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Mobile Ambients

Both administrative domains and computational environments (Cardelli-Gordon)

Subjective movements

n[ in m.P | Q ] | m[R ] −→ m[n[P | Q ] | R ]

m[n[ out m.P | Q ] | R ] −→ n[P | Q ] | m[R ]

Process interaction

n[ 〈M〉.P | (x).Q ] −→ n[P | Q{x :=M} ],

Boundary dissolver

open n.P | n[Q ] −→ P | Q.
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Interferences in Mobile Ambients

The inherent nondeterminism of movement may go wild: Grave Interferences.

k[n[ in m.P | out k.R ] | m[Q ] ]

Introducing Safe Ambients (Levi-Sangiorgi)

n[ in m.P | Q ] | m[ in m.R | S ] −→ m[n[P | Q ] | R | S ]

Co-capabilities and single-threadedness rule out grave interferences

Safe Ambients with passwords have a conveniently treatable semantics.
(Merro-Hennessy)

n[ in (m, k).P | Q ] | m[ in (m, k).R | S ] −→ m[n[P | Q ] | R | S ]
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Mobile Boxed Ambients

open’s nature of ambient dissolver is a potential source of problems.

Direct communication as alternative source of expressiveness: Mobile Boxed
Ambients (Bugliesi et al.). Perform I/O on a subambient n’s local channel (viz.

(x)n) as well as from the parent’s local channel (viz. (x)↑)

(x)n.P | n[ 〈M〉. Q | R ] −→ P{x :=M} | n[Q | R ]

〈M〉.P | n[ (x)↑. Q | R ] −→ P | n[Q{x :=M} | R ].

But it is a great source of non-local nondeterminism and communication
interference.

m[ (x)n.P | n[ 〈M〉 | (x).Q | k[ (x)↑.R ] ] ]
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Introducing NBA: Communication

NBA: a fresh foundation based on: each ambient comes equipped with two
mutually non-interfering channels, for local and upward communications.

(x)n.P | n[〈M 〉̂̂ . Q | R ] −→ P{x :=M} | n[Q | R ]

〈M〉n.P | n[(x)̂̂ . Q | R ] −→ P | n[Q{x :=M} | R ]

NBA: a fresh foundation based on: each ambient comes equipped with two
mutually non-interfering channels, for local and upward communications.

(x)n.P | n[〈M 〉̂̂ . Q | R ] −→ P{x :=M} | n[Q | R ]

〈M〉n.P | n[(x)̂̂ . Q | R ] −→ P | n[Q{x :=M} | R ]

Good algebraic laws; simple type system;

Expressiveness??

Hmm, rather poor: n[P ] cannot, for instance, communicate with children it
doesn’t know statically. It can never learn about incoming ambients, and will never
be able to talk to them.
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Introducing NBA: Mobility

Essentially, our idea is to introduce co-actions of the form enter(x) which have
the effect of binding the variable x.

Such a purely binding mechanism does not provide a way control of access, but
only to registers it. As a (realistic) access protocol where newly arrived agents

must register themselves to be granted access to local resources.

Need a finer mechanism of access control:

a[ enter〈b, k〉.P1 | P2 ] | b[ enter(x, k).Q1 | Q2 ] −→ b[ a[P1 | P2 ] | Q1{x := a} | Q2 ]

This represent an access protocol where the credentials of incoming processes (k in
the rule above) are controlled, as a preliminary step to the registration protocol.
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NBA: Syntax

Names: a,b,. . . n,x,y,. . . ∈ N

Locations: Messages:

η ::= a nested names M,N ::= a name
∣

∣

ˆ̂ enclosing ambient
∣

∣ enter〈M,N〉 may enter
∣

∣ ? local
∣

∣ exit〈M,N〉 may exit
∣

∣ M.N path

Processes: Prefixes:

