
¿ ≪ ≫ À

Communication Interference in
Mobile Boxed Ambients

FST&TCS 2002

� � ��� � � � � �	�
�
�

�� � � ��� � ���

�
�

��� � � ���

�

 � � � �

Vladimiro Sassone

University of Sussex,

NBA Calculus – pp.1/21

¿ ≪ ≫ À

Mobile Ambients

Both administrative domains and computational environments (Cardelli-Gordon)

Subjective movements

n[in m.P | Q] | m[R] −→ m[n[P | Q] | R]

m[n[out m.P | Q] | R] −→ n[P | Q] | m[R]

Process interaction

n[〈M〉.P | (x).Q] −→ n[P | Q{x :=M}],

Boundary dissolver

open n.P | n[Q] −→ P | Q.

NBA Calculus – pp.2/21

¿ ≪ ≫ À

Interferences in Mobile Ambients

The inherent nondeterminism of movement may go wild: Grave Interferences.

k[n[in m.P | out k.R] | m[Q]]

Introducing Safe Ambients (Levi-Sangiorgi)

n[in m.P | Q] | m[in m.R | S] −→ m[n[P | Q] | R | S]

Co-capabilities and single-threadedness rule out grave interferences

Safe Ambients with passwords have a conveniently treatable semantics.
(Merro-Hennessy)

n[in (m, k).P | Q] | m[in (m, k).R | S] −→ m[n[P | Q] | R | S]

NBA Calculus – pp.3/21

¿ ≪ ≫ À

Interferences in Mobile Ambients

The inherent nondeterminism of movement may go wild: Grave Interferences.

k[n[in m.P | out k.R] | m[Q]]

Introducing Safe Ambients (Levi-Sangiorgi)

n[in m.P | Q] | m[in m.R | S] −→ m[n[P | Q] | R | S]

Co-capabilities and single-threadedness rule out grave interferences

Safe Ambients with passwords have a conveniently treatable semantics.
(Merro-Hennessy)

n[in (m, k).P | Q] | m[in (m, k).R | S] −→ m[n[P | Q] | R | S]

NBA Calculus – pp.3/21

¿ ≪ ≫ À

Interferences in Mobile Ambients

The inherent nondeterminism of movement may go wild: Grave Interferences.

k[n[in m.P | out k.R] | m[Q]]

Introducing Safe Ambients (Levi-Sangiorgi)

n[in m.P | Q] | m[in m.R | S] −→ m[n[P | Q] | R | S]

Co-capabilities and single-threadedness rule out grave interferences

Safe Ambients with passwords have a conveniently treatable semantics.
(Merro-Hennessy)

n[in (m, k).P | Q] | m[in (m, k).R | S] −→ m[n[P | Q] | R | S]

NBA Calculus – pp.3/21

¿ ≪ ≫ À

Mobile Boxed Ambients

open’s nature of ambient dissolver is a potential source of problems.

Direct communication as alternative source of expressiveness: Mobile Boxed
Ambients (Bugliesi et al.). Perform I/O on a subambient n’s local channel (viz.

(x)n) as well as from the parent’s local channel (viz. (x)↑)

(x)n.P | n[〈M〉. Q | R] −→ P{x :=M} | n[Q | R]

〈M〉.P | n[(x)↑. Q | R] −→ P | n[Q{x :=M} | R].

But it is a great source of non-local nondeterminism and communication
interference.

m[(x)n.P | n[〈M〉 | (x).Q | k[(x)↑.R]]]

NBA Calculus – pp.4/21

¿ ≪ ≫ À

Mobile Boxed Ambients

open’s nature of ambient dissolver is a potential source of problems.

Direct communication as alternative source of expressiveness: Mobile Boxed
Ambients (Bugliesi et al.). Perform I/O on a subambient n’s local channel (viz.

(x)n) as well as from the parent’s local channel (viz. (x)↑)

(x)n.P | n[〈M〉. Q | R] −→ P{x :=M} | n[Q | R]

〈M〉.P | n[(x)↑. Q | R] −→ P | n[Q{x :=M} | R].

