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ABSTRACT

In a reputation-based trust-management system, agents main-
tain information about the past behaviour of other agents.
This information is used to guide future trust-based de-
cisions about interaction. However, while trust manage-
ment is a component in security decision-making, many ex-
isting reputation-based trust-management systems provide
no formal security-guarantees. In this extended abstract,
we describe a mathematical framework for a class of sim-
ple reputation-based systems. In these systems, decisions
about interaction are taken based on policies that are exact
requirements on agents’ past histories. We present a ba-
sic declarative language, based on pure-past linear temporal
logic, intended for writing simple policies. While the ba-
sic language is reasonably expressive (encoding e.g. Chinese
Wall policies) we show how one can extend it with quantifi-
cation and parameterized events. This allows us to encode
other policies known from the literature, e.g., ‘one-out-of-
k’. The problem of checking a history with respect to a
policy is efficient for the basic language, and tractable for
the quantified language when policies do not have too many
variables.

*Extended Abstract. The full paper is available as a
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1. INTRODUCTION

In global-scale distributed systems, traditional authoriza-
tion mechanisms easily become either overly restrictive, or
very complex [2]. In part, this is due to the vast num-
bers of principals they must encompass, and the open na-
ture of the systems. In dynamic and reputation-based trust-
management systems, the problems of scale and openness
are countered by taking a less static approach to autho-
rization and, more generally, decision making. In these sys-
tems, principals keep track of the history of interactions with
other principals. The recorded behavioural information is
used to guide future decisions about interaction (see refer-
ences [15,24,27] on reputation). This dynamic approach is
being investigated as a means of overcoming the above men-
tioned security problems of global-scale systems. Yet, in
contrast with traditional (cryptographic) security research,
within the area of dynamic trust and reputation, no widely
accepted security-models exist, and to our knowledge, few
systems provide provable security guarantees (see, however,
references [6,18,20] on general formal modelling of trust in
global computing systems).

Many reputation systems have been proposed in the litera-
ture, but in most of these the recorded behavioural informa-
tion is heavily abstracted. For example, in the EigenTrust
system [16], behavioural information is obtained by counting
the number of ‘satisfactory’ and ‘unsatisfactory’ interactions
with a principal. Besides lacking a precise semantics, this
information has abstracted away any notion of time, and
is further reduced (by normalization) to a number in the
interval [0,1]. In the Beta reputation system [14], similar
abstractions are performed, obtaining a numerical value in
[—1,1] (with a statistical interpretation). There are many
other examples of such information abstraction or aggrega-
tion in the reputation-system literature [15], and the only



non-example we are aware of is the framework of Shmatikov
and Talcott [27] which we discuss further in the concluding
section.

Abstract representations of behavioural information have
their advantages (e.g., numerical values are often easily com-
parable, and require little space to store), but clearly, infor-
mation is lost in the abstraction process. For example, in
EigenTrust, value 0 may represent both “no previous inter-
action” and “many unsatisfactory previous interactions” [16].
Consequently, one cannot verify exact properties of past be-
haviour given only the reputation information.

In this paper, the concept of ‘reputation system’ is to
be understood very broadly, simply meaning any system in
which principals record and use information about past be-
haviour of principals, when assessing the risk of future in-
teraction. We present a formal framework for a class of sim-
ple reputation systems in which, as opposed to most “tra-
ditional” systems, behavioural information is represented in
a very concrete form. The advantage of our concrete rep-
resentation is that sufficient information is present to check
precise properties of past behaviour. In our framework, such
requirements on past behaviour are specified in a declara-
tive policy-language, and the basis for making decisions re-
garding future interaction becomes the verification of a be-
havioural history with respect to a policy. This enables us
to define reputation systems that provide a form of provable
“security” guarantees, intuitively, of the form: “If principal p
gains access to resource r at time ¢, then the past behaviour
of p up until time t satisfies requirement ,..”

To get the flavour of such requirements, we preview an
example policy from a declarative language formalized in
the following sections. Edjlali et al. [9] consider a notion
of history-based access control in which unknown programs,
in the form of mobile code, are dynamically classified into
equivalence classes of programs according to their behaviour
(e.g. “browser-like” or “shell-like”). This dynamic classifica-
tion falls within the scope of our very broad understanding of
reputation systems. The following is an example of a policy
written in our language, which specifies a property similar
to that of Edjlali et al., used to classify “browser-like” appli-
cations:

pbrowser = —F~l(modify) A
—F~!(create-subprocess) A
G (Vz. [open(z) — F'(create(z))])

Informally, the atoms modify, create-subprocess, open(z)
and create(z) are events which are observable by moni-
toring an entity’s behaviour. The latter two are parame-
terized events, and the quantification “Va” ranges over the
possible parameters of these. Operator F~! means ‘at some
point in the past,” G~! means ‘always in the past,’ and con-
structs A and — are conjunction and negation, respectively.
Thus, clauses =F ~!(modify) and —F ~!(create-subprocess)
require that the application has never modified a file, and
has never created a sub-process. The final, quantified clause
G (Va. [open(z) — F~'(create(z))]) requires that when-
ever the application opens a file, it must previously have
created that file. For example, if the application has opened
the local system-file ”/etc/passwd” (i.e. a file which it has
not created) then it cannot access the network (a right as-
signed to the “browser-like” class). If, instead, the applica-
tion has previously only read files it has created, then it will
be allowed network access.

1.1 Contributions and Outline

We present a formal model of the behavioural information
that principals obtain in our class of reputation systems.
This model is based on previous work using event struc-
tures for modelling observations [21], but our treatment of
behavioural information departs from the previous work in
that we perform (almost) no information abstraction. The
event-structure model is presented in Section 2.