P ::= 0 nil process π ::= M messages
∣

∣ P1|P2 composition
∣

∣ (x1, . . . , xk)
η input

∣

∣ (νn)P restriction
∣

∣ 〈M1, . . . ,Mk〉
η output

∣

∣ !π.P replication
∣

∣ enter(x,M) allow enter
∣

∣ M [P ] ambient
∣

∣ exit(x,M) allow exit
∣

∣ π.P prefixing
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NBA: Reduction Semantics

mobility
n[enter〈m, k〉.P1 | P2]

∣

∣ m[enter(x, k).Q1 | Q2] −→ m[n[P1 | P2] | Q1{x := n} | Q2]

n[m[exit〈n, k〉.P1 | P2] | Q]
∣

∣ exit(x, k).R −→ m[P1 | P2] | n[Q] | R{x := m}

communication
(x̃).P

∣

∣ 〈M̃〉.Q −→ P{x̃ := M̃} | Q

(x̃)n.P
∣

∣ n[〈M̃ 〉̂̂ .Q | R] −→ P{x̃ := M̃}
∣

∣ n[Q | R]

〈M̃〉n.P
∣

∣ n[(x̃)̂̂ .Q | R] −→ P
∣

∣ n[Q{x̃ := M̃} | R]

structural congruence
P ≡ Q Q −→ R R ≡ S implies P −→ S
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NBA: Behavioural Equivalence

Barbs

P ↓n iff P ≡ (ν ~m)(n[enter(x, k).Q | R] | S), for {n, k} ∩ {~m} = ∅.

P ⇓n iff P =⇒ P ′ and P ′ ↓n .

A relation R is reduction closed if

PRQ and P → P ′ implies Q⇒ Q′ with P ′
RQ′;

it is barb preserving if PRQ and P ↓n implies Q⇓n .

Reduction barbed congruence, written ∼=, is the largest congruence relation over

processes which is reduction closed and barb preserving.

Note: We could equivalently observe 〈·〉̂̂ .
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The rest of the talk

Two small examples

A few equational laws

LTS characterization of reduction barbed bisimulation congruence.

A type system

An encoding of BA into NBA: BA . NBA + Guarded Choice
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A one-to-one communication server

Let w(k) be a bidirectional forwarder for any pair of incoming ambients.

w(k) , w[ enter(x, k).enter(y, k).(!(z)x.〈z〉y | !(z)y.〈z〉x) ]

An agent can be defined as: A(a, k, P,Q) , a[enter〈w, k〉.P | exit〈w, k〉.Q] and a
communication server as:

o2o(k) = (νr) ( r[〈 〉̂̂ ] | ! ( )r.(w(k) | exit( , k).exit( , k).r[〈 〉̂̂ ]) )

It can be proved that:

(νk)( o2o(k) | A(k, a1, 〈M 〉̂̂ .P1, Q1) | A(k, a2, (x)̂̂ .P2{x}, Q2) | Πi∈IA(K, ai, Ri, Si) )

=⇒ ∼= (νk)( o2o(k) | a1[P1 | Q1] | a2[P1{x := M} | Q2] | Πi∈IA(K, ai, Ri, Si) )

that is, once two agents engage in communication no other agent knowing the key
k can interfere with their completing the exchange.
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A print server

The following process assigns a progressive number to incoming jobs.

enqueuek , (νc) ( c[〈1〉̂̂ ] | !(n)c.enter(x, k).〈n〉x.c[〈n+ 1〉̂̂ ])

We can turn it into a print server (which consumes such numbers).

prtsrv(k) , k[ enqueuek | print ]

print , (νc) ( c[〈1〉̂̂ ] | !(n)c.exit(x, n).(data)x.(P{data} | c[〈n+ 1〉̂̂ ])

A client then acts as:

job(M,k) , (νp)p[ enter〈k, k〉.(n)̂̂ .(νq)q[exit〈p, n〉.〈M 〉̂̂ ] ]

It enters the server prtsrv(k) (using enqueue), it is assigned a number that it uses
as a password to carry job M to print (which eventually will bind it to data in P .
(Dynamic name discovery and passwords are fundamental here.)
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¿ ≪ ≫ À