But it is a great source of non-local nondeterminism and communication
interference.

m[(x)n.P | n[〈M〉 | (x).Q | k[(x)↑.R]]]

But it is a great source of non-local nondeterminism and communication
interference.

m[(x)n.P | n[〈M〉 | (x).Q | k[(x)↑.R]]]

NBA Calculus – pp.4/21

¿ ≪ ≫ À

Mobile Boxed Ambients

open’s nature of ambient dissolver is a potential source of problems.

Direct communication as alternative source of expressiveness: Mobile Boxed
Ambients (Bugliesi et al.). Perform I/O on a subambient n’s local channel (viz.

(x)n) as well as from the parent’s local channel (viz. (x)↑)

(x)n.P | n[〈M〉. Q | R] −→ P{x :=M} | n[Q | R]

〈M〉.P | n[(x)↑. Q | R] −→ P | n[Q{x :=M} | R].

But it is a great source of non-local nondeterminism and communication
interference.

m[(x)n.P | n[〈M〉 | (x).Q | k[(x)↑.R]]]

NBA Calculus – pp.4/21

¿ ≪ ≫ À

Introducing NBA: Communication

NBA: a fresh foundation based on: each ambient comes equipped with two
mutually non-interfering channels, for local and upward communications.

(x)n.P | n[〈M 〉̂̂ . Q | R] −→ P{x :=M} | n[Q | R]

〈M〉n.P | n[(x)̂̂ . Q | R] −→ P | n[Q{x :=M} | R]

NBA: a fresh foundation based on: each ambient comes equipped with two
mutually non-interfering channels, for local and upward communications.

(x)n.P | n[〈M 〉̂̂ . Q | R] −→ P{x :=M} | n[Q | R]

〈M〉n.P | n[(x)̂̂ . Q | R] −→ P | n[Q{x :=M} | R]

Good algebraic laws; simple type system;

Expressiveness??

Hmm, rather poor: n[P] cannot, for instance, communicate with children it
doesn’t know statically. It can never learn about incoming ambients, and will never
be able to talk to them.

NBA Calculus – pp.5/21

¿ ≪ ≫ À

Introducing NBA: Communication

NBA: a fresh foundation based on: each ambient comes equipped with two
mutually non-interfering channels, for local and upward communications.

(x)n.P | n[〈M 〉̂̂ . Q | R] −→ P{x :=M} | n[Q | R]

〈M〉n.P | n[(x)̂̂ . Q | R] −→ P | n[Q{x :=M} | R]

Good algebraic laws; simple type system;

Expressiveness??

Hmm, rather poor: n[P] cannot, for instance, communicate with children it
doesn’t know statically. It can never learn about incoming ambients, and will never
be able to talk to them.

NBA Calculus – pp.5/21

¿ ≪ ≫ À

Introducing NBA: Communication

NBA: a fresh foundation based on: each ambient comes equipped with two
mutually non-interfering channels, for local and upward communications.

(x)n.P | n[〈M 〉̂̂ . Q | R] −→ P{x :=M} | n[Q | R]

〈M〉n.P | n[(x)̂̂ . Q | R] −→ P | n[Q{x :=M} | R]

Good algebraic laws; simple type system;

Expressiveness??

Hmm, rather poor: n[P] cannot, for instance, communicate with children it
doesn’t know statically. It can never learn about incoming ambients, and will never
be able to talk to them.

NBA Calculus – pp.5/21

¿ ≪ ≫ À

Introducing NBA: Communication

NBA: a fresh foundation based on: each ambient comes equipped with two
mutually non-interfering channels, for local and upward communications.

(x)n.P | n[〈M 〉̂̂ . Q | R] −→ P{x :=M} | n[Q | R]

〈M〉n.P | n[(x)̂̂ . Q | R] −→ P | n[Q{x :=M} | R]

Good algebraic laws; simple type system;

Expressiveness??

Hmm, rather poor: n[P] cannot, for instance, communicate with children it
doesn’t know statically. It can never learn about incoming ambients, and will never
be able to talk to them.

NBA Calculus – pp.5/21

¿ ≪ ≫ À

Introducing NBA: Mobility

Essentially, our idea is to introduce co-actions of the form enter(x) which have
the effect of binding the variable x.

Such a purely binding mechanism does not provide a way control of access, but
only to registers it. As a (realistic) access protocol where newly arrived agents

must register themselves to be granted access to local resources.

