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Access Control

Resource access control is paramount for open-ended systems:

Correctness
If entity p gets access to resource r, then p is “authorised” to access r.J

Different mechanisms provide for different meanings of “authorised.”
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Access Control

Resource access control is paramount for open-ended systems:

Correctness
If entity p gets access to resource r, then p is “authorised” to access r.J

Different mechanisms provide for different meanings of “authorised.”

@ ldentity-based for centralised systems: e.g., Access Control
Matrices — p is authorised to access r if entry (p,r) is true.

@ |dentity-based for decentralised systems: e.g., Public Key Digital
Signatures — p is authorised to access r if p can sign with key k.

@ Credential-based for decentralised systems: e.g., Traditional Trust
Management — p using public key pk,, is authorised if it carries a
certificate from an appropriate authority.
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Reputation Systems

and dynamic trust management. ..

Reputation

@ Behaviour-based: an entity’s (perceived) behaviour in past
interactions is used to determine its privilege in future ones.

@ Relevant for large decentralised systems with multiple interactions.

But, when is an entity in a reputation system “authorised”?
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Reputation Systems

and dynamic trust management. ..

Reputation

@ Behaviour-based: an entity’s (perceived) behaviour in past
interactions is used to determine its privilege in future ones.

@ Relevant for large decentralised systems with multiple interactions.

But, when is an entity in a reputation system “authorised”?
@ Existing systems provide no “correctness” criteria.

@ often “reputation information” undergoes heavy abstraction
—e.g., Eigentrust and Ebay.

Reputation System Security

The degree of confidence (trust) in p’s actions at time t, is determined
by p’s behaviour up until time t according to a given policy ).
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History-Based Access Control
and reputation systems
Example:

@ Suppose you download what claims to be a new cool browser
from some unknown site. Your trust policy may be:

@ allow the program to connect to a remote site if and only if it has
neither tried to open a local file that it has not created, nor to
modify a file it has created, nor to create a sub-process.
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History-Based Access Control

and reputation systems

Example:

@ Suppose you download what claims to be a new cool browser
from some unknown site. Your trust policy may be:

@ allow the program to connect to a remote site if and only if it has
neither tried to open a local file that it has not created, nor to
modify a file it has created, nor to create a sub-process.

This definition of reputation system security fits well with the goals of
history-based access control.
Reputation-Based Access Control

If entity p gains access to resource r at time t, then p’s behaviour up
until time t satisfies a given requirement ;.
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Outline

e Modelling behavioural information
@ Event Structures as a general model

e A Simple Policy Language
@ Examples
@ History Verification

e Extended Policy Languages
@ Parameters and Quantification
@ Verifying Quantified Policies
@ References and Quantitative Properties
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Outline

e Modelling behavioural information

@ Event Structures as a general model
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A Model based on Event Structure

Interactions and Protocols
@ At an abstract level, entities in a distributed system interact
according to protocaols;

@ Information about an external entity is just information about a
number of (past) protocol runs with that entity.

Events as Model of Information
@ A protocol can be specified as a concurrent process, at different
levels of abstractions.

@ Event structures were invented to give formal semantics to truely
concurrent processes, expressing “causation” and “conflict.”
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A model for behavioural information

@ ES = (E, <,#), with E a set of events, < and # relations on E.
@ Information about a session is a finite set of events

, called a

, called a
(which is ‘conflict-free’ and ‘causally-closed’).
@ Information about several interactions is a sequence

confirm

~~~ time-out

pay ~~ e ignore
. NNNNNN
positive
e.g.,

F\:\Jx\‘xx’\\_x
S\
S

~~~ neutral

o

~ negative
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@ ES = (E, <,#), with E a set of events, < and # relations on E.

@ Information about a session is a finite set of events x C E, called a

configuration (which is ‘conflict-free’ and ‘causally-closed’).

@ Information about several interactions is a sequence
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A model for behavioural information

@ ES = (E, <,#), with E a set of events, < and # relations on E.

@ Information about a session is a finite set of events x C E, called a

configuration (which is ‘conflict-free’ and ‘causally-closed’).

@ Information about several interactions is a sequence
h = X1Xo - Xp € Cig, called a history.

EBay (simplified) example:

confirm ~~ time-out

N

PoPPITITISC e

oo N
e
P

~

‘\_\x
positive ~~~ neutral negative

ignore

e.g., h = {pay,confirm ,pos} {pay,confirm  neu} {pay}
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The central issues

Reputation System Security

If entity p gains access to resource r at time t, then the p’s behaviour
up until t satisfies requirement /.

: How to specify requirements
@ The language must be expressive, intuitive, declarative, . ..
. given

?
must be

and does

@ but information is provided incrementally: the model checking

?
, I.e., support the operations
@ and, of course, the “representation” of
guestion

and
must be such that the
is efficient to answer.
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The central issues

Reputation System Security

If entity p gains access to resource r at time t, then the p’s behaviour
up until t satisfies requirement ;.

Specification problem: How to specify requirements ¢, ?
@ The language must be expressive, intuitive, declarative, . ..

Verification problem: given h and ¢, does h |= v, ?

@ but information is provided incrementally: the model checking
must be dynamic, i.e., support the operations h.update (e, i) and
h.new().

