
Spatial Logics for Bigraphs�

Giovanni Conforti1,3, Damiano Macedonio2,3, and Vladimiro Sassone3

1 Università di Pisa
2 Università Ca’ Foscari di Venezia

3 University of Sussex

Abstract. Bigraphs are emerging as an interesting model for concurrent calculi,
like CCS, pi-calculus, and Petri nets. Bigraphs are built orthogonally on two
structures: a hierarchical place graph for locations and a link (hyper-)graph for
connections. With the aim of describing bigraphical structures, we introduce a
general framework for logics whose terms represent arrows in monoidal cate-
gories. We then instantiate the framework to bigraphical structures and obtain a
logic that is a natural composition of a place graph logic and a link graph logic.
We explore the concepts of separation and sharing in these logics and we prove
that they generalise some known spatial logics for trees, graphs and tree contexts.

1 Introduction

To describe and reason about structured, distributed, dynamic resources is one of the
main goals of global computing research. Recently, many spatial logics, in different
contexts, have been studied to fulfill this goal. The term ‘spatial,’ as opposed to ‘tem-
poral,’ refers to the use of modal operators inspecting the structure of the terms in the
considered model. Spatial logics are usually equipped with a separation/composition
binary operator that splits a term into two parts, in order to ‘talk’ about them separately.
Looking closely, we observe that the notion of separation is interpreted differently in
different logics. In ‘separation’ logics [18], it is used to reason about dynamic update
of heap-like structures, and it is strong in that it forces names of resources in sepa-
rated components to be disjoint. As a consequence, term composition is usually par-
tially defined. In static spatial logics (e.g., for, trees [2], graphs [4] or trees with hidden
names [5]), the separation/composition does not require any constraint on terms, and
names are usually shared between separated parts. Similarly in dynamic spatial logics
(for, e.g., ambients [6] or π-calculus [1]), where the separation is intended only for lo-
cation in space. Context tree logic, introduced in [3], integrates the first approach above
with a spatial logic for trees. The result is a logic able to express properties of tree-
shaped structures (and contexts) with pointers, and it is used as an assertion language
for Hoare-style program specifications in a tree memory model.

� Research partially supported by the EU projects: IHP ‘Marie Curie DisCo’ HPMT-CT-2001-
00290, FET-GC ‘MIKADO’ IST-2001-32222, and FET-GC ‘MyThS’ IST-2001-32617.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 766–778, 2005.
©Springer-Verlag Berlin Heidelberg 2005

Spatial Logics for Bigraphs 767

Bigraphs [12, 14] are an emerging model for structures in global computing, which
can be instantiated to model several well-known examples, including CCS [17], π-
calculus [12], and Petri nets [16]. Bigraphs consist essentially of two graphs sharing
the same nodes. The first graph, the place graph, is tree structured and expresses a hier-
archical relationship on nodes (viz. locality in space and nesting of locations). The sec-
ond graph, the link graph, is an hyper-graph and expresses a generic “many-to-many”
relationship among nodes (e.g. data link, sharing of a channel). The two structures are
orthogonal, so links between nodes can cross locality boundaries. Thus, bigraphs make
clear the difference between structural separation (i.e., separation in the place graph)
and name separation (i.e., separation on the link graph).

In this paper we introduce a spatial logic for bigraphs as a natural composition
of a place graph logic (for tree contexts) and a link graph logic (for name linkings).
The main point is that a resource has a spatial structure as well as a link structure
associated to it. Suppose for instance to be describing a tree-shaped distribution of
resources in locations. We may use formulae like PC(A) and PCx(A) to describe a
resource in an unnamed location, respectively location x, of ‘type’ PC (e.g. a com-
puter) whose contents satisfy A. We can then write PC(T) ⊗ PC(T) to characterise
terms with two unnamed PC resources whose contents satisfy the tautological formula
(i.e., with anything inside). Using named locations, as e.g. in PCa(T) ⊗ PCb(T), we
are able to express name separation, i.e., that names a and b are different. Further-
more, using link expressions we can force name-sharing between resources with for-
mulae like:

PCa(inc ⊗ T)
c⊗ PCb(outc ⊗ T)

This describes two PC with different names, a and b, sharing a link on a distinct name
c, which models, e.g., a communication channel. Name c is used as input (in) for the
first PC and as an output (out) for the second PC. No other names are shared and c
cannot be used elsewhere inside the PCs.

A bigraphical structure is, in general, a context with several holes and open links
that can be filled by composition. This means that the logic can describe contexts for
resources at no additional cost. We can then express formulae like PCa(T ⊗ HD(id1))
that describes a modular computer PC, where id1 represents a ‘pluggable’ hole in the
hard disc HD. Contextual resources have many important applications. In particular,
the contextual nature of bigraphs is useful to specify reaction rules, but it can also
be used as a general mechanism to describe contexts of bigraphical data structures
(cf. [8, 10]).