A print server

The following process assigns a progressive number to incoming jobs.

enqueuek , (νc) ( c[〈1〉̂̂ ] | !(n)c.enter(x, k).〈n〉x.c[〈n+ 1〉̂̂ ])

We can turn it into a print server (which consumes such numbers).

prtsrv(k) , k[ enqueuek | print ]

print , (νc) ( c[〈1〉̂̂ ] | !(n)c.exit(x, n).(data)x.(P{data} | c[〈n+ 1〉̂̂ ])

A client then acts as:

job(M,k) , (νp)p[ enter〈k, k〉.(n)̂̂ .(νq)q[exit〈p, n〉.〈M 〉̂̂ ] ]

It enters the server prtsrv(k) (using enqueue), it is assigned a number that it uses
as a password to carry job M to print (which eventually will bind it to data in P .
(Dynamic name discovery and passwords are fundamental here.)

NBA Calculus – pp.12/21



¿ ≪ ≫ À

Some Equational Laws

Garbage Collection laws

l[ (x̃i)
n.P | (x̃).Q | 〈M̃〉m.R ] ∼= 0

l[ (x̃)n.P | 〈M̃〉.P | 〈M̃〉m.P ] ∼= 0

Communication laws

l[ 〈M̃0 〉̂̂ | 〈M̃1 〉̂̂ ] ∼= l[〈M̃0 〉̂̂ ] | l[〈M̃1 〉̂̂ ]

l[(x̃).P | 〈M̃〉.Q] ∼= l[P{x̃ := M̃} | Q]

(νl)( (x̃)l.P | l[〈M̃ 〉̂̂ .Q] ) ∼= (νl)(P{x̃ := M̃} | l[Q] )

m[(x̃)l.P | l[〈M̃ 〉̂̂ .Q]] ∼= m[P{x̃ := M̃} | l[Q]]

Mobility laws

(νp)(m[enter〈n, p〉.P ] | n[enter(x, p).Q]) ∼= (νp)(n[Q{x := m} | m[P ]])

l[m[enter〈n, p〉.P ] | n[enter(x, p).Q]] ∼= l[n[Q{x := m} | m[P ]]]
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An LTS for NBA

Concretions: (νp̃)〈P 〉Q and (νp̃)〈M〉Q

(Amb Co-enter)

P
enter(n,k)
−−−−−−−→ P ′

m[P ]
m enter(n,k)
−−−−−−−−−→ (ν)〈P ′〉0

(Co-enter HO)

P
m enter(n,k)
−−−−−−−−−→ (νp̃)〈P1〉P2 p̃ ∩ fn(Q) = ∅

P
m enter(n,k)Q
−−−−−−−−−−−→ (νp̃)(m[n[Q] | P1] | P2)

(Exit)

P
exit〈n,k〉
−−−−−−→ (νp̃)〈m[P1]〉P2

n[P ]
exit〈k〉
−−−−−→ (νp̃)〈m〉(m[P1] | n[P2])

(τ -Exit)

P
exit〈k〉
−−−−−→ (νp̃)〈m〉P ′ Q

exit(m,k)
−−−−−−−→ Q′

P | Q
τ

−−→ (νp̃)(P ′ | Q′)

(Exit HO)

P
exit〈n,k〉
−−−−−−→ (νp̃)〈m[P1]〉P2 x ∈ fn(R) p̃ ∩ fn(Q|R) = ∅

P
exit〈n,k〉QR

−−−−−−−−−→ (νp̃)(m[P1] | n[P2 | Q] | R{x := m})
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A Characterisation of Reduction Bisimulation

Thm. If P
τ
−→ P ′ then P −→ P ′. If P −→ P ′ then P

τ
−→≡ P ′.

Bisimilarity. A symmetric relation R is a bisimulation if

P R Q and P
α
−→ P ′ implies ∃Q

α̂
=⇒ Q′ with P ′

R Q′.

P ≈ Q if P R Q for some bisimulation R.