Need a finer mechanism of access control:

a[enter〈b, k〉.P1 | P2] | b[enter(x, k).Q1 | Q2] −→ b[a[P1 | P2] | Q1{x := a} | Q2]

This represent an access protocol where the credentials of incoming processes (k in
the rule above) are controlled, as a preliminary step to the registration protocol.

NBA Calculus – pp.6/21

¿ ≪ ≫ À

Introducing NBA: Mobility

Essentially, our idea is to introduce co-actions of the form enter(x) which have
the effect of binding the variable x.

Such a purely binding mechanism does not provide a way control of access, but
only to registers it. As a (realistic) access protocol where newly arrived agents

must register themselves to be granted access to local resources.

Need a finer mechanism of access control:

a[enter〈b, k〉.P1 | P2] | b[enter(x, k).Q1 | Q2] −→ b[a[P1 | P2] | Q1{x := a} | Q2]

This represent an access protocol where the credentials of incoming processes (k in
the rule above) are controlled, as a preliminary step to the registration protocol.

Need a finer mechanism of access control:

a[enter〈b, k〉.P1 | P2] | b[enter(x, k).Q1 | Q2] −→ b[a[P1 | P2] | Q1{x := a} | Q2]

This represent an access protocol where the credentials of incoming processes (k in
the rule above) are controlled, as a preliminary step to the registration protocol.

NBA Calculus – pp.6/21

¿ ≪ ≫ À

Introducing NBA: Mobility

Essentially, our idea is to introduce co-actions of the form enter(x) which have
the effect of binding the variable x.

Such a purely binding mechanism does not provide a way control of access, but
only to registers it. As a (realistic) access protocol where newly arrived agents

must register themselves to be granted access to local resources.

Need a finer mechanism of access control:

a[enter〈b, k〉.P1 | P2] | b[enter(x, k).Q1 | Q2] −→ b[a[P1 | P2] | Q1{x := a} | Q2]

This represent an access protocol where the credentials of incoming processes (k in
the rule above) are controlled, as a preliminary step to the registration protocol.

NBA Calculus – pp.6/21

¿ ≪ ≫ À

NBA: Syntax

Names: a,b,. . . n,x,y,. . . ∈ N

Locations: Messages:

η ::= a nested names M,N ::= a name
∣

∣

ˆ̂ enclosing ambient
∣

∣ enter〈M,N〉 may enter
∣

∣ ? local
∣

∣ exit〈M,N〉 may exit
∣

∣ M.N path

Processes: Prefixes:

P ::= 0 nil process π ::= M messages
∣

∣ P1|P2 composition
∣

∣ (x1, . . . , xk)
η input

∣

∣ (νn)P restriction
∣

∣ 〈M1, . . . ,Mk〉
η output

∣

∣ !π.P replication
∣

∣ enter(x,M) allow enter
∣

∣ M [P] ambient
∣

∣ exit(x,M) allow exit
∣

∣ π.P prefixing

NBA Calculus – pp.7/21

¿ ≪ ≫ À

NBA: Reduction Semantics

mobility
n[enter〈m, k〉.P1 | P2]

∣

∣ m[enter(x, k).Q1 | Q2] −→ m[n[P1 | P2] | Q1{x := n} | Q2]

n[m[exit〈n, k〉.P1 | P2] | Q]
∣

∣ exit(x, k).R −→ m[P1 | P2] | n[Q] | R{x := m}

communication
(x̃).P

∣

∣ 〈M̃〉.Q −→ P{x̃ := M̃} | Q

(x̃)n.P
∣

∣ n[〈M̃ 〉̂̂ .Q | R] −→ P{x̃ := M̃}
∣

∣ n[Q | R]

〈M̃〉n.P
∣

∣ n[(x̃)̂̂ .Q | R] −→ P
∣

∣ n[Q{x̃ := M̃} | R]

structural congruence
P ≡ Q Q −→ R R ≡ S implies P −→ S

NBA Calculus – pp.8/21

¿ ≪ ≫ À

NBA: Behavioural Equivalence

Barbs

P ↓n iff P ≡ (ν ~m)(n[enter(x, k).Q | R] | S), for {n, k} ∩ {~m} = ∅.

P ⇓n iff P =⇒ P ′ and P ′ ↓n .