As bigraphs are establishing themselves as a truly general (meta)model of global
systems, our bigraph logic, BiLog, aims at achieving the same generality as a description
language: as bigraphs specialise to particular models, we expect BiLog to specialise to
powerful logics on these. In this sense, the contribution of this paper is to propose BiLog
as a unifying language for the description of global resources. We will explore this path
in future work, fortified by the positive preliminary results obtained for semistructured
data [8] and CCS [9].

768 G. Conforti, D. Macedonio, and V. Sassone

2 An Informal Introduction to Bigraphs

Bigraphs formalise distributed systems by focusing on two of their main characteristics:
locality and interconnections. A bigraph consists of a set of nodes, which may be nested
in a hierarchical tree structure (the so-called place graph), and have ports that may be
connected to each other (and to names) by links (the so-called link graph). Place graphs
express locality, i.e., the physical arrangement of the nodes. Link graphs are hyper-
graphs and formalise connections among nodes. The orthogonality of the two structures
dictates that nestings impose no constrain upon interconnections.

The bigraph G of Fig. 1 represents a system where people and things interact. We
imagine two offices with employees logged on PCs. Every entity is represented by a
node, shown with bold outlines, and every node is associated with a control (either PC,
U, R1, R2). Controls represent kinds of nodes, and have fixed arities that determine
their number of ports. Control PC marks nodes representing computers, and its arity
is 3: in clockwise order, these ports represent a keyboard interacting with an employee
U, a LAN to an other PC and open to the outside network, and a plug connecting the
computer to the electrical mains of office R. Employees U may communicate with each
other via the upper port in the picture. The nesting of nodes (place graph) is shown by
the inclusion of nodes into each other; the connections (link graph) are drawn like lines.

At the top level of the nesting structure sit the regions. In Fig. 1 there is one sole
region (the dotted box). Inside nodes there may be ‘context’ holes, drawn as shaded
boxes, which are uniquely identified by ordinals. In figure the hole marked by 1 repre-
sents the possibility for another user U to get into office R1 and sit in front of a PC. The
hole marked by 2 represents the possibility to plug a subsystem inside office R2.

Place graphs can be seen as arrows over a symmetric monoidal category whose
objects are finite ordinals. We write P : m→ n to indicate a place graph P with m holes
and n regions. In Fig. 1, the place graph of G is of type 2 → 1. Given place graphs
P1, P2, their composition P1 ◦ P2 is defined only if the holes of P1 are as many as the
regions of P2, and amounts to filling holes with regions, according to the number each
carries. The tensor product P1 ⊗ P2 is not commutative, as it ‘renumbers’ regions and
holes ‘from left to right’.

Link graphs are arrows of a partial monoidal category whose objects are (finite)
sets Λ of names, that we assume to be denumerable. A link graph is an arrow X → Y ,

Fig. 1. A bigraph G : 〈2, {x, y, z, v,w}〉 → 〈1, {x, y}〉

Spatial Logics for Bigraphs 769

Fig. 2. Bigraphical composition, H ≡ G ◦ (F1 ⊗ F2)

with X,Y ⊆ Λ. The set X represents the inner names (drawn at the bottom of the bi-
graph) and Y represents the set of outer names (drawn on the top). The link graph
connects ports to names or to edges, in any finite number. A link to a name is open,
i.e., it may be connected to other nodes as an effect of composition. A link to an edge
(represented in Fig. 1 by a line between nodes) is closed, as it cannot be further con-
nected to ports. Thus, edges are private, or hidden, connections. The composition of
link graphs W ◦ W′ corresponds to linking the inner names of W with the correspond-
ing outer names of W ′ and forgetting about their identities. As a consequence, the outer
names of W ′ (resp. inner names of W) are not necessarily inner (resp. outer) names of
W ◦ W ′, and the link graphs can perform substitution and renaming. The tensor product
of link graphs is defined in the obvious way only if their inner (resp. outer) names are
disjoint.

Combining ordinals with names we obtain interfaces, i.e., pairs 〈m, X〉 where m is
an ordinal and X is a set of names. Combining the notion of place graph and link graphs
on the same nodes we obtain the notion of bigraphs, i.e., arrows G : 〈m, X〉 → 〈n,Y〉.