We describe our formal declarative language for interac-
tion policies. In the framework of event structures, be-
havioural information is modelled as sequences of sets of
events. Such linear structures can be thought of as (finite)
models of linear temporal logic (LTL) [22]. Indeed, our ba-
sic policy language is based on a (pure-past) variant of LTL.
We give the formal syntax and semantics of our language,
and provide several examples illustrating its naturality and
expressiveness. We are able to encode several existing ap-
proaches to history-based access control, e.g. the Chinese
Wall security policy [3] and a restricted version of so-called
‘one-out-of-k’ access control [9]. The formal description of
our language, as well as examples and encodings, is pre-
sented in Section 3.

An interesting new problem is how to re-evaluate policies
efficiently when interaction histories change as new infor-
mation becomes available. It turns out that this problem,
which can be described as dynamic model-checking, can be
solved very efficiently using an algorithm adapted from that
of Havelund and Rosu, based on the technique of dynamic
programming, used for runtime verification [13]. Interest-
ingly, although one is verifying properties of an entire in-
teraction history, one needs not store this complete history
in order to verify a policy: old interaction can be efficiently
summarized relative to the policy. Descriptions of two algo-
rithms, and analysis of their time- and space-requirements
is given in the full paper [17]. The results are outlined in
Section 3.

Our simple policy language can be extended to encom-
pass policies that are more realistic and practical (e.g., for
history-based access control [1,9,11,29], and within the tra-
ditional domain of reputation systems: peer-to-peer- and
online feedback systems [16,24]). In the full paper we de-
scribe a form of quantitative policies, a notion of policy ref-
erencing to include other principals’ data, and quantified
policies. In Section 5 we illustrate the extension to quanti-
fied policies, and describe results regarding policy-checking
algorithms and complexity.

Related work is discussed in the concluding section. Due
to space restrictions no proofs are included in this paper.
The interested reader is referred to the associated technical
report [17] for proofs and additional examples.

2. OBSERVATIONS AS EVENTS

Agents in a distributed system obtain information by ob-
serving events which are typically generated by the reception
or sending of messages. The structure of these message ex-
changes are given in the form of protocols known to both
parties before interaction begins. By behavioural observa-
tions, we mean observations that the parties can make about
specific runs of such protocols. These include information
about the contents of messages, diversion from protocols,
failure to receive a message within a certain time-frame, etc.



Our goal in this section, is to give precise meaning to the
notion of behavioural observations. Note that, in the setting
of large-scale distributed environments, often, a particular
agent will (concurrently) be involved in several instances of
protocols; each instance generating events that are logically
connected. One way to model the observation of events is
using a process algebra with “state”, recording input/output
reactions, as is done in the calculus for trust management,
ctm [7]. Here we are not interested in modelling interaction
protocols in such detail, but merely assume some system
responsible for generating events.

We will use the event-structure framework of Nielsen and
Krukow [21] as our model of behavioural information. The
framework is suitable for our purpose as it provides a generic
model for observations that is independent of any specific
programming language. In the framework, the information
that an agent has about the behaviour of another agent p,
is information about a number of (possibly active) protocol-
runs with p, represented as a sequence of sets of events,
T1X2 - - Tn, where event-set x; represents information about
the ith initiated protocol-instance. Note, in frameworks for
history-based access control (e.g., [1,9,11]), histories are al-
ways sequences of single events. Our approach generalizes
this to allow sequences of (finite) sets of events; a general-
ization useful for modelling information about protocol runs
in distributed systems.

We present the event-structure framework as an abstract
interface providing two operations, new and update, which
respectively records the initiation of a new protocol run, and
updates the information recorded about an older run (i.e.
updates an event-set ;). A specific implementation then
uses this interface to notify our framework about events.

2.1 The Event-Structure Framework

In order to illustrate the event-structure framework [21],
we use an example complementing its formal definitions.
We will use a scenario inspired by the eBay online auction-
house [8], but deliberately over-simplified to illustrate the
framework.

On the eBay website, a seller starts an auction by an-
nouncing, via the website, the item to be auctioned. Once
the auction has started the highest bid is always visible, and
bidders can place bids. A typical auction runs for 7 days,
after which the bidder with the highest bid wins the auc-
tion. Once the auction has ended, the typical protocol is
the following. The buyer (winning bidder) sends payment
of the amount of the winning bid. When payment has been
received, the seller confirms the reception of payment, and
ships the auctioned item. Optionally, both buyer and seller
may leave feedback on the eBay site, expressing their opinion
about the transaction. Feedback consist of a choice between
ratings ‘positive’, ‘neutral’ and ‘negative’, and, optionally, a
comment.

We will model behavioural information in the eBay sce-
nario from the buyers point of view. We focus on the inter-
action following a winning bid, i.e. the protocol described
above. After winning the auction, buyer (B) has the option
to send payment, or ignore the auction (possibly risking to
upset the seller). If B chooses to send payment, he may
observe confirmation of payment, and later the reception of
the auctioned item. However, it may also be the case that B
doesn’t observe the confirmation within a certain time-frame
(the likely scenario being that the seller is a fraud). At any

time during this process, each party may choose to leave
feedback about the other, expressing their degree of satis-
faction with the transaction. In the following, we will model
an abstraction of this scenario where we focus on the follow-
ing events: buyer pays for auction, buyer ignores auction,
buyer receives confirmation, buyer receives no confirmation
within a fixed time-limit, and seller leaves positive, neutral
or negative feedback (note that we do not model the buyer
leaving feedback).

The basis of the event-structure framework is the fact that
the observations about protocol runs, such as an eBay trans-
action, have structure. Observations may be in conflict in
the sense that one observation may exclude the occurrence
of others, e.g. if the seller leaves positive feedback about the
transaction, he can not leave negative or neutral feedback.
An observation may depend on another in the sense that
the first may only occur if the second has already occurred,
e.g. the buyer cannot receive a confirmation of received pay-
ment if he has not made a payment. Finally, if two ob-
servations are neither in conflict nor dependent, they are
said to be independent, and both may occur (in any order),
e.g. feedback-events and receiving confirmation are indepen-
dent. Note that ‘independent’ just means that the events are
not in conflict nor dependent (e.g., it does not mean that
the events are independent in any statistical sense). These
relations between observations are directly reflected in the
definition of an event structure. (For a general account of
event structures, traditionally used in semantics of concur-
rent languages, consult the handbook chapter of Winskel
and Nielsen [30]).

