, 2(2):89–93, Apr.
1991.

[22] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th IEEE Symposium on the
Foundations of Computer Science (FOCS-77), pages
46–57. IEEE Computer Society Press, Oct. 31–Nov. 2
1977.

[23] G. Rosu and K. Havelund. Synthesizing dynamic
programming algorithms from linear temporal logic
formulae. Technical Report TR 01-15, RIACS, May
2001.

[24] C. Tomlinson and V. Singh. Inheritance and
synchronization with enabled-sets. In Proceedings of
the OOPSLA ’99 Conference on Object-oriented
Programming Systems, Languages and Applications,
1989.

[25] Wolfgang Thomas. Languages, automata and logic. In
J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, Amsterdam, 1990.
Elsevier Science Publishers.

[26] L. Zuck. Past temporal logic. PhD thesis, Weizmann
Institute, 1986.

221