Fig. 2 represents a more complex situation. At the top left-hand side is the system of
Fig. 1, At the bottom left-hand side F1 represents a user U ready to interact with a PC or
with some other users, F2 represents a user logged on its laptop, ready to communicate
with other users. The system with F1 and F2 represents the tensor product F = F1 ⊗ F2.
The right-hand side of Fig. 2 represents the composition G ◦ F. The idea is to insert F
into the context G. The operation is partially defined, since it requires the inner names
and the number of holes of G to match the outer names and the number of regions of F,
respectively. Shared names create the new links between the two structures.

3 BiLog: Syntax and Semantics

As place and link graphs are arrows of a (partial) monoidal category, we first introduce
a logic having monoidal categories as models and then we adapt it to model the orthog-
onal structures of place and link graphs. Each of these is expressive enough to model
and generalise (e.g. by means of contexts) well-known spatial logics. Finally we apply
the logic to model the whole structure of abstract bigraphs.

770 G. Conforti, D. Macedonio, and V. Sassone

Table 1. BiLog(M,⊗, ε, Θ,≡, τ)

Ω ::= idI | . . . a constant formula for every Ω s.t. τ(Ω)
A, B ::= F false A⇒ B implication

id identity Ω Constant for a simple term
A ⊗ B tensor product A ◦ B composition
A� B left comp. adjunct A� B right comp. adjunct
A ⊗− B left prod. adjunct A −⊗ B right prod. adjunct

G |= F def
= never

G |= A⇒ B def
= G |= A implies G |= B

G |= Ω def
= G ≡ Ω

G |= id def
= ∃I.G ≡ idI

G |= A ⊗ B def
= ∃G1,G2.G ≡ G1 ⊗ G2 and G1 |= A and G2 |= B

G |= A ◦ B def
= ∃G1,G2.G ≡ G1 ◦ G2 and τ(G1) and G1 |= A and G2 |= B

G |= A� B def
= ∀G′.G′ |= A and τ(G′) and (G′ ◦ G)↓ implies G′ ◦ G |= B

G |= A� B def
= τ(G) implies ∀G′.G′ |= A and (G ◦ G′)↓ implies G ◦ G′ |= B

G |= A ⊗− B def
= ∀G′.G′ |= A and (G′ ⊗ G)↓ implies G′ ⊗ G |= B

G |= A −⊗ B def
= ∀G′.G′ |= A and (G ⊗ G′)↓ implies G ⊗ G′ |= B

The models are categories built on a (possibly partial) monoid (M,⊗, ε), whose ele-
ments are dubbed interfaces and denoted by I, J. The elements of a BiLog model are ar-
rows on the corresponding (partial) monoid. Given a set of term constructors Θ, ranged
over byΩ, the arrows are defined by the term language G ::= G ⊗ G′ | G ◦ G′ | Ω. Each
Ω in Θ has a type Ω : I → J. For each interface I, we assume a distinguished construct
idI : I → I. The types of constructors, together with the obvious rules [9] determine the
type of each term. Terms of type ε → J are called ground.

We consider terms up to a structural congruence ≡, which subsumes the axioms of
monoidal categories [9]. Later on, the congruence will be refined to model specialised
structures, such as place graphs or bigraphs. All axioms are required to hold only when
both sides are well typed. Throughout the paper, when using = or ≡ we imply that both
sides are defined and we write (G)↓ to say that G is defined.

BiLog internalises the term constructors in the style of the ambient logic [6]. Con-
structors are represented in the logic as constant formulae, while tensor product and
composition are expressed by connectives. We thus have two binary spatial operators.
This contrasts with other spatial logics, which have only one: ambient-like logics, with
parallel composition A | B, Separation Logic [18], with separating conjunction A ∗ B,
and Context Tree Logic [3], with application K(P). Our logic is parameterised on a
transparency predicate τ, reflecting that not every term can be directly observed in the
logic: some are opaque and do not allow inspection of their contents. We will see that
when all terms are observable (i.e. τ(G) for all G), logical equivalence corresponds to
≡. Otherwise, it can be less discriminating. We assume that idI and ground terms are
always transparent, and τ preserves ≡, hence ⊗ and ◦, in particular.

The logic BiLog(M,⊗, ε, Θ,≡, τ) is formally defined in Table 1 and the meaning
of formulae is given in terms of a satisfaction relation. It features a logical constant

Spatial Logics for Bigraphs 771

Ω for each transparent construct Ω. The satisfaction of logical constants is simply the
congruence to the corresponding constructor. The horizontal decomposition formula
A ⊗ B is satisfied by a term that can be decomposed as the tensor product of terms
satisfying A and B respectively. The degree of separation enforced by ⊗ between terms
plays a fundamental role in the various fragments of the logic (notably link graph and
place graph). The vertical decomposition formula A ◦ B is satisfied by terms that can be
seen as the composition of terms satisfying A and B. We shall see that both connectives
correspond in some cases to well known spatial connectives. We define the left and right
adjuncts for composition and tensor to express extensional properties. The left adjunct
A � B expresses the property of a term to satisfy B whenever inserted in a context
satisfying A. Similarly, the right adjunct A � B expresses the property of a context to
satisfy B whenever filled with a term satisfying A. A similar description for ⊗− and −⊗,
the adjoints of ⊗. Observe that these collapse if the tensor is commutative in the model.