The closure under substitutions of ≈ is denoted by ≈c.

Thm. If P ≈c Q then P ∼= Q and viceversa.
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A Type System for NBA

Types

Message Types W ::= N[E] ambient/password

| C[E] capability

Exchange Types E,F ::= shh no exchange

| W1 . . .Wk tuples (k ≥ 0)

Process Types T ::= [E,F ] composite exchange

N[E] types both ambients and passwords; shh is the silent type; N[shh] is an
ambient with no upward exchanges or a password that reveal the visitor’s name.

Type Environments

(Env Empty)

∅ ` ¦

(Env name)

Γ ` ¦ a /∈ Dom(Γ)

Γ, a : W ` ¦
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Typing Rules

Messages

(Projection)

Γ, a : W,Γ′ ` ¦

Γ, a : W,Γ′ ` a : W

(Path)

Γ `M1 : C[E1] Γ `M2 : C[E2]

Γ `M1.M2 : C[E1 t E2]

(Enter)

Γ `M : N[E] Γ ` N : N[F ] (F 6 G)

Γ ` enter〈M,N〉 : C[G]

(Exit)

Γ `M : N[E] Γ ` N : N[F ] (F 6 G)

Γ ` exit〈M,N〉 : C[G]

Processes
(Par)

Γ ` P : [E,F ] Γ ` Q : [E,F ]

Γ ` P | Q : [E,F ]

(Repl)

Γ ` P : [E,F ]

Γ ` !P : [E,F ]

(Dead)

Γ ` ¦

Γ ` 0 : [E,F ]

(New)

Γ, n : N[G] ` P : [E,F ]

Γ ` (νn :N[G])P : [E,F ]
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Typing Rules: II

Processes: mobility

(Amb)

Γ `M : N[E] Γ ` P : [F,E]

Γ `M [P ] : [G,H]

(Prefix)

Γ `M : C[F ] Γ ` P : [E,G] (F 6 G)

Γ `M.P : [E,G]

(Co-enter)

Γ `M : N[W̃ ] Γ, x : N[W̃ ] ` P : [E,F ]

Γ ` enter(x,M).P : [E,F ]

(Co-exit)

Γ `M : N[W̃ ] Γ, x : N[W̃ ] ` P : [E,F ]

Γ ` exit(x,M).P : [E,F ]

(Co-enter-silent)

Γ `M : N[shh] Γ ` P : [E,F ] (x 6∈ fv(P ))

Γ ` enter(x,M).P : [E,F ]

(Co-exit-silent)

Γ `M : N[shh] Γ ` P : [E,F ] (x 6∈ fv(P ))

Γ ` exit(x,M).P : [E,F ]
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Typing Rules: II

Processes: I/O

(Input)

Γ, x̃ :W̃ ` P : [W̃ , E]

Γ ` (x̃ :W̃ ).P : [W̃ , E]

(Input ˆ̂)

Γ, x̃ :W̃ ` P : [E, W̃ ]

Γ ` (x̃ :W̃ )̂̂ .P : [E, W̃ ]

(Input M)

Γ `M : N[W̃ ] Γ, x̃ :W̃ ` P : [G,H]

Γ ` (x̃ :W̃ )M .P : [G,H]

(Output)

Γ ` M̃ : W̃ Γ ` P : [W̃ , E]

Γ ` 〈M̃〉.P : [W̃ , E]

(Output ˆ̂)

Γ ` M̃ : W̃ Γ ` P : [E, W̃ ]

Γ ` 〈M̃ 〉̂̂ .P : [E, W̃ ]

(Output N)

Γ ` N : N[W̃ ] Γ ` M̃ : W̃ Γ ` P : [G,H]

Γ ` 〈M̃〉N .P : [G,H]

Subject Reduction. If Γ ` P : T and P −→ Q, then Γ ` Q : T .
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Encoding: BA in NBA

We can encode BA into NBA enriched with a focused form of nondeterminism.