A relation R is reduction closed if

PRQ and P → P ′ implies Q⇒ Q′ with P ′
RQ′;

it is barb preserving if PRQ and P ↓n implies Q⇓n .

Reduction barbed congruence, written ∼=, is the largest congruence relation over

processes which is reduction closed and barb preserving.

Note: We could equivalently observe 〈·〉̂̂ .

NBA Calculus – pp.9/21

¿ ≪ ≫ À

NBA: Behavioural Equivalence

Barbs

P ↓n iff P ≡ (ν ~m)(n[enter(x, k).Q | R] | S), for {n, k} ∩ {~m} = ∅.

P ⇓n iff P =⇒ P ′ and P ′ ↓n .

A relation R is reduction closed if

PRQ and P → P ′ implies Q⇒ Q′ with P ′
RQ′;

it is barb preserving if PRQ and P ↓n implies Q⇓n .

Reduction barbed congruence, written ∼=, is the largest congruence relation over

processes which is reduction closed and barb preserving.

Note: We could equivalently observe 〈·〉̂̂ .

NBA Calculus – pp.9/21

¿ ≪ ≫ À

The rest of the talk

Two small examples

A few equational laws

LTS characterization of reduction barbed bisimulation congruence.

A type system

An encoding of BA into NBA: BA . NBA + Guarded Choice

NBA Calculus – pp.10/21

¿ ≪ ≫ À

A one-to-one communication server

Let w(k) be a bidirectional forwarder for any pair of incoming ambients.

w(k) , w[enter(x, k).enter(y, k).(!(z)x.〈z〉y | !(z)y.〈z〉x)]

An agent can be defined as: A(a, k, P,Q) , a[enter〈w, k〉.P | exit〈w, k〉.Q] and a
communication server as:

o2o(k) = (νr) (r[〈 〉̂̂] | ! ()r.(w(k) | exit(, k).exit(, k).r[〈 〉̂̂]))

It can be proved that:

(νk)(o2o(k) | A(k, a1, 〈M 〉̂̂ .P1, Q1) | A(k, a2, (x)̂̂ .P2{x}, Q2) | Πi∈IA(K, ai, Ri, Si))

=⇒ ∼= (νk)(o2o(k) | a1[P1 | Q1] | a2[P1{x := M} | Q2] | Πi∈IA(K, ai, Ri, Si))

that is, once two agents engage in communication no other agent knowing the key
k can interfere with their completing the exchange.

NBA Calculus – pp.11/21

¿ ≪ ≫ À

A one-to-one communication server

Let w(k) be a bidirectional forwarder for any pair of incoming ambients.

w(k) , w[enter(x, k).enter(y, k).(!(z)x.〈z〉y | !(z)y.〈z〉x)]

An agent can be defined as: A(a, k, P,Q) , a[enter〈w, k〉.P | exit〈w, k〉.Q] and a
communication server as:

o2o(k) = (νr) (r[〈 〉̂̂] | ! ()r.(w(k) | exit(, k).exit(, k).r[〈 〉̂̂]))

It can be proved that:

(νk)(o2o(k) | A(k, a1, 〈M 〉̂̂ .P1, Q1) | A(k, a2, (x)̂̂ .P2{x}, Q2) | Πi∈IA(K, ai, Ri, Si))

=⇒ ∼= (νk)(o2o(k) | a1[P1 | Q1] | a2[P1{x := M} | Q2] | Πi∈IA(K, ai, Ri, Si))

that is, once two agents engage in communication no other agent knowing the key
k can interfere with their completing the exchange.

NBA Calculus – pp.11/21

¿ ≪ ≫ À

A print server

The following process assigns a progressive number to incoming jobs.

enqueuek , (νc) (c[〈1〉̂̂] | !(n)c.enter(x, k).〈n〉x.c[〈n+ 1〉̂̂])

We can turn it into a print server (which consumes such numbers).

prtsrv(k) , k[enqueuek | print]

print , (νc) (c[〈1〉̂̂] | !(n)c.exit(x, n).(data)x.(P{data} | c[〈n+ 1〉̂̂])

A client then acts as:

job(M,k) , (νp)p[enter〈k, k〉.(n)̂̂ .(νq)q[exit〈p, n〉.〈M 〉̂̂]]

It enters the server prtsrv(k) (using enqueue), it is assigned a number that it uses
as a password to carry job M to print (which eventually will bind it to data in P .
(Dynamic name discovery and passwords are fundamental here.)

