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Access Control

Resource access control is paramount for open-ended systems:

Correctness
If entity p gets access to resource r , then p is “authorised” to access r .

Different mechanisms provide for different meanings of “authorised.”

Identity-based for centralised systems: e.g., Access Control
Matrices – p is authorised to access r if entry (p, r) is true.

Identity-based for decentralised systems: e.g., Public Key Digital
Signatures – p is authorised to access r if p can sign with key kp.

Credential-based for decentralised systems: e.g., Traditional Trust
Management – p using public key pkp is authorised if it carries a
certificate from an appropriate authority.
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Reputation Systems
and dynamic trust management. . .

Reputation

Behaviour-based: an entity’s (perceived) behaviour in past
interactions is used to determine its privilege in future ones.

Relevant for large decentralised systems with multiple interactions.

But, when is an entity in a reputation system “authorised”?

Existing systems provide no “correctness” criteria.

often “reputation information” undergoes heavy abstraction
– e.g., Eigentrust and Ebay.

Reputation System Security
The degree of confidence (trust) in p’s actions at time t , is determined
by p’s behaviour up until time t according to a given policy ψ.
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History-Based Access Control
and reputation systems

Example:

Suppose you download what claims to be a new cool browser
from some unknown site. Your trust policy may be:

allow the program to connect to a remote site if and only if it has
neither tried to open a local file that it has not created, nor to
modify a file it has created, nor to create a sub-process.

This definition of reputation system security fits well with the goals of
history-based access control.

Reputation-Based Access Control
If entity p gains access to resource r at time t , then p’s behaviour up
until time t satisfies a given requirement ψr .
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Outline

1 Modelling behavioural information
Event Structures as a general model

2 A Simple Policy Language
Examples
History Verification

3 Extended Policy Languages
Parameters and Quantification
Verifying Quantified Policies
References and Quantitative Properties
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A Model based on Event Structure

Interactions and Protocols
At an abstract level, entities in a distributed system interact
according to protocols;

Information about an external entity is just information about a
number of (past) protocol runs with that entity.

Events as Model of Information
A protocol can be specified as a concurrent process, at different
levels of abstractions.

Event structures were invented to give formal semantics to truely
concurrent processes, expressing “causation” and “conflict.”
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A model for behavioural information

ES = (E ,≤,#), with E a set of events, ≤ and # relations on E .

Information about a session is a finite set of events x ⊆ E , called a
configuration (which is ‘conflict-free’ and ‘causally-closed’).

Information about several interactions is a sequence
h = x1x2 · · · xn ∈ C∗ES, called a history.

EBay (simplified) example:

confirm /o/o/o time-out

pay /o/o/o/o/o/o/o/o/o

``AAAAAAAA

>>}}}}}}}}
ignore

positive
6v 5u 5u 4t 4t 3s 2r 2r 1q 1q 0p 0p /o .n .n -m -m ,l ,l +k *j *j )i )i (h

/o/o/o neutral /o negative

e.g., h = {pay , confirm ,pos } {pay , confirm ,neu} {pay }
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The central issues

Reputation System Security
If entity p gains access to resource r at time t , then the p’s behaviour
up until t satisfies requirement ψr .

Specification problem: How to specify requirements ψr ?

The language must be expressive, intuitive, declarative, . . .

Verification problem: given h and ψr does h |= ψr ?

but information is provided incrementally: the model checking
must be dynamic, i.e., support the operations h.update (e, i) and
h.new().

and, of course, the “representation” of h must be such that the
question h |= ψr is efficient to answer.

V. Sassone (Sussex) Concrete Reputation Systems 05.07.07 9 / 25



The central issues

Reputation System Security
If entity p gains access to resource r at time t , then the p’s behaviour
up until t satisfies requirement ψr .

Specification problem: How to specify requirements ψr ?

The language must be expressive, intuitive, declarative, . . .

Verification problem: given h and ψr does h |= ψr ?

but information is provided incrementally: the model checking
must be dynamic, i.e., support the operations h.update (e, i) and
h.new().

and, of course, the “representation” of h must be such that the
question h |= ψr is efficient to answer.

V. Sassone (Sussex) Concrete Reputation Systems 05.07.07 9 / 25



The central issues

Reputation System Security
If entity p gains access to resource r at time t , then the p’s behaviour
up until t satisfies requirement ψr .

Specification problem: How to specify requirements ψr ?

The language must be expressive, intuitive, declarative, . . .

Verification problem: given h and ψr does h |= ψr ?

but information is provided incrementally: the model checking
must be dynamic, i.e., support the operations h.update (e, i) and
h.new().

and, of course, the “representation” of h must be such that the
question h |= ψr is efficient to answer.