Definition 2.1 (Event Structure). An event structure
is a triple ES = (E,<,#) consisting of a set E, and two
binary relations on E: < and #. The elements e € E are
called events, and the relation #, called the conflict relation,
is symmetric and irreflexive. The relation < is called the
(causal) dependency relation, and partially orders E. The
dependency relation satisfies the following axiom, for any
ec E:
the set [e] (e {e' € E | € < e} is finite.

The conflict- and dependency-relations satisfy the following
“transitivity” axiom for any e,e’,e” € E

(e # e and e < e”) implies e # "

Two events are independent if they are not in either of the
two relations.

We use event structures to model the possible observations
of a single agent in a protocol, e.g. the event structure in
Figure 1 models the events observable by the buyer in our
eBay scenario.

The two relations on event structures imply that not all
subsets of events can be observed in a protocol run. The
following definition formalizes exactly what sets of observa-
tions are observable.

Definition 2.2 (Configuration). Let ES = (E, <,#) be
an event structure. We say that a subset of events x C F is a
configuration if it is conflict free (C.F.), and causally closed
(C.C.). That is, it satisfies the following two properties, for
any d,d' € x ande € E

(CF)d#d;and (CC)e<d=ecx



confirm ~~~~ time-out

pay

ignore

P

positive ~~~ neutral ~ negative

Figure 1: An event structure modelling the buyer’s
observations in the eBay scenario. (Immediate)
Conflict is represented by ~, and dependency by —.

Notation 2.1. Cgs denotes the set of configurations of
ES, and C%s C Cgs the set of finite configurations. A
configuration is said to be maximal if it is maximal in the
partial order (Cgs,C). Also, if e € E and = € Cgs, we
write e # 2z, meaning that J¢’ € z.e # ¢’. Finally, for
z,2' € Crs,e € E, define a relation — by ¢ =z’ iff e & «
and #' = zU{e}. If y C F and = € Crs,e € E we write
T 7§> y to mean that either y ¢ Cgs or it is not the case that
T — .

A finite configuration models information regarding a sin-
gle interaction, i.e. a single run of a protocol. A maximal
configuration represents complete information about a single
interaction. In our eBay example, sets @), {pay, positive}
and {pay, confirm, positive} are examples of configurations
(the last configuration being maximal), whereas

{pay, confirm, positive,negative}

and {confirm} are non-examples.

In general, the information that one agent possesses about
another will consist of information about several protocol
runs; the information about each individual run being rep-
resented by a configuration in the corresponding event struc-
ture. The concept of a local interaction history models this.

Definition 2.3 (Local Interaction History). Let ES
be an event structure, and define a local interaction his-
tory in ES to be a sequence of finite configurations, h =
T1T2 - Tn € Chg . The individual components z; in the
history A will be called sessions.

In our eBay example, a local interaction history could be
the following:

{pay, confirm, pos}{pay, confirm, neu}{pay}

Here pos and neu are abbreviations for the events positive
and neutral. The example history represents that the buyer
has won three auctions with the particular seller, e.g. in the
third session the buyer has (so-far) observed only event pay.

We assume that the actual system responsible for notifi-
cation of events will use the following interface to the model.

Definition 2.4 (Interface). Define an operation new :
C%s" — C%s” by new(h) = hi). Define also a partial oper-
ation update : C%s* x E x N — C%s" as follows. For any
h=gxxe @i Tn €Chs,e€ FE, ieN, update(h, e, 1)

is undefined if ¢ & {1,2,...,n} or z; 72 x; U {e}. Otherwise
update(h,e,i) = z1x2--- (z; U{e}) - zn

Remarks. Note, that while the order of sessions is recorded
(a local history is a sequence), in contrast, the order of inde-
pendent events within a single session is not. For example,
in our eBay scenario we have

update(update({pay}, neutral, 1), confirm, 1) =
update(update({pay}, confirm, 1), neutral, 1)

Hence independence of events is a choice of abstraction one
may make when designing an event-structure model (be-
cause one is not interested in the particular order of events,
or because the exact recording of the order of events is not
feasible). However, note that this is not a limitation of event
structures: in a scenario where this order of events is rele-
vant (and observable), one can always use a “serialized” event
structure in which this order of occurrences is recorded. A
serialization of events consists of splitting the events in ques-
tion into different events depending on the order of occur-
rence, e.g., supposing in the example one wants to record the
order of pay and pos, one replaces these events with events
pay-before-pos,pos-before-pay, pay-after-pos and pos-
after-pay with the obvious causal- and conflict-relations.

When applying our logic (described in the next section)
to express policies for history-based access control (HBAC),
we often use a special type of event structure in which the
conflict relation is the maximal irreflexive relation on a set £
of events. The reason is that histories in many frameworks
for HBAC, are sequences of single events for a set . When
the conflict relation is maximal on F, the configurations
of the corresponding event structure are exactly singleton
event-sets, hence we obtain a useful specialization of our
model, compatible with the tradition of HBAC.

3. A LANGUAGE FOR POLICIES

The reason for recording behavioural information is that
it can be used to guide future decisions about interaction.
We are interested in binary decisions, e.g., access-control and
deciding whether to interact or not. In our proposed system,
such decisions will be made according to interaction policies
that specify exact requirements on local interaction histories.
For example, in the eBay scenario from last section, the
bidder may adopt a policy stating: “only bid on auctions
run by a seller which has never failed to send goods for won
auctions in the past.”

In this section, we propose a declarative language which
is suitable for specifying interaction policies. In fact, we
shall use a pure-past variant of linear-time temporal logic, a
logic introduced by Pnueli for reasoning about parallel pro-
grams [22]. Pure-past temporal logic turns out to be a nat-
ural and expressive language for stating properties of past
behaviour. Furthermore, linear-temporal-logic models are
linear Kripke-structures, which resemble our local interac-
tion histories. We define a satisfaction relation =, between
such histories and policies, where judgement h = 1 means
that the history h satisfies the requirements of policy .