Derived Operators and Logical Properties. In Table 2 we outline some interesting
operators that can be derived in BiLog. The operators constraining the interfaces are
self-explanatory. The ‘dual’ operators have the following semantics: A � B is satis-
fied by terms G such that for every possible decomposition G1 ⊗ G2 either G1 |= A
or G2 |= B. For instance, A � A describes terms where A is true in (at least) one
part of each ⊗-decomposition. Similarly, the composition A • B expresses structural
properties universally quantified on every ◦-decomposition. Both these connectives are
useful to specify security properties or types. The adjuncts work as usual. The for-
mulae A∃⊗, A∀⊗, A∃◦, and A∀◦ correspond to quantifications on the horizontal/vertical
structure of terms. The equality between interfaces I = J is easily derivable using ⊗
and ⊗−.

We can extend the idea of sublocation (�) defined in [7] to our terms. The inductive
definition of � specifies that G � G, and G′ � G if either G ≡ G1 ⊗ G2, with G′ � G1

(and symmetrically G′ � G2) or G ≡ G1 ◦ G2, with τ(G1) and G′ � G2. Exploiting
this relation between ground terms, we define a somewhere modality. Intuitively, we say
that a term satisfies ◊A whenever one of its sublocations satisfies A. Quite surprisingly,◊A is expressible in the logic, as described in [9].

The lemma below states that the relation |= is well defined w.r.t. the congruence and
that the interfaces for transparent terms can be observed.

Lemma 3.1 (Type and Congruence preservation).
For every couple of term G,G′, it holds: G |= A and G ≡ G′ implies G′ |= A.
For every term G, it holds: G |= AI→J if and only if G : I → J, G |= A, and τ(G).

BiLog induces a logical equivalence =L on terms in the usual sense, that is G1 =L G2

if G1 |= A implies G2 |= A and vice versa, for every formula A.

Theorem 3.2 (Logical equivalence and congruence). If the transparency predicate is
always true, then for every term G,G′, it holds: G =L G′ if and only if G ≡ G′.

Place Graph Logic (PGL). Place graphs are essentially ordered lists of regions hosting
unordered labelled trees with holes. The labels of the trees correspond to controls K
belonging to the fixed signature K . We consider the monoid (ω,+, 0) of finite ordinals

772 G. Conforti, D. Macedonio, and V. Sassone

Table 2. Derived Operators

T, ∧, ∨,⇔, ⇐, ¬ Classical operators
AI

def
= A ◦ idI Constraining the source to be I

A→J
def
= idJ ◦ A Constraining the target to be J

AI→J
def
= (AI)→J Constraining the type to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition with interface I

A�J B def
= A→J � B Contexts with J as target guarantee

A�I B def
= AI � B Composing with terms with I as source guarantee

A � B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A� B def
= ¬(¬A� ¬B) Dual of composition left adjunct

A� B def
= ¬(¬A� ¬B) Dual of composition right adjunct

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal term satisfies A

A∀⊗ def
= F � A � F Every horizontal term satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical term satisfies A

A∀◦ def
= F • A • F Every vertical term satisfies A

I = J def
= T ⊗ (idε ∧ idI ⊗− idJ) Equality between interfaces

◊ A def
= (T ◦ A)ε Somewhere modality (on ground terms)

◊ A def
= ¬ ◊¬A Anywhere modality (on ground terms)

m, n. Interfaces here represent the number of holes and regions of place graphs. Place
graph terms are generated from the set Θ = {1 : 0 → 1, idn : n → n, join : 2 →
1, γm,n : m + n → n + m,K : 1 → 1 for K ∈ K}. The main structural term is K, that
represents a region containing a single node with a hole inside. Other simple terms are
placings, representing trees m→ n with no nodes; the constructor 1 represents a barren
region; join is a mapping of two regions into one; γm,n is a permutation that interchanges
the first m regions with the following n. The structural congruence ≡ for place graph
terms is refined by the usual axioms for symmetry of γm,n and by the place axioms
that essentially turn the operation join ◦ (⊗) in a commutative monoid with neutral
element 1. Hence, the places generated by composition and tensor product from γm,n are
permutations. A place graph is prime if it has type I → 1 (i.e., with a single region).