V. Sassone (Sussex) Concrete Reputation Systems 05.07.07 9 / 25



Outline

1 Modelling behavioural information
Event Structures as a general model

2 A Simple Policy Language
Examples
History Verification

3 Extended Policy Languages
Parameters and Quantification
Verifying Quantified Policies
References and Quantitative Properties

V. Sassone (Sussex) Concrete Reputation Systems 05.07.07 10 / 25



Pure-Past Linear Temporal Logic

Syntax

ψ ::= e | 3e | ψ0 ∧ ψ1|ψ0 ∨ ψ1 | ¬ψ | X−1ψ | ψ0 S ψ1

Semantics: forcing |= of formulas ψ by histories h = x1x2 · · · xn

h |= ψ ⇐⇒ (h, |h|) |= ψ (h 6= ε)

(h, i) |= e iff e ∈ xi

(h, i) |= 3e iff e r# xi

(h, i) |= ψ0 ∧ ψ1 iff (h, i) |= ψ0 and (h, i) |= ψ1

(h, i) |= ψ0 ∨ ψ1 iff (h, i) |= ψ0 or (h, i) |= ψ1

(h, i) |= ¬ψ iff (h, i) 6|= ψ

(h, i) |= X−1ψ iff i > 0 and (h, i − 1) |= ψ

(h, i) |= ψ0 S ψ1 iff ∃j ≤ i .(h, j) |= ψ1 and
∀j ′.j < j ′ ≤ i ⇒ (h, j ′) |= ψ0
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A Simple Example

eBay Auction

Policy: “only bids on auctions run by a seller that has never failed
to send goods for won auctions in the past.”

ψbid ≡ ¬F−1(time-out )

Furthermore, the buyer might require that “the seller has never
provided negative feedback in auctions where payment was
made.”

ψbid ≡ ¬F−1(time-out ) ∧G−1(negative → ignore )
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An efficient algorithm for (dynamic) verification
Goal: To answer “ h |= ψ ?”

Identify a datastructure DMC, maintaining a history h, and
supporting three methods:

I DMC.new() h 7→ h∅
I DMC.update (e, i) h 7→ h[i/(xi ∪ {e})]
I DMC.check () h |= ψ?

In the following fix an enumeration of subformulas of ψ:

ψ0 = ψ1 ∧ ψ2 = ¬F−1(time-out ) ∧G−1(negative → ignore )

ψ1 = ¬ψ3

ψ2 = G−1(ψ4)

ψ3 = F−1(ψ5)

ψ4 = ψ6 → ψ7

ψ5 = time-out

ψ6 = negative

ψ7 = ignore
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Array-based Algorithm

Maintain
history h = x1 · · · xn, and
boolean arrays B1, . . . ,Bn.

Invariant
(h, k) |= ψi ⇐⇒ Bk [i] = true

xk xk+1

> ψ0

⊥ ψ1

.

.

.

⊥ ψi

.

.

.

? ψ0

? ψ1

.

.

.

? ψi

> ψi+1

⊥ ψi+2
.
.
.

Algorithm – case S
suppose ψi = ψi+1 S ψi+2

then we can define

Bk+1[i] = Bk+1[i + 2] ∨
(Bk [i] ∧ Bk+1[i + 1])

so we can fill array Bk+1 in linear
time (in ψ|) given Bk .
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Complexity results

Theorem

DMC.init () O(|ψ|)

DMC.new() O(|ψ|)

DMC.update (e, i) O((K − i + 1) · |ψ|)

DMC.check () O(1)
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An automata-based algorithm
Consider x1x2 · · · xn |= ψ? as an acceptance problem for an automata
reading symbols from CES.

Theorem
Language Lψ = {h ∈ CES

∗ | h |= ψ} is regular. Can identify an
automata to recognise the “good” histories.

Transition s
xi→ s′ depends only on current state s and configuration xi .

Complexity: In fact, this amounts to precompute the transitions, and
save a factor |ψ| at runtime at the price of a cost at startup time.

DMC.init () O(2|ψ| · |CES| · |ψ|)
DMC.new() O(1)

DMC.update (e, i) O(K − i + 1)

DMC.check () O(1)
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Parameters and Quantification

Recall example property:

“. . . [never] open a local file that it has not created . . . ”

Want for any file f :

“if open (f ) then F−1create (f )”

Need a notion of parametrised event structure.

events e occur with parameters p from (infinite) parameter sets P

otherwise as usual event structures

Specify property as

G−1
(
∀x .

[
open (x) → F−1(create (x))

])
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Extended Policy Language

ψ ::= · · ·e(v) | 3e(v) | · · · | Qx : P.ψ

v is a variable or a parameter, P is a parameter set, Q is ∀ or ∃.

Histories h are now sequences of configurations from
parameterised event-structures.

A configuration xi is a partial map events ⇀ parameters.

Semantics is relative to an environment σ:

(h, i) |=σ e(v) iff e ∈ dom(xi) and xi(e) = σ(v)
...