NBA Calculus – pp.12/21

¿ ≪ ≫ À

A print server

The following process assigns a progressive number to incoming jobs.

enqueuek , (νc) (c[〈1〉̂̂] | !(n)c.enter(x, k).〈n〉x.c[〈n+ 1〉̂̂])

We can turn it into a print server (which consumes such numbers).

prtsrv(k) , k[enqueuek | print]

print , (νc) (c[〈1〉̂̂] | !(n)c.exit(x, n).(data)x.(P{data} | c[〈n+ 1〉̂̂])

A client then acts as:

job(M,k) , (νp)p[enter〈k, k〉.(n)̂̂ .(νq)q[exit〈p, n〉.〈M 〉̂̂]]

It enters the server prtsrv(k) (using enqueue), it is assigned a number that it uses
as a password to carry job M to print (which eventually will bind it to data in P .
(Dynamic name discovery and passwords are fundamental here.)

NBA Calculus – pp.12/21

¿ ≪ ≫ À

Some Equational Laws

Garbage Collection laws

l[(x̃i)
n.P | (x̃).Q | 〈M̃〉m.R] ∼= 0

l[(x̃)n.P | 〈M̃〉.P | 〈M̃〉m.P] ∼= 0

Communication laws

l[〈M̃0 〉̂̂ | 〈M̃1 〉̂̂] ∼= l[〈M̃0 〉̂̂] | l[〈M̃1 〉̂̂]

l[(x̃).P | 〈M̃〉.Q] ∼= l[P{x̃ := M̃} | Q]

(νl)((x̃)l.P | l[〈M̃ 〉̂̂ .Q]) ∼= (νl)(P{x̃ := M̃} | l[Q])

m[(x̃)l.P | l[〈M̃ 〉̂̂ .Q]] ∼= m[P{x̃ := M̃} | l[Q]]

Mobility laws

(νp)(m[enter〈n, p〉.P] | n[enter(x, p).Q]) ∼= (νp)(n[Q{x := m} | m[P]])

l[m[enter〈n, p〉.P] | n[enter(x, p).Q]] ∼= l[n[Q{x := m} | m[P]]]

NBA Calculus – pp.13/21

¿ ≪ ≫ À

Some Equational Laws

Garbage Collection laws

l[(x̃i)
n.P | (x̃).Q | 〈M̃〉m.R] ∼= 0

l[(x̃)n.P | 〈M̃〉.P | 〈M̃〉m.P] ∼= 0

Communication laws

l[〈M̃0 〉̂̂ | 〈M̃1 〉̂̂] ∼= l[〈M̃0 〉̂̂] | l[〈M̃1 〉̂̂]

l[(x̃).P | 〈M̃〉.Q] ∼= l[P{x̃ := M̃} | Q]

(νl)((x̃)l.P | l[〈M̃ 〉̂̂ .Q]) ∼= (νl)(P{x̃ := M̃} | l[Q])

m[(x̃)l.P | l[〈M̃ 〉̂̂ .Q]] ∼= m[P{x̃ := M̃} | l[Q]]

Mobility laws

(νp)(m[enter〈n, p〉.P] | n[enter(x, p).Q]) ∼= (νp)(n[Q{x := m} | m[P]])

l[m[enter〈n, p〉.P] | n[enter(x, p).Q]] ∼= l[n[Q{x := m} | m[P]]]

NBA Calculus – pp.13/21

¿ ≪ ≫ À

Some Equational Laws

Garbage Collection laws

l[(x̃i)
n.P | (x̃).Q | 〈M̃〉m.R] ∼= 0

l[(x̃)n.P | 〈M̃〉.P | 〈M̃〉m.P] ∼= 0

Communication laws

l[〈M̃0 〉̂̂ | 〈M̃1 〉̂̂] ∼= l[〈M̃0 〉̂̂] | l[〈M̃1 〉̂̂]

l[(x̃).P | 〈M̃〉.Q] ∼= l[P{x̃ := M̃} | Q]

(νl)((x̃)l.P | l[〈M̃ 〉̂̂ .Q]) ∼= (νl)(P{x̃ := M̃} | l[Q])

m[(x̃)l.P | l[〈M̃ 〉̂̂ .Q]] ∼= m[P{x̃ := M̃} | l[Q]]