3.1 Formal Description

3.1.1 Syntax.
The syntax of the logic is parametric in an event structure
ES = (E,<,#). There are constant symbols e, €', e;, ... for

each e € E. The syntax of our language, which we denote
L(ES), is given by the following BNF.



¥ on= e|Ce| o op b1 |~ | X | ho S b

Meta-variable op ranges over {A,V}. The constructs e and
e are both atomic propositions. In particular, $e is not
the application of the usual modal operator < (with the
“temporal” semantics) to formula e. Informally, the formula
e is true in a session if the event e has been observed in
that session, whereas < e, pronounced “e is possible”, is true
if event e may still occur as a future observation in that
session. The operators X! (‘last time’) and S (‘since’) are
the usual past-time operators.

3.1.2 Semantics.

A structure for L(ES), where ES = (E, <,#) is an event
structure, is a non-empty local interaction history in ES,
h € COES+ We define the satisfaction relation |= between
structures and policies, i.e. h = 1 means that the history h
satisfies the requirements of policy ). We will use a variation
of the semantics in linear Kripke structures: satisfaction is
defined from the end of the sequence “towards” the begin-
ning, i.e. h = ¢ iff (h,|h]) = 9. To define the semantics
of (h,i) =4, let h = z120---2n € Chg" with N > 0, and
1 < i < N. Define (h, i) = 9 by structural induction in .

(h,i) Ee iff ecux

(h,i) E Ce iff e # x;

(h,i) E o A iff (h,4) = vo and (h, i) = Y1
(h,i) Evo VvV iff (h,d) 1o or (h,i) E 9
(h,1) F ¢ iff  (h,i) Eo

(h,i) = X" iff i>1and (h,i—1)Ev
(h,i) Evo Sy1 iff 35 <i.[(h,j) E ¢1 and

Vh.(j < k <i= (h k) = ¥0)]

Remarks. There are two main reasons for restricting our-
selves to the pure-past fragment of temporal logic (PPLTL).
Most importantly, PPLTL is an expressive and natural lan-

guage for stating requirements over past behaviour, e.g. history-

based access control. Hence in our application one wants to
speak about the past, not the future. We justify this claim
further by providing (natural) encodings of several exist-
ing approaches for checking requirements of past behaviour
(c.f. Example 3.2 and 3.3 in the next section). Secondly,
although one could add future operators to obtain a seem-
ingly more expressive language, a result of Laroussinie et
al. quantifies exactly what is lost by this restriction [19].
Their result states that LTL can be exponentially more suc-
cinct than the pure-future fragment of LTL. It follows from
the duality between the pure-future and pure-past opera-
tors, that when restricting to finite linear Kripke structures,
and interpreting h = ¢ as (h, |h|) E v, then our pure-past
fragment can express any LTL formula (up to initial equiva-
lence), though possibly at the cost of an exponential increase
in the size of the formula. Another advantage of PPLTL is
that, while Sistla and Clarke proved that the model-checking
problem for linear temporal logic with future- and past-
operators (LTL) is PSPACE-complete [28], there are very
efficient algorithms for (finite-path) model-checking pure-
past fragments of LTL, and (as we shall see in Section 4)
also for the dynamic policy-checking problem.

Note that we have defined the semantics of the logic only
for non-empty structures, h € COES+. This means that poli-
cies cannot be interpreted if there has been no previous in-
teraction. In practice it is up to each agent to decide by

other means if interaction should take place in the case of
no past history. For the remainder of this paper we shall
define € = v iff @ | 1, that is we (arbitrarily) identify the
empty sequence (¢) with the singleton sequence consisting
of only the empty configuration. Finally, we define stan-
dard abbreviations: false = e A —e for some fixed e € F,
true = —false, Yo — 1 = —bo V 1, F () = true S ¥,
G () = -F 1 (—)). We also define non-standard abbrevi-
ation ~e = =Oe (pronounced ‘conflict e’ or ‘e is impossible’).

3.2 Example Policies

To illustrate the expressive power of our language, we con-
sider a number of example policies.

Example 3.1 (eBay). Recall the eBay scenario from Sec-
tion 2, in which a buyer has to decide whether to bid on an
electronic auction issued by a seller. We express a policy for
decision ‘bid’; stating “only bid on auctions run by a seller
that has never failed to send goods for won auctions in the
past.”

¢P¢ = —F ! (time-out)

Furthermore, the buyer might require that “the seller has
never provided negative feedback in auctions where payment
was made.” We can express this by

¢”? = —=F ! (time-out) A G ' (negative — ignore)

Example 3.2 (Chinese Wall). The Chinese Wall policy
is an important commercial security-policy [3], but has also
found applications within computer science. In particular,
Edjlali et al. [9] use an instance of the Chinese Wall pol-
icy to restrict program accesses to database relations. The
Chinese Wall security-policy deals with subjects (e.g. users)
and objects (e.g. resources). The objects are organized into
datasets which, in turn, are organized in so-called conflict-
of-interest classes. There is a hierarchical structure on ob-
jects, datasets and classes, so that each object has a unique
dataset which, in turn, has a unique class. In the Chinese-
Wall policy, any subject initially has freedom to access any
object. After accessing an object, the set of future accessi-
ble objects is restricted: the subject can no longer access an
object in the same conflict-of-interest class unless it is in a
dataset already accessed. Non-conflicting classes may still
be accessed.