(h, i) |=σ ∀x : Pj .ψ iff for all p ∈ Pj .(h, i) |=((x 7→p)/σ) ψ

(h, i) |=σ ∃x : Pj .ψ iff there exists p ∈ Pj .(h, i) |=((x 7→p)/σ) ψ

V. Sassone (Sussex) Concrete Reputation Systems 05.07.07 19 / 25



Extended Policy Language

ψ ::= · · ·e(v) | 3e(v) | · · · | Qx : P.ψ

v is a variable or a parameter, P is a parameter set, Q is ∀ or ∃.

Histories h are now sequences of configurations from
parameterised event-structures.

A configuration xi is a partial map events ⇀ parameters.

Semantics is relative to an environment σ:

(h, i) |=σ e(v) iff e ∈ dom(xi) and xi(e) = σ(v)
...

(h, i) |=σ ∀x : Pj .ψ iff for all p ∈ Pj .(h, i) |=((x 7→p)/σ) ψ

(h, i) |=σ ∃x : Pj .ψ iff there exists p ∈ Pj .(h, i) |=((x 7→p)/σ) ψ

V. Sassone (Sussex) Concrete Reputation Systems 05.07.07 19 / 25



Verifying Quantified Policies
Given history h and quantified policy ψ, does h |= ψ?

We can generalise boolean array algorithm by:
Eliminating quantifiers by (careful) instantiation of variables
Binding variables to parameters via a constraints language

Constraints:

c ::= ⊥ | x = p | c ∧ c | c ∨ c | ¬c (x ∈ Var ,p ∈ Par)

We map (h, k , ψ) into a constraint JψKk
h; e.g.,

Je(v)Kk
h =


x = p if v = x and hk (e) = p;

> if v = p and hk (e) = p;

⊥ if otherwise

JQx : P.ψKk
h is obtained by a conjuction/disjunction of constraints over

all possible instantiations of x : there are only finitely many!
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Constraint-Array Algorithm

Maintain
history h = x1 · · · xn, and
boolean arrays B1, . . . ,Bn.

Invariant
(h, k) |= ψi ⇐⇒ Bk [i] = true

xk xk+1

c0Jψ0Kk
h

c1Jψ1Kk
h

.

.

.

ciJψiKk
h

.

.

.

? Jψ0Kk+1
h

? Jψ1Kk+1
h

.

.

.

? JψiKk+1
h

c′ Jψi+1Kk+1
h

c′′ Jψi+2Kk+1
h.

.

.

Algorithm – case S
suppose ψi = ψi+1 S ψi+2

then we can define

Ck+1[i] = Ck+1[i + 2] ∨
(Ck [i] ∧ Ck+1[i + 1])

so we can fill array Ck+1 in linear
time (in |ψ|) given Ck .
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Complexity results

Theorem
Model checking of quantified policies is decidable.

Caveat: deciding h |= ψ for a closed ψ even in small models is
PSPACE complete.

Proof: reduction from quantified boolean logic)

Theorem

DMC.init () O(|ψ|)

DMC.new() O(|ψ| · (|Ph|+ 1)n)

DMC.update (e,p, i) O((K − i + 1) · |ψ| · (|Ph|+ 2)n)

DMC.check () O(1)

(n number of quantifiers)
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References

Add references to other principal’s observations.

π ::= p : ψ | π0 ∧ π1 | ¬π p ∈ Prin

Policy p : ψ expresses that p’s observations satisfy ψ.

eBay revisited: Requirement by p – “seller has never provided negative
feedback in auctions where I made payment, and has never cheated
me or any of my friends.”

πbid
p ≡ p : G−1(negative → ignore ) ∧∧

q∈{p,p1,...,pn} q : ¬F−1(time-out )
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Quantitative Properties
Add event counting to the language.

ψ ::= . . . | R(#ψ1,#ψ2, . . . ,#ψk )

#ψ denotes the number of times ψ has been true in the current
sessions, R is a computable predicate on integers.

P2P File-sharing: We express a policy used by server p for granting
download, “the number of uploads should be at least a third of the
number of downloads.”

πclient-dl
p ≡ p : (#dl ≤ 3 ·#ul )

“Frequency” policy: We express that “statistically, event ev ∈ E occurs
with frequency at least 75%.”

πprobab
p ≡ p :

#ev

#ev + #(¬ev ∧ ¬3ev ) + 1
≥ 3/4
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Summary

A framework for “reputation systems” and a notion of “security” for
such systems.

I applications to history-based access control.

Basic Policies can be specified declaratively and verified
efficiently.

Quantified policies are expressive, and quantified model checking
is decidable (though hard with many quantifiers).

Future Work?
I Tighten bounds on quantified algorithm

V. Sassone (Sussex) Concrete Reputation Systems 05.07.07 25 / 25


	Motivation
	Reputation Systems and Security

	Modelling behavioural information
	Event Structures as a general model

	A Simple Policy Language
	Examples
	History Verification

	Extended Policy Languages
	Parameters and Quantification
	Verifying Quantified Policies
	References and Quantitative Properties

	Summary