Mobility laws

(νp)(m[enter〈n, p〉.P] | n[enter(x, p).Q]) ∼= (νp)(n[Q{x := m} | m[P]])

l[m[enter〈n, p〉.P] | n[enter(x, p).Q]] ∼= l[n[Q{x := m} | m[P]]]

NBA Calculus – pp.13/21

¿ ≪ ≫ À

An LTS for NBA

Concretions: (νp̃)〈P 〉Q and (νp̃)〈M〉Q

(Amb Co-enter)

P
enter(n,k)
−−−−−−−→ P ′

m[P]
m enter(n,k)
−−−−−−−−−→ (ν)〈P ′〉0

(Co-enter HO)

P
m enter(n,k)
−−−−−−−−−→ (νp̃)〈P1〉P2 p̃ ∩ fn(Q) = ∅

P
m enter(n,k)Q
−−−−−−−−−−−→ (νp̃)(m[n[Q] | P1] | P2)

(Exit)

P
exit〈n,k〉
−−−−−−→ (νp̃)〈m[P1]〉P2

n[P]
exit〈k〉
−−−−−→ (νp̃)〈m〉(m[P1] | n[P2])

(τ -Exit)

P
exit〈k〉
−−−−−→ (νp̃)〈m〉P ′ Q

exit(m,k)
−−−−−−−→ Q′

P | Q
τ

−−→ (νp̃)(P ′ | Q′)

(Exit HO)

P
exit〈n,k〉
−−−−−−→ (νp̃)〈m[P1]〉P2 x ∈ fn(R) p̃ ∩ fn(Q|R) = ∅

P
exit〈n,k〉QR

−−−−−−−−−→ (νp̃)(m[P1] | n[P2 | Q] | R{x := m})

NBA Calculus – pp.14/21

¿ ≪ ≫ À

A Characterisation of Reduction Bisimulation

Thm. If P
τ
−→ P ′ then P −→ P ′. If P −→ P ′ then P

τ
−→≡ P ′.

Bisimilarity. A symmetric relation R is a bisimulation if

P R Q and P
α
−→ P ′ implies ∃Q

α̂
=⇒ Q′ with P ′

R Q′.

P ≈ Q if P R Q for some bisimulation R.

The closure under substitutions of ≈ is denoted by ≈c.

Thm. If P ≈c Q then P ∼= Q and viceversa.

NBA Calculus – pp.15/21

¿ ≪ ≫ À

A Type System for NBA

Types

Message Types W ::= N[E] ambient/password

| C[E] capability

Exchange Types E,F ::= shh no exchange

| W1 . . .Wk tuples (k ≥ 0)

Process Types T ::= [E,F] composite exchange

N[E] types both ambients and passwords; shh is the silent type; N[shh] is an
ambient with no upward exchanges or a password that reveal the visitor’s name.

Type Environments

(Env Empty)

∅ ` ¦

(Env name)

Γ ` ¦ a /∈ Dom(Γ)

Γ, a : W ` ¦

NBA Calculus – pp.16/21

¿ ≪ ≫ À

A Type System for NBA

Types

Message Types W ::= N[E] ambient/password

| C[E] capability

Exchange Types E,F ::= shh no exchange

| W1 . . .Wk tuples (k ≥ 0)

Process Types T ::= [E,F] composite exchange

N[E] types both ambients and passwords; shh is the silent type; N[shh] is an
ambient with no upward exchanges or a password that reveal the visitor’s name.

Type Environments

(Env Empty)

∅ ` ¦

(Env name)

Γ ` ¦ a /∈ Dom(Γ)

Γ, a : W ` ¦

NBA Calculus – pp.16/21

¿ ≪ ≫ À

Typing Rules

Messages

(Projection)

Γ, a : W,Γ′ ` ¦

Γ, a : W,Γ′ ` a : W

(Path)

Γ `M1 : C[E1] Γ `M2 : C[E2]

Γ `M1.M2 : C[E1 t E2]

(Enter)

Γ `M : N[E] Γ ` N : N[F] (F 6 G)

Γ ` enter〈M,N〉 : C[G]

(Exit)