Defined the transparency predicate τ on each control in K , the Place Graph Logic
PGL(K , τ) is BiLog(ω,+, 0,≡,K∪{1, join, γm,n}, τ). We assume the τ to be true for join
and γm,n. It follows from Theorem 3.2 that PGL can describe place graphs precisely. The
logic resembles a propositional spatial tree logic, like [2]. The main differences are that
PGL models contexts of trees and that the tensor product is not commutative, allowing
us to model the order of regions. We can define a commutative separation using join
and the tensor product, the parallel composition A | B def

= join ◦ (A→1 ⊗ B→1). This
separation is purely structural, and corresponds at term level to join ◦ (P ⊗ P′) that is a
total operation on all prime place graphs.

We show that BiLog restricted to prime ground place graphs (with the always-true
transparency predicate) is equivalent to the propositional spatial tree logic of [2] (STL
in the following). The logic STL expresses properties of unordered labelled trees T

Spatial Logics for Bigraphs 773

Table 3. Encoding STL in PGL over prime ground place graphs

Trees into Prime Ground Place Graphs
[[0]] def

= 1 [[a[T]]] def
= K(a) ◦ [[T]] [[T1 | T2]] def

= join ◦ ([[T1]] ⊗ [[T2]])

STL formulae into PGL formulae
[[0]] def

= 1 [[a[A]]] def
= K(a) ◦1 [[A]]

[[F]] def
= F [[A@a]] def

= K(a)�1 [[A]]
[[A⇒ B]] def

= [[A]]⇒ [[B]] [[A | B]] def
= [[A]] | [[B]]

[[A
 B]] def
= ([[A]] | id1)�1 [[B]]

constructed from the empty tree 0, the labelled node containing a tree a[T], and the
parallel composition of trees T1 | T2. It is a static fragment of the ambient logic [6]
characterised by propositional connectives, spatial connectives (i.e., 0, a[A], A | B), and
their adjuncts (i.e., A@a, A
 B).

In Table 3 we encode the tree model of STL into prime ground place graphs, and
STL operators into PGL operators. We assume a bijective encoding between labels and
controls, and associate every label a with a distinct control K(a). The monoidal prop-
erties of parallel composition are guaranteed by the symmetry and unit axioms of join.
The equations are self-explanatory once we remark that: (i) the parallel composition of
STL is the structural commutative separation of PGL; (ii) tree labels can be represented
by the corresponding controls of the place graph; and (iii) location and composition ad-
juncts of STL are encoded in terms of the left composition adjunct, as they add logically
expressible contexts to the tree. This encoding allows us to prove the following.

Theorem 3.3 (Encoding STL). For each tree T and formula A of STL we have that
T |=S L A if and only if [[T]] |= ([[A]])0→1.

Differently from STL, PGL can also describe structures with several holes and re-
gions. In [8] we show how PGL describes contexts of tree-shaped semistructured data.
In particular multi-contexts can be useful to specify properties of web-services. Con-
sider for instance a function taking two trees and returning the tree obtained by merging
their roots. Such function is represented by the term join, which solely satisfies the for-
mula join. Similarly, the function that takes a tree and encapsulates it inside a node
labelled by K, is represented by the term K and captured by the formula K. Moreover,
the formula join ◦ (K ⊗ (T ◦ id1)) expresses all contexts of form 2→ 1 that place their
first argument inside a K node and their second one as a sibling of such node.

Link Graph Logic (LGL). For Λ a denumerable set of names, we consider the monoid
of interfaces (Pfin(Λ),�, ∅), where Pfin() is the finite powerset operator and � is the
union on disjoint pairs of sets and undefined otherwise. The structures that arise from
such a monoid are the link graphs discussed in §2. They can describe nominal resources
common in many areas, such as object identifiers, location names in memory structures,
channel names, and ID attributes in XML documents.

Wiring terms are a structured way to map a set of inner names X into a set of outer
names Y . They are generated by the constructors: /a : {a} → ∅ and a/X : X → a. The

774 G. Conforti, D. Macedonio, and V. Sassone

closure /a hides the inner name a in the outer face. The substitution a/X associates all
the names in the set X to the name a. We denote wirings by ω, substitutions by σ, τ, and
renamings (i.e., bijective substitutions) by α, β. Substitutions can be specialised in:

a def
=

a/∅; a← b def
=

a/{b}; a⇔ b def
=

a/{a,b}.

Constructor a represents the introduction of a name a, term a← b the renaming of b to
a, and finally a⇔ b links (or fuse) a and b in the name a.