We now show how our logic can encode any instance of
the Chinese Wall policy. Following the model of Brewer
et al. [3], we let S denote a set of subjects, O a set of objects,
and L a labeling function L : O — C x D, where C is a
set of conflict-of-interest classes and D a set of datasets.
The interpretation is that if L(o) = (co,d,) for an object
o € O, then o is in dataset d,, and this dataset belongs to
the conflict-of-interest class ¢,. The hierarchical structure on
objects, datasets and classes amounts to requiring that for
any 0,0 € O if L(0o) = (¢,d) and L(0’) = (c/,d) then ¢ = ¢.
The following ‘simple security rule’ defines when access is
granted to an object o: “either it has the same dataset as
an object already accessed by that subject, or, the object
belongs to a different conflict-of-interest class.” [3] We can
encode this rule in our logic. Consider an event structure
ES = (E, <, #) where the events are CUD, with (c,c’) € #
forc#c €C, (d,d') € # for d# d € D, and (c,d) € # if
(¢c,d) is not in the image of L (denoted Img(L)). We take
< to be discrete. Then a maximal configuration is a set
{c,d} so that the pair (¢,d) is in Img(L), i.e., corresponds



to an object-access. A history is then a sequence of object-
accesses. Now stating the simple security rule as a policy
is easy: to access object o with L(0) = (co,do), the history
must satisfy the following policy:

W =F ', v G e,

In this encoding we have one policy per object 0. One may
argue that the policy ¥° only captures Chinese Wall for a
single object (0), whereas the “real” Chinese Wall policy is
a single policy stating that “for every object o, the simple
security rule applies.” However, in practical terms this is
inessential. Even if there are infinitely many objects, a sys-
tem implementing Chinese Wall one could easily be obtained
using our policies as follows. Say that our proposed security
mechanism (intended to implement “real” Chinese Wall) gets
as input the object o and the subject s for which it has to
decide access. Assuming that our mechanism knows func-
tion L, it does the following. If object o has never been
queried before in the run of our system, the mechanism gen-
erates “on-the-fly” a new policy ¥° according to the scheme
above; it then checks ¥ with respect to the current history
of s.! If o0 has been queried before it simply checks ¢° with
respect to the history of s. Since only finitely many objects
can be accessed in any finite run, only finitely many different
policies are generated. Hence, the described mechanism is
operationally equivalent to Chinese Wall.

Example 3.3 (Shallow One-Out-of-k). The ‘one-out-of-
k’ (OOok) access-control policy was introduced informally
by Edjlali et al. [9]. Set in the area of access control for
mobile code, the OOok scheme dynamically classifies pro-
grams into equivalence classes, e.g. “browser-like applica-
tions,” depending on their past behaviour. In the follow-
ing we show that, if one takes the set-based formalization of
OOok by Fong [11], we can encode all OOok policies. Since
our model is sequence-based, it is richer than Fong’s shallow
histories which are sets. An encoding of Fong’s OOok-model
thus provides a good sanity-check as well as a declarative
means of specifying OOok policies (as opposed to the more
implementation-oriented security automata).

In Fong’s model of OOok, a finite number of application
classes are considered, say, 1,2,...,k. Fong identifies an
application class, i, with a set of allowed actions C;. To
encode OOok policies, we consider an event structure £.S =
(B, <, #) with events F being the set of all access-controlled
actions. As in the last example, we take < to be discrete, and
the conflict relation to be the maximal irreflexive relation,
i.e. a local interaction history in ES is simply a sequence
of single events. Initially, a monitored entity (originally,
a piece of mobile code [9]) has taken no actions, and its
history (which is a set in Fong’s formalization) is (. If S
is the current history, then action a € E is allowed if there
exists 1 < i < k so that SU {a} C Cj, and the history is
updated to SU{a}. For each action a € F we define a policy
® for a, expressing Fong’s requirement. Assume, without
loss of generality, that the sets C; that contain a are named
1,2,...,1 for some i < k. We will assume that each set C;
is either finite or co-finite.

Fix a j < i. The following formula ¢j encodes the re-
quirement that S U {a} C C;. There are two cases. If the

!This check can be done in time linear in the history of
subject s.

set Cj is co-finite (i.e., its complement E \ Cj is finite),

Wi=-F(C\/ o

e€E\Cj

If instead Cj is itself finite, we encode

=G\ e

ecCj

Now we can encode the policy for allowing action a as ¢* =
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4. DYNAMIC MODEL CHECKING

The problem of verifying a policy with respect to a given
observed history is the model-checking problem: given h €
Che and 9, does h = @ hold? However, our intended
scenario requires a more dynamic view. Each entity will
make many decisions, and each decision requires a model
check. Furthermore, since the model h changes as new
observations are made, it is not sufficient simply to cache
the answers. This leads us to consider the following dy-
namic problem. Devise an implementation of the following
interface, ‘DMC’. DMC' is initially given an event struc-
ture ES = (E,<,#) and a policy 9 written in the basic
policy language. Interface DMC supports three operations:
DMC.mew(), DMC.update(e,i), and DMC.check(). A se-
quence of non-‘check’ operations gives rise to a local inter-
action history h, and we shall call this the actual history.
Internally, an implementation of DMC' must maintain infor-
mation about the actual history h, and operations new and
update are those of Section 2, performed on h. At any time,
operation DMC'.check() must return the truth of h = 4.

In the full paper [17], we describe two implementations of
interface DMC'. The first has a cheap precomputation, but
higher complexity of operations update and new, whereas
the second implementation has a higher time- and space-
complexity for its precomputation, but gains in the long
run with a better complexity of the interface operations.
Both implementations are inspired by the efficient algorithm
of Havelund and Rosu for model checking past-time LTL
[13]. Their idea is essentially this: because of the semantics,
model-checking % in (h,m), i.e. deciding (h,m) |= ¥, can be
done easily if one knows (1) the truth of (h,m —1) = 1; for
all sub-formulas ; of ¢, and (2) the truth of (h,m) = ;
for all proper sub-formulas 1; of ¢ (a sub-formula of v is
proper if it is not ¢ itself). The truth of the atomic sub-
formulas of ¢ in (h,m) can be computed directly from the
state h.,,, where h,, is the mth configuration in sequence
h. For example, if 93 = X" ¢4 A e, then (h,m) |= 3 iff
(h,m — 1) = 14, and e € hp,. This information needed to
decide (h,m) = ¢ can be stored efficiently as two boolean
arrays Biast and By, indexed by the sub-formulas of v, so
that Bigst[7] is true iff (h,m — 1) | 15, and Beyr[i] is true
iff (h,m) = 4;. Given array Bies: and the current state hm,
one then constructs array Be.r starting from the atomic
formulas (which have the largest indices), and working in a
‘bottom-up’ manner towards index 0, for which entry Beur[0]
represents (h,m) = 9.