Γ `M : N[E] Γ ` N : N[F] (F 6 G)

Γ ` exit〈M,N〉 : C[G]

Processes
(Par)

Γ ` P : [E,F] Γ ` Q : [E,F]

Γ ` P | Q : [E,F]

(Repl)

Γ ` P : [E,F]

Γ ` !P : [E,F]

(Dead)

Γ ` ¦

Γ ` 0 : [E,F]

(New)

Γ, n : N[G] ` P : [E,F]

Γ ` (νn :N[G])P : [E,F]

NBA Calculus – pp.17/21

¿ ≪ ≫ À

Typing Rules

Messages

(Projection)

Γ, a : W,Γ′ ` ¦

Γ, a : W,Γ′ ` a : W

(Path)

Γ `M1 : C[E1] Γ `M2 : C[E2]

Γ `M1.M2 : C[E1 t E2]

(Enter)

Γ `M : N[E] Γ ` N : N[F] (F 6 G)

Γ ` enter〈M,N〉 : C[G]

(Exit)

Γ `M : N[E] Γ ` N : N[F] (F 6 G)

Γ ` exit〈M,N〉 : C[G]

Processes
(Par)

Γ ` P : [E,F] Γ ` Q : [E,F]

Γ ` P | Q : [E,F]

(Repl)

Γ ` P : [E,F]

Γ ` !P : [E,F]

(Dead)

Γ ` ¦

Γ ` 0 : [E,F]

(New)

Γ, n : N[G] ` P : [E,F]

Γ ` (νn :N[G])P : [E,F]

NBA Calculus – pp.17/21

¿ ≪ ≫ À

Typing Rules: II

Processes: mobility

(Amb)

Γ `M : N[E] Γ ` P : [F,E]

Γ `M [P] : [G,H]

(Prefix)

Γ `M : C[F] Γ ` P : [E,G] (F 6 G)

Γ `M.P : [E,G]

(Co-enter)

Γ `M : N[W̃] Γ, x : N[W̃] ` P : [E,F]

Γ ` enter(x,M).P : [E,F]

(Co-exit)

Γ `M : N[W̃] Γ, x : N[W̃] ` P : [E,F]

Γ ` exit(x,M).P : [E,F]

(Co-enter-silent)

Γ `M : N[shh] Γ ` P : [E,F] (x 6∈ fv(P))

Γ ` enter(x,M).P : [E,F]

(Co-exit-silent)

Γ `M : N[shh] Γ ` P : [E,F] (x 6∈ fv(P))

Γ ` exit(x,M).P : [E,F]

NBA Calculus – pp.18/21

¿ ≪ ≫ À

Typing Rules: II

Processes: I/O

(Input)

Γ, x̃ :W̃ ` P : [W̃ , E]

Γ ` (x̃ :W̃).P : [W̃ , E]

(Input ˆ̂)

Γ, x̃ :W̃ ` P : [E, W̃]

Γ ` (x̃ :W̃)̂̂ .P : [E, W̃]

(Input M)

Γ `M : N[W̃] Γ, x̃ :W̃ ` P : [G,H]

Γ ` (x̃ :W̃)M .P : [G,H]

(Output)

Γ ` M̃ : W̃ Γ ` P : [W̃ , E]

Γ ` 〈M̃〉.P : [W̃ , E]

(Output ˆ̂)

Γ ` M̃ : W̃ Γ ` P : [E, W̃]

Γ ` 〈M̃ 〉̂̂ .P : [E, W̃]

(Output N)

Γ ` N : N[W̃] Γ ` M̃ : W̃ Γ ` P : [G,H]

Γ ` 〈M̃〉N .P : [G,H]

Subject Reduction. If Γ ` P : T and P −→ Q, then Γ ` Q : T .

NBA Calculus – pp.19/21

¿ ≪ ≫ À

Encoding: BA in NBA

We can encode BA into NBA enriched with a focused form of nondeterminism.