Given a signature K of controls K with corresponding ports ar(K) we generate link
graphs from wirings and the constructor K�a : ∅ → �a with �a = a1, . . . , ak, K ∈ K , and
k = ar(K); K�a represents a resource of kind K with named ports �a. Any ports may be
connected to other node ports via wiring compositions.

The structural congruence ≡ for link graphs is refined with obvious axioms for links,
modelling α-conversion and extrusion of closed names, cf. [9]. We assume the trans-
parency predicate τ to be true for wiring constructors.

Given the transparency τ for each control in K , the Link Graph Logic LGL(K , τ) is
BiLog(Pfin(Λ),�, ∅,≡,K∪{/a, a/X}, τ). By Theorem 3.2, LGL describes the link graphs
precisely. The logic expresses structural spatiality for resources and strong spatiality
(separation) for names, and it can therefore be viewed as a generalisation of Separation
Logic for contexts and multi-ports locations. On the other side the logic can describe
resources with local (hidden/private) names between resources, and in this sense the
logic is a generalisation of Spatial Graph Logic [4], considering the edges as resources.

In LGL the formula A ⊗ B describes a decomposition into two separate link graphs
(i.e., sharing no resources, names, nor connections) satisfying respectively A and B.
Observe that in this case, horizontal decomposition inherits the commutativity property
from the monoidal tensor product. If we want a name a to be shared between separated
resources, we need the sharing to be made explicit, and the sole way to do that is through
the link operation. We therefore need a way to first separate the names occurring in two
wirings in order to apply the tensor, and then link them back together.

As a shorthand if W : X → Y and W′ : X′ → Y ′ with Y ⊂ X′, we write [W′]W
for (W′ ⊗ idX′\Y) ◦ W and if �a = a1, . . . , an and �b = b1, . . . , bn, we write �a ← �b for
a1 ← b1 ⊗ . . . ⊗ an ← bn (and similarly for �a ⇔ �b). It is possible to derive from
the tensor product a product with sharing on �a. Given G : X → Y and G′ : X′ → Y ′

with X ∩ X′ = ∅, we choose a list �b (with the same length as �a) of fresh names. The
composition with sharing �a is:

G
�a⊗ G′ def

= [�a⇔ �b](([�b← �a] ◦ G) ⊗ G′)

By extending this sharing to all names we can define the parallel composition G | G′
as a total operation. However, such an operator does not behave “well” with respect
to the composition, as shown in [15]. In addition a direct inclusion of a corresponding
connective in the logic would impact the satisfaction relation by expanding the finite
horizontal decompositions to the boundless possible name-sharing decompositions.

As a matter of fact, without name quantification it is not possible to build formulae
that explore a link, since the latter has the effect of hiding names. For this task, we
employ the name variables x1, ..., xn and a fresh name quantification in the style of
Nominal Logic [19].

Spatial Logics for Bigraphs 775

G |= Nx1, . . . , xn. A
def
= ∃a1 . . . an � fn(G) ∪ fn(A).G |= A{x1, . . . xn ← a1 . . . an}

Using fresh name quantification we can define a notion of �a-linked name quantifi-
cation for fresh names, whose purpose is to identify names that are linked to �a:

�a L �x. A def
= N�x. ((�a⇔ �x) ⊗ id) ◦ A.

The formula above expresses that variables in �x denote in A names that are linked in
the term to �a, and the role of (�a ⇔ �x) is to link the fresh names �x with �a, while id
deals with names not in �a. We also define a separation-upto, namely the decomposition
in two terms that are separated apart from the link on the specific names in �a, which
crosses the separation line.

A
�a⊗ B def
= �a L �x. (((�x← �a) ⊗ id) ◦ A) ⊗ B.

The idea of the formula above is that the shared names �a are renamed in fresh names �x,
so that the product can be performed and finally �x is linked to �a in order to actually have
the sharing. The corresponding parallel composition operator is not directly definable
using separation-upto, since we do not know a priori the name shared in arbitrary de-
compositions. However, we will show that a careful encoding is possible for the parallel
composition of spatial logics with nominal resources.

We show that LGL can be seen as a contextual (and multi-edge) version of Spatial
Graph Logic (SGL) [4]. The logic SGL expresses properties of directed edge labelled
graphs G built from the empty graph nil, the edge labelled a from x to y nodes a(x, y), the
parallel composition of graphs G1 | G2, and the binding for local names of nodes (νx)G.
We consider aK such that: there is a bijective function associating every edge label a to
a distinct control K(a) and the arity of every control is 2 (the ports represent the starting
and arrival node respectively). The resulting link graphs can be interpreted as contextual
edge labelled graphs and the resulting class of ground link graphs is isomorphic to the
graph model of SGL. In Table 4 we encode the graphs modelling SGL into ground link
graphs and SGL formulae into LGL formulae. The encoding is parametric on a finite
set X of names containing the free names of the graph under consideration. Observe
that when we force the outer face of the graphs to be a fixed finite set X, the encoding of
parallel composition is simply the separation-upto �a, where �a is a list of all the elements
in X. Notice also how local names are encoded into name closures (and identity).