In this section we summarize our results regarding dy-
namic model checking. We need some preliminary termi-
nology. Initially, the actual interaction history h is empty,
but after some time, as observations are made, the history
can be written h = x1 -T2+ Tm - Ym+1 - - - YM+K, consisting



of a longest prefix x1---xnm of maximal configurations, fol-
lowed by a suffix of K possibly non-maximal configurations
YM+1 - - YMm+i, called the active sessions (since we consider
the longest prefix, ya4+1 must be non-maximal). A maxi-
mal configuration represents complete information about a
protocol-run, and has the property that it will never change
in the future, i.e. cannot be changed by operation update.
This property will be essential to our dynamic algorithms
as it implies that the maximal prefix needs not be stored to
check h = 1 dynamically.

Theorem 4.1 (Array-based DMC). One can construct
an array-based data structure (DS) implementing the DMC
interface correctly. More specifically, assume that DS is ini-
tialized with a policy ¢ and an event structure ES, then ini-
tialization of DS is O(|¢|). At any time during execution,
the complexity of the interface operations is:

e DMC'.check() is O(1).
e DMC.mew() is O(|9)]).

e DMC.update(e,i) is O(K —i+ 1) - |¢|) where K is
the current number of active sessions in h (h is the
current actual history).

Furthermore, if the configurations of ES are represented
with event-set bit-vectors, the space complexity of DS is

O(K - (9| + |E])).

Regularity of policies. In fact, it turns out that the set
of behaviours satisfying a policy is a regular language (over
the alphabet of configurations of a finite event structure).
This observation leads to an implementation of the DMC
interface which uses a finite automaton, essentially storing
the state of the array-based data structure. We have the
following.

Theorem 4.2. For any policy 1 in the basic language, the
set of behaviours satisfying v is regular. That is for any
P there is a finite automaton Ay with L(Ay) = {h € Cxg |
h |=v}. Further, there exists an automata-based data struc-
ture (DS') implementing the DMC interface correctly. More
specifically, assume that DS’ is initialized with a policy 1)
and an event structure ES = (E,<,#), then initialization
of DS’ is O(21Y - |Crs|- [4]). At any time during ezecution,
the complexity of the interface operations is:

e DMC'.check() is O(1).
e DMC.mew() is O(1).

e DMC.update(e,i) is O(K — ¢ + 1) where K is the
current number of active configurations in h (h is the
current actual history).

Furthermore, if the configurations of ES are represented
with event-set bit-vectors, the space complexity of DS’ is
O(K - |B| + 2! |Cus]).

A further important advantage of the automata-based ap-
proach is that one can use minimization to obtain the most
efficient automata for a given policy.

S. LANGUAGE EXTENSIONS

In this section, we consider an extension of the basic pol-
icy language to include more realistic and practical poli-
cies. For example, consider the OOok policy for classify-
ing “browser-like” applications (Section 3). We could use
a clause like G™'(open-f — F~!create-f) for two events
open-f and create-f, representing respectively the open-
ing and creation of a file with name f. However, this only
encodes the requirement that for a fized f, file f must be
created before it is opened. Ideally, one would want to en-
code that for any file, this property holds, i.e., a formula
similar to

G! (V:U. [open(m) — Ffl(create(:r))D

where zx is a variable, and the universal quantification ranges
over all possible file-names. Further language extensions
are discussed in the full paper [17]. These includes a no-
tion of policy referencing, where policies may depend on
other agents’ policies and histories with entities. Another
useful extension for reputation systems is quantitative poli-
cies. Pure-past temporal logic is very useful for specify-
ing qualitative properties. For instance, in the eBay exam-
ple, “the seller has never provided negative feedback in auc-
tions where payment was made,” is directly expressible as
G '(negative — ignore). However, sometimes such quali-
tative properties are too strict to be useful in practice. For
example, in the policy above, a single erroneous negative
feedback provided by the seller will lead to the property be-
ing irrevocably unsatisfiable. We have an extension of the
basic language which allows a type of quantitative proper-
ties, e.g. “in at least 98% of the previous interactions, seller
has not provided negative feedback in auctions where pay-
ment was made.”

5.1 Quantification

We introduce a notion of parameterized event structure,
and proceed with an extension of the basic policy language
to include quantification over parameters. A parameterized
event structure is like an ordinary event structure, but where
events occur with certain parameters (e.g. open(”/etc/passwd”)).

5.1.1 Parameterized Event Structures

We define parameterized event structures and an appro-
priate notion of configuration.

Definition 5.1 (Parameterized Event Structure). A
parameterized event structure is a tuple pES = (E, <, #,P, p)
where (E, <, #) is an (ordinary) event structure, component
P, called the parameters, is a set of countable parameter sets,
P ={P.|e€E}, and p: E — P is a function, called the
parameter-set assignment.

Definition 5.2 (Configuration). Let pES = (E,<,#,P,p)
be a parameterized event structure. A configuration of pES
is a partial function z : £ — (J .5 p(e) satisfying the fol-
lowing two properties. Let dom(z) C E be the set of events
on which z is defined. Then

dom(x) € Cgs

Ve € dom(z).z(e) € p(e)

When z is a configuration, and e € dom(z), then we say
that e has occurred in x. Further, when x(e) = p € p(e),



we say that e has occurred with parameter p in . So a
configuration is a set of event occurrences, each occurred
event having exactly one parameter.