{|P |}n = cross | 〈〈P 〉〉 n

〈〈m[P] 〉〉 n = m[{|P |}m]

〈〈 (x)aP 〉〉 n = (x)a 〈〈P 〉〉 n

〈〈 (x)P 〉〉 n = (x) 〈〈P 〉〉 n + (x)̂̂ 〈〈P 〉〉 n + exit(y, pw)(x)y 〈〈P 〉〉 n y /∈ fn(P)

〈〈 (x)↑P 〉〉 n = (νp)p[exit〈n, pr〉.(x)̂̂ .enter〈n, p〉.〈x〉̂̂] | enter(y, p)(x)y 〈〈P 〉〉 n p, y /∈ fn(P)

〈〈 〈M〉aP 〉〉 n = 〈M〉a 〈〈P 〉〉 n

〈〈 〈M〉P 〉〉 n = 〈M〉 〈〈P 〉〉 n + 〈M 〉̂̂ 〈〈P 〉〉 n + exit(y, pr)〈M〉y 〈〈P 〉〉 n y /∈ fn(P)

〈〈 〈M〉↑P 〉〉 n = (νp)p[exit〈n, pw〉.〈M 〉̂̂ .enter〈n, p〉.〈·〉̂̂] | enter(y, p)()y 〈〈P 〉〉 n p, y /∈ fn(P)

where cross = !enter(x,mv) | !exit(x,mv), in n = enter〈n,mv〉, and out n = exit〈n,mv〉.

Thm. If P
τ

−−→ P ′ then {|P |}
τ

−−→ >
∼ {|P

′ |}.

If {|P |}
τ

−−→ Q, then ∃P
τ

−−→ P ′ with Q >
∼ {|P

′ |}.

If P and Q are single-threaded, then {|P |}n ∼= {|Q |}n implies P ∼= Q.

NBA Calculus – pp.20/21

¿ ≪ ≫ À

Encoding: BA in NBA

We can encode BA into NBA enriched with a focused form of nondeterminism.

{|P |}n = cross | 〈〈P 〉〉 n

〈〈m[P] 〉〉 n = m[{|P |}m]

〈〈 (x)aP 〉〉 n = (x)a 〈〈P 〉〉 n

〈〈 (x)P 〉〉 n = (x) 〈〈P 〉〉 n + (x)̂̂ 〈〈P 〉〉 n + exit(y, pw)(x)y 〈〈P 〉〉 n y /∈ fn(P)

〈〈 (x)↑P 〉〉 n = (νp)p[exit〈n, pr〉.(x)̂̂ .enter〈n, p〉.〈x〉̂̂] | enter(y, p)(x)y 〈〈P 〉〉 n p, y /∈ fn(P)

〈〈 〈M〉aP 〉〉 n = 〈M〉a 〈〈P 〉〉 n

〈〈 〈M〉P 〉〉 n = 〈M〉 〈〈P 〉〉 n + 〈M 〉̂̂ 〈〈P 〉〉 n + exit(y, pr)〈M〉y 〈〈P 〉〉 n y /∈ fn(P)

〈〈 〈M〉↑P 〉〉 n = (νp)p[exit〈n, pw〉.〈M 〉̂̂ .enter〈n, p〉.〈·〉̂̂] | enter(y, p)()y 〈〈P 〉〉 n p, y /∈ fn(P)

where cross = !enter(x,mv) | !exit(x,mv), in n = enter〈n,mv〉, and out n = exit〈n,mv〉.

Thm. If P
τ

−−→ P ′ then {|P |}
τ

−−→ >
∼ {|P

′ |}.

If {|P |}
τ

−−→ Q, then ∃P
τ

−−→ P ′ with Q >
∼ {|P

′ |}.

If P and Q are single-threaded, then {|P |}n ∼= {|Q |}n implies P ∼= Q.

NBA Calculus – pp.20/21

¿ ≪ ≫ À

Conclusion and Future Work

Type inference.

Information flow analysis.

Comparison with Seal calculus.

Implementation.

Logics.

NBA Calculus – pp.21/21

	Mobile Ambients
	Interferences in Mobile Ambients
	Mobile Boxed Ambients
	Introducing NBA: Communication
	Introducing NBA: Mobility
	NBA: Syntax
	NBA: Reduction Semantics
	NBA: Behavioural Equivalence
	The rest of the talk
	A one-to-one communication server
	A print server
	Some Equational Laws
	An LTS for NBA
	A Characterisation of Reduction Bisimulation
	A Type System for NBA
	Typing Rules
	Typing Rules: II
	Typing Rules: II
	Encoding: BA in NBA
	Conclusion and Future Work