Theorem 3.4 (Encoding SGL). For each graph G, finite set X containing fn(G), and
formula φ of the propositional fragment of SGL, we have that G |=GL φ if and only if
[[G]]X |= ([[φ]]X)∅→X.

In LGL is also possible to encode the Separation Logics on heaps: names used as
identifiers of location will be forcibly separated by tensor product, while names used
for pointers will be shared/linked.

Bigraphs as a Model for BiLog. We combine the structures of link graphs and place
graphs to generate all (abstract pure) bigraphs of [12]. We take as monoid the product of
link and place interfaces, i.e. (ω×Pfin(Λ),⊗, ε) where 〈m, X〉 ⊗ 〈n, X〉 def

= 〈m + n, X � Y〉

776 G. Conforti, D. Macedonio, and V. Sassone

Table 4. Encoding Propositional SGL in LGL over two ported ground link graphs

Spatial Graphs into Two-ported Ground Link Graphs
[[nil]]X

def
= X [[a(x, y)]]X

def
= K(a)x,y ⊗ X \ {x, y}

[[G | G′]]X
def
= [[G]]X

�a⊗ [[G′]]X [[(νx)G]]X
def
= ((/x ⊗ idX\{x}) ◦ [[G]]{x}∪X)) ⊗ ({x} ∩ X)

SGL formulae into LGL formulae
[[nil]]X

def
= X [[a(x, y)]]X

def
= K(a)x,y ⊗ (X \ {x, y})

[[F]]X
def
= F [[φ⇒ ψ]]X

def
= [[φ]]X ⇒ [[ψ]]X

[[φ | ψ]]X
def
= [[φ]]X

�a⊗ [[ψ]]X

and ε def
= 〈0, ∅〉. We will use X for 〈0, X〉 and n for 〈n, ∅〉. As constructors for bigraphical

terms we have the union of place and link graph constructors apart from the controls
K : 1 → 1 and K�a : ∅ → �a, which are replaced by the new discrete ion constructor,
which we note K�a : 1 → 〈1, �a〉; this is a prime bigraph containing a single node with
ports named �a and an hole inside. Bigraphical terms thus are defined w.r.t. a control
signature K and a set of names Λ, cf. [15] for details.

PGL excels at expressing properties of unnamed resources, i.e., resources accessible
only by following the structure of the term. On the other hand, LGL characterises names
and their links to resources, but it has no notion of locality. A combination of them ought
to be useful to model spatial structures, either private or public. BiLog promises to be
a good (contextual) spatial logic for (semi-structured) resources with nominal links,
thanks to bigraphs’ orthogonal treatment of locality and connectivity. To witness this
we have proved in [9] that also the recently proposed Context Logic for Trees [3] can
be encoded into bigraphs. The idea of the encoding is to extend the one of STL with
contexts and identified nodes. Essentially, in [9] we show that the model of [3] is a
particular class of prime bigraphs with one port for each node and a number of holes
and regions limited to one. Since [3] is more general than separation logic, and is used
to reason about programs that manipulate tree structured memories, it is possible to
generalise separation logic as well.

4 Conclusion and Future Work

In this paper we moved a first step towards describing global resources by focusing on
bigraphs. Our final objective is to design a general dynamic logic able to cope uniformly
with all the models bigraphs have been proved useful for, as of today these include
CCS [17], pi-calculus [12] and Petri-nets [13, 16]. We introduced BiLog, a logic for
bigraphs (and more generally for monoidal categories), with two main spatial connec-
tives: composition and tensor product. Our main technical results are the embedding and
comparison with other spatial logics previously studied. Moreover, we have shown that
BiLog is expressive enough to internalise the somewhere modality. In §3 we observed
that the induced logical equivalence can be forced to coincide with the structural con-
gruence of terms. This property is fundamental in order to describe, query and reason
about bigraphical data structures. For a more detailed discussion we refer to [8].