Notation 5.1. We write C,gs for the set of configurations
of pES, and CSES for the set of finite configurations of pES
(a configuration z is finite of dom(z) is finite). If z,y are
two partial functions ¢ : A — B and y : C' — D we write
(z/y) (pronounced x over y) for the partial function (x/y) :
AUB — CUD given by dom(x/y) = dom(z)Udom(y), and
for all e € dom(z/y) we have (z/y)(e) = z(e) if e € dom(z)
and otherwise (z/y)(e) = y(e).

Here we are not interested in the theory of parameter-
ized event structures, but mention only that they can be ex-
plained in terms of ordinary event structures by expanding
a parameterized event e of type p(e) in to a set of conflict-
ing events {(e,p) | p € p(e)}. However, the parameters give
a convenient way of saying that the same event can occur
with different parameters (in different runs). A local (inter-
action) history h in a parameterized event structure pES is
a finite sequence h € CSES*. The update(h, e, ) function is
extended appropriately to include also the parameter p that
e occurs with. Throughout the following sections, we let
pES = (E,<,#,P,p) be a parameterized event structure,
where P = {P; | i € N}.

5.1.2  Quantified Policies

We extend the basic language from Section 3 to parame-
terized event structures, allowing quantification over param-
eters.

Syntax. Let Var denote a countable set of variables
(ranged over by z,y,...). Let the meta-variable v range

over Val (&) Var U |J;2, Pi, and metavariable p range over
> P
i=1""1
The quantified policy language is given by the following
BNF. Again op ranges over {A, V}.

Y ou= e(v) | Ce(v) [ o op Y1 [ |
XY | o Sapr |V : Piap | Iz 2 P

We need some terminology. Write fv(1)) for the set of free
variables in 1 (defined in the usual way). A policy of the
quantified language is a closed formula. Let 1 be any for-
mula. Say that a variable x has type P; in v if it occurs in a
sub-formula e(x) of ¢ and p(e) = P;. We impose the follow-
ing static well-formedness requirement on formulas . All
free variables have unique type, and, if x is a bound variable
of type P; in v, then z is bound by a quantifier of the cor-
rect type (e.g., by Vz : P;.¢p). Further, for each occurrence
of e(p), p is of the correct type: p € p(e).

Semantics. A (generalized) substitution is a function
o: Val — Ufil P; so that o is the identity on each of the
parameter sets P;. Let h = z1---z, € CSES* be a non-
empty history, o a substitution, and 1 < i < n.

We now define relation (h,1) =7 9.

(hyi) E7 e(v) iff e € dom(x;) and zi(e) = o(v)
(hy1) E7 Ce(v) iff e # dom(z;) and

e € dom(z;) = zi(e) = o(v))
= 4o and (h,1) 7 1
=7 o or (h,i) =7 ¢

1 ':G o A Y1 iff 7,)
i)
i) Ty
1
<

(
(h, 1) (h,
(hyi) B o vpr iff (h,
(h,i) E7 =) it (h,
(h,i) =7 X~ iff 4
(hyi) B o Sy iff 3

and (h,i— 1) 7 9
i-((hy ) =7 1) and

Vi < 3" <i(h,5") E o))
(h,i) =7 Vo : Piap iff Vp € Pj.(h,i) =(@=P)/9) g
(hy) =7 3z : Pab i Jp € Pj.(h,) (@) g

>
J

Example 5.1 (True OOok). Recall the ‘one-out-of-k’ pol-
icy (Example 3.3). Edjlali et al. give, among others, the fol-
lowing example of an OOok policy classifying “browser-like”
applications: “allow a program to connect to a remote site if
and only if it has neither tried to open a local file that it has
not created, nor tried to modify a file it has created, nor tried
to create a sub-process.” Since this example implicitly quan-
tifies over all possible files (for any file f, if the application
tries to open f then it must have previously have created f),
it cannot be expressed directly in our basic language. Note
also that this policy cannot be expressed in Fong’s set-based
model [11]. This follows since the above policy essentially de-
pends on the order in which events occur (i.e. create before
open). Now, consider a parameterized event structure with
two conflicting events: create and open, each of type String
(representing file-names). Consider the following quantified
policy:

G !(Vx : String.(open(x) — F'create(x)))

This faithfully expresses the idea of Edjlali et al. that the
application “can only open files it has previously created.”

5.1.3 Model Checking the Quantified Language

We can extend the array-based algorithm to handle the
quantified language. The key idea is the following. Instead
of having boolean arrays, we associate with each sub-formula
1; of a formula ¢, a constraint C[j] on the free variables of
1;. The invariant will be that the sub-formula v; is true for
a substitution o at time (h, k) if-and-only-if o “satisfies” the
constraint Ci[j], i.e., Cx[j] represents the set of substitutions
o so (h,k) 7 1. Once again we refer the reader to the full
paper for details. The results regarding quantified dynamic
model-checking are summarized below. However, we do have
the following hardness result.

Proposition 5.1 (PSPACE Hardness). Even for single
element models, the model-checking problem for the quan-
tified policy language is PSPACE hard.

While the general problem is PSPACE hard, we are able
to obtain the following quantitative result which bounds the
complexity of our algorithm. Suppose we are to check a for-
mula ¥’ = Q121Q2x2 - - - QnTn.1, where the @; are quanti-
fiers and x; variables. We can obtain a bound on the running
time of our proposed algorithm in terms of the number of
quantifiers n. This is of practical relevance since many use-
ful policies have few quantifiers. For any history h, Py, refers
to the (finite) set of distinct parameters that have occurred
in h. The requirement below that all variables be of same
type is to simplify presentation, and not essential.