{|P |}n = cross | 〈〈P 〉〉 n

〈〈m[P ] 〉〉 n = m[{|P |}m]

〈〈 (x)aP 〉〉 n = (x)a 〈〈P 〉〉 n

〈〈 (x)P 〉〉 n = (x) 〈〈P 〉〉 n + (x)̂̂ 〈〈P 〉〉 n + exit(y, pw)(x)y 〈〈P 〉〉 n y /∈ fn(P )

〈〈 (x)↑P 〉〉 n = (νp)p[exit〈n, pr〉.(x)̂̂ .enter〈n, p〉.〈x〉̂̂ ] | enter(y, p)(x)y 〈〈P 〉〉 n p, y /∈ fn(P )

〈〈 〈M〉aP 〉〉 n = 〈M〉a 〈〈P 〉〉 n

〈〈 〈M〉P 〉〉 n = 〈M〉 〈〈P 〉〉 n + 〈M 〉̂̂ 〈〈P 〉〉 n + exit(y, pr)〈M〉y 〈〈P 〉〉 n y /∈ fn(P )

〈〈 〈M〉↑P 〉〉 n = (νp)p[exit〈n, pw〉.〈M 〉̂̂ .enter〈n, p〉.〈·〉̂̂ ] | enter(y, p)( )y 〈〈P 〉〉 n p, y /∈ fn(P )

where cross = !enter(x,mv) | !exit(x,mv), in n = enter〈n,mv〉, and out n = exit〈n,mv〉.

Thm. If P
τ

−−→ P ′ then {|P |}
τ

−−→ >
∼ {|P

′ |}.

If {|P |}
τ

−−→ Q, then ∃P
τ

−−→ P ′ with Q >
∼ {|P

′ |}.

If P and Q are single-threaded, then {|P |}n ∼= {|Q |}n implies P ∼= Q.

NBA Calculus – pp.20/21



¿ ≪ ≫ À

Encoding: BA in NBA

We can encode BA into NBA enriched with a focused form of nondeterminism.

{|P |}n = cross | 〈〈P 〉〉 n

〈〈m[P ] 〉〉 n = m[{|P |}m]

〈〈 (x)aP 〉〉 n = (x)a 〈〈P 〉〉 n

〈〈 (x)P 〉〉 n = (x) 〈〈P 〉〉 n + (x)̂̂ 〈〈P 〉〉 n + exit(y, pw)(x)y 〈〈P 〉〉 n y /∈ fn(P )

〈〈 (x)↑P 〉〉 n = (νp)p[exit〈n, pr〉.(x)̂̂ .enter〈n, p〉.〈x〉̂̂ ] | enter(y, p)(x)y 〈〈P 〉〉 n p, y /∈ fn(P )

〈〈 〈M〉aP 〉〉 n = 〈M〉a 〈〈P 〉〉 n

〈〈 〈M〉P 〉〉 n = 〈M〉 〈〈P 〉〉 n + 〈M 〉̂̂ 〈〈P 〉〉 n + exit(y, pr)〈M〉y 〈〈P 〉〉 n y /∈ fn(P )

〈〈 〈M〉↑P 〉〉 n = (νp)p[exit〈n, pw〉.〈M 〉̂̂ .enter〈n, p〉.〈·〉̂̂ ] | enter(y, p)( )y 〈〈P 〉〉 n p, y /∈ fn(P )

where cross = !enter(x,mv) | !exit(x,mv), in n = enter〈n,mv〉, and out n = exit〈n,mv〉.

Thm. If P
τ

−−→ P ′ then {|P |}
τ

−−→ >
∼ {|P

′ |}.

If {|P |}
τ

−−→ Q, then ∃P
τ

−−→ P ′ with Q >
∼ {|P

′ |}.

If P and Q are single-threaded, then {|P |}n ∼= {|Q |}n implies P ∼= Q.

NBA Calculus – pp.20/21



¿ ≪ ≫ À

Conclusion and Future Work

Type inference.

Information flow analysis.

Comparison with Seal calculus.

Implementation.

Logics.
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