Spatial Logics for Bigraphs 777

In [9] we study how BiLog can deal with dynamics. A natural solution is to add
a temporal next step modality basically describing bigraphs that can compute (react)
according to a Bigraphical Reactive System [12]. When the transparency predicate τ
enables the inspection of ‘dynamic’ controls, BiLog is ‘intensional’ in the sense of [11],
namely it can observe internal structures. In several cases, notably the bigraphical sys-
tem describing CCS [17], this can be to the extent that the next step modality can be
expressed directly by using the static fragment of BiLog. Notice that τ specifies what
structure the logic can directly observe, while the next step modality, along with the spa-
tial connectives, allows to deduce the structure by observing the behaviour. It would be
interesting to investigate how the transparency predicate influences the expressiveness
and intentionality of significant fragments of the dynamic logic.

The ‘separation’ plays differently in various fragments of the logic. For instance, in
the case of Place Graph Logic, where the model is the class of bigraphs without names,
the separation is purely structural and coincides with the notion of parallel composition
in Spatial Tree Logic. The separation in the Link Graph Logic is disjointness of nominal
resources. Finally, for Bigraph Logic it is a combination that can be seen as separation
in a structured term with nominal resources (e.g. the trees with pointers of [3] and trees
with hidden names [5]). In the paper we have not addressed logical operators for hidden
names (e.g.®, H,© of ambient logic). We can encode them easily using, in particular,

Nand /a. The decidability of BiLog is an open question, we are working on extending
the results of [2], and we are isolating decidable fragments of BiLog.

We are currently developing a proof theory for Bilog in order to complete the robust
logical setting provided by the model theory presented here. Besides aiming at a gen-
eralise existing proof systems, this will allow direct comparisons between BiLog and
other spatial logics also from the proof-theoretic point of view.

Acknowledgment. We would like to thank Philippe Bidinger, Annalisa Bossi, Rohit
Chadha, Murdoch Gabbay, Giorgio Ghelli, Robin Milner, Peter O’Hearn and all the
anonymous referees for useful comments and discussions.

References

1. L. Caires and L. Cardelli. A spatial logic for concurrency (Part I). In Proc. of TACS, volume
2215 of LNCS, pages 1–37. Springer-Verlag, 2001.

2. C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding validity in a spatial logic for trees. In
Proc. of TLDI, 2003.

3. C. Calcagno, P. Gardner, and U. Zarfaty. A context logic for tree update. In Proc. of LRPP,
2004; revised version to appear in POPL, 2005.

4. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In Proc. of ICALP,
volume 2380 of LNCS, page 597. Springer-Verlag, 2002.

5. L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden labels. In Proc. of
FOSSACS, volume 2620 of LNCS, pages 216–232. Springer-Verlag, 2003.

6. L. Cardelli and A. D. Gordon. Ambient logic. To appear in Mathematical Structures in
Computer Science.

7. L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In
Proc. of POPL. ACM Press, 2000.

778 G. Conforti, D. Macedonio, and V. Sassone

8. G. Conforti, D. Macedonio, and V. Sassone. Bigraphical logics for XML. In Proc. of SEBD,
2005. To appear.

9. G. Conforti, D. Macedonio, and V. Sassone. BiLog: spatial logics for bigraphs. Computer
Science Report 2005:02, University of Sussex, 2005.

10. T. Hildebrandt and J.W. Winther. Bigraphs and (Reactive) XML, an XML-centric model of
computation. IT University of Copenhagen Technical Report TR-2005-26, 2005.

11. D. Hirschkoff. An extensional spatial logic for mobile processes. In Proc. of CONCUR,
volume 3170 of LNCS, pages 325–339. Springer-Verlag, 2004.

12. O. H. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical Report
UCAM-CL-TR-580. University of Cambridge, 2004.

13. J. J. Leifer and R. Milner. Transition systems, link graphs and petri nets. Technical Report
UCAM-CL-TR-598. University of Cambridge, 2004.

14. R. Milner. Bigraphical reactive systems. In Proc. of CONCUR, volume 2154 of LNCS, pages
16–35. Springer-Verlag, 2001.

15. R. Milner. Axioms for bigraphical structure. Technical Report UCAM-CL-TR-581. Univer-
sity of Cambridge, 2004.

16. R. Milner. Bigraphs for petri-nets. In Lectures on Concurrency and Petri Nets: Advances in
Petri Nets, pages 686–701. Springer-Verlag, 2004.

17. R. Milner. Pure bigraphs. Technical Report UCAM-CL-TR-614. University of Cambridge,
2005.

18. P. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data
structures. In Proc. of CSL, volume 2142 of LNCS, pages 1–19. Springer-Verlag, 2001.

19. A. M. Pitts. Nominal logic: A first order theory of names and binding. In Proc. of TACS,
volume 2215 of LNCS, pages 219–242. Springer-Verlag, 2001.

	Introduction
	An Informal Introduction to Bigraphs
	BiLog: Syntax and Semantics
	Conclusion and FutureWork
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