Theorem 5.1 (Complexity Bound). Let formula ¢ =
Q171Q272 - - Qunryn.tp’ where the Q; are quantifiers, x; vari-
ables all of type P, and ¢’ is a quantifier-free formula from
the quantified language with fu(v)') C {z1,...,zn}. Let
h € CS rs and |Py| be the number of parameter occurrences
in history h. The constraint-based algorithm for dynamic
model checking has the following complexity.

e DMC'.check() is O(1).
e DMC.mew() is O(|¢| - (|Pn] +1)™).

e DMC.update(e,p,i) when p € P, and K is the cur-
rent number of active configurations in h, is
O((K =i+ 1) || (|Pu] +1)")

e DMC.update(e,p,i) when p € P, and K is the cur-
rent number of active configurations in h, is
O((K =i+ 1) || (|Pu] +2)")

Furthermore, if the configurations of ES are represented
with event-set bit-vectors, the space complexity of DS’ is
O(K - (IE| + || - (|1Pa] +1)")).

6. CONCLUSION

Our approach to reputation-systems differs from most ex-
isting systems in that reputation information has an exact
semantics, and is represented in a very concrete form. In our
view, the novelty of our approach is that our instance sys-
tems can verifiably provide a form of exact security guaran-
tees, albeit non-standard, that relate a present authorization
to a precise property of past behaviour. We have presented
a declarative language for specifying such security proper-
ties, and the applications of our technique extends beyond
the traditional domain of reputations systems in that we
can explain, formally, several existing approaches to “his-
tory based” access control.

We have given two efficient algorithms for the dynamic
model-checking problem, supporting the feasibility of run-
ning implementations of our framework on devices of lim-
ited computational and storage capacity; a useful property
in global computing environments. In particular, it is note-
worthy that principals need not store their entire interaction
histories, but only the so-called active sessions.

The notion of time in our temporal logic is based on when
sessions are started. More precisely, our models are local
interaction histories, h = x1x2---x, where z; € Cgs, and
the order of the sessions reflects the order in which the cor-
responding interaction-protocols are initiated, i.e. x; refers
to the observed events in the ith-initiated session. Different
notions of time could just as well be considered, e.g. if z; pre-
cedes z; in sequence h, then it means that x; was updated
more recently than z; (our algorithms can be straightfor-
wardly be adapted to this notion of time).

Related Work. Many reputation-based systems have
been proposed in the literature (Jgsang et al. [15] provide
many references), so we choose to mention only a few typical
examples and closely related systems. Kamvar et al. present
EigenTrust [16], Shmatikov and Talcott propose a license-
based framework [27], and the EU project ‘SECURE’ [4, 5]
(which also uses event structures for modelling observations)
can be viewed as a reputation-based system, to name a no-
table few.

The framework of Shmatikov and Talcott is the most
closely related in that they deploy also a very concrete repre-
sentation of behavioural information (“evidence” [27]). This
representation is not as sophisticated as in the event-structure
framework (e.g., as histories are sets of time-stamped events
there is no concept of a session, i.e., a logically connected
set of events), and their notion of reputation is based on an
entity’s past ability to fulfill so-called licenses. A license is
a contract between an issuer and a licensee. Licenses are
more general than interaction policies since they are mu-
tual contracts between issuer and licensee, which may permit
the licensee to perform certain actions, but may also require
that certain actions are performed. The framework does not
have a domain-specific language for specifying licenses (i.e.
for specifying license-methods permits and violated), and
the use of reputation information is not part of their for-
mal framework (i.e. it is up to each application programmer
to write method useOk for protecting a resource). We do
not see our framework as competing, but, rather, compatible
with theirs. We imagine using a policy language, like ours,
as a domain-specific language for specifying licenses as well
as use-policies. We believe that because of the simplicity
of our declarative policy language and its formal semantics,
this would facilitate verification and other reasoning about
instances of their framework.

Pucella and Weissman use a variant of pure-future linear
temporal logic for reasoning about licenses [23]. They are
not interested in the specific details of licenses, but merely
require that licenses can be given a trace-based semantics;
in particular, their logic is illustrated for licenses that are
regular languages. As our basic policies can be seen (seman-
tically) as regular languages (Theorem 4.2), and policies can
be seen as a type of license, one could imagine using their
logic to reason about our policies.

Roger and Goubault-Larreq [25] have used linear tempo-
ral logic and associated model-checking algorithms for log
auditing. The work is related although their application is
quite different. While their logic is first-order in the sense of
having variables, they have no explicit quantification. Our
quantified language differs (besides being pure-past instead
of pure-future) in that we allow explicit quantification (over
different parameter types) Va : P;.¢p and 3z : P;.1), while
their language is implicitly universally quantified.

The notion of security automata, introduced by Schnei-
der [26], is related to our policy language. A security au-
tomaton runs in parallel with a program, monitoring its ex-
ecution with respect to a security policy. If the automata
detects that the program is about to violate the policy, it
terminates the program. A policy is given in terms of an
automata, and a (non-declarative) domain-specific language
for defining security automata (SAL) is supported but has
been found awkward for policy specification [10]. One can
view the finite automaton in our automata-based algorithm
as a kind of security automaton, declaratively specified by a
temporal-logic formula.

Security automata are also related, in a technical sense
[11], to the notion of history-based access control (HBAC).
HBAC has been the subject of a considerable amount of
research (e.g., papers [1,9,11,12,26,29]). There is a distinc-
tion between dynamic HBAC in which programs are mon-
itored as they execute, and terminated if about to violate
policy [9, 11,12, 26]; and static HBAC in which some pre-
liminary static analysis of the program (written in a pre-



determined language) extracts a safe approximation of the
programs’ runtime behaviour, and then (statically) checks
that this approximation will always conform to policy (us-
ing, e.g., type systems or model checking) [1,29]. Clearly, our
approach has applications to dynamic HBAC. It is notewor-
thy to mention that many ad-hoc optimizations in dynamic
HBAC (e.g., history summaries relative to a policy in the
system of Edjlali [9]) are captured in a general and optimal
way by using the automata-based algorithm, and exploiting
the finite-automata minimization-theorem. Thus in the au-
tomata based algorithm, one gets “for free,” optimizations
that would otherwise have to be discovered manually.
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