@ and, of course, the “representation” of h must be such that the
question h = 1 is efficient to answer.
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Outline

@ A Simple Policy Language
@ Examples

@ History Verification
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Pure-Past Linear Temporal Logic
@ Syntax

b ou= e oe Yo AYrilvo Vi | Y [ XM [ 4o Sy

@ Semantics: forcing = of formulas ¢ by histories h = x1x, - - - X

hi=y = (hh)) = (h 7€)
h.i) =e iff e e€x;
h,i) = e iff e # X

=y
m

>
A

iff (h,i) = o and (h,i) = o1

E oV iff (hyi) v or (h)i) =

- iff (i) b o

X1y iff i>0and(h,i—1)Ev

ff 5 <i(h.j) = vr and
Wi<i'=i=(hj) = o

~ A~~~
o0 30 O
~— — — ~— ~— ~— —

>
T
=
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(0]
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A2 N G4
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Pure-Past Linear Temporal Logic

@ Syntax

Y o= e|oe o AoV | | X1 [ b Sy

@ Semantics: forcing |= of formulas ¢ by histories h = x1X5 - - - X,

hi=vy «— (hh]) v (h#e)
(h,i) =e iff ecx
(h,i) = <e iff e #x
(h,i) Edonyy iff (h,i) k= doand(h,i) =
(h,i) EdoVvyy iff (h,i) 1o or(h,i) k=1
(h,i) = - iff (h,i) =4
(h,i) | X~ iff i>0and(h,i—1)Fv
(h,i) =1 Sy iff 3j <i(h,]) =1 and

Vi'j <j’<i=(h,j") E o
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A Simple Example

eBay Auction

@ Policy: “only bids on auctions run by a seller that has never failed
to send goods for won auctions in the past.”

YP¥ = —F~(time-out

)

@ Furthermore, the buyer might require that
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A Simple Example

eBay Auction

@ Policy: “only bids on auctions run by a seller that has never failed
to send goods for won auctions in the past.”

YPd = —F~(time-out )

@ Furthermore, the buyer might require that “the seller has never
provided negative feedback in auctions where payment was
made.”

P4 = —F~L(time-out ) A G~l(negative — ignore )
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An efficient algorithm for (dynamic) verification
Goal: To answer “h = ?”

@ Identify a datastructure DMC, maintaining a history h, and
supporting three methods:

» DMC.new() h — ho
» DMC.update (e, i) h— hli/(xi U{e})]
» DMC.check () h =7
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An efficient algorithm for (dynamic) verification
Goal: To answer “h = ?”

@ Identify a datastructure DMC, maintaining a history h, and
supporting three methods:

» DMC.new() h — ho
» DMC.update (e, i) h — hli/(x U{e})]
» DMC.check () h = ¢?
In the following fix an enumeration of subformulas of :
Yo = b1 Ao = —-F~!(time-out )A G~ !(negative — ignore )
Y1 = 3
o =G (va)
g = F 1 (¢s)
Vs = 1Ps — 7

15 = time-out
g = negative
17 = ignore
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Array-based Algorithm

Maintain

. Invariant
Elc?ct)cl)erinha:rr;()lls; .B‘i(,n.’.é?gn_ (h,k) = ¢ < Bxli] = true J
Xk Xk+1
T lvo 7] o
l!ii 'I Y1

suppose

then we can define

Bi+1[i]

Wi

Byy1li +2] v

(Bi[i] A Bryafi +1])
— so we can fill array By .1 in linear
time (in «|) given By.
. =] = = E na




Array-based Algorithm
Maintain

history h = x; - - - X, and

Invariant
boolean arrays B .. . ., By. (h,k) = ¢ <= By[i] =true
Xk Xk+1 _
Yo o Algorithm — case S
L Y1

suppose ¥ = Y11 S Yiy2
then we can define

(L]

Y .
so we can fill array
Visa time (in
Yit2

in linear
) given By.
o = = = Qe
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Array-based Algorithm

Maintain
history h = x; - - - X, and
boolean arrays By, . ..

. Bn.

Xk Xk+1

7] %o
7]

T |vo
L

LY

V. Sassone (Sussex)

Invariant
(h,k) ): U — Bk[i] = true

Algorithm — case S

suppose ¥ = Y1 S Vi
then we can define

Br+1li] = Brsali +2]V

(Bk[i] A Biyali +1])

so we can fill array in linear
time (in ¢/|) given
v
Concrete Reputation Systems 05.07.07
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Array-based Algorithm

Maintain

history h = x; - - - X, and

boolean arrays By, ..., Bp.
Xk Xk+1

T [tho
L[t

(L]

2] %o
HEZ

(0
Yit1
Yit2

Invariant
(h,k) = ¢y < BxJi] =true

Algorithm — case S
suppose ¥ = Yit1 S Y2
then we can define
Brtafi] = Byiali +2]V
(B [i] A Bigali + 1)

so we can fill array By .1 in linear
time (in ¢|) given By.
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Complexity results

Theorem
DMC.init () O([+l)
DMC.new () O(|¥)
DMC.update (e,i) O((K —i+1)-[¢|)
DMC.check () 0(1)

=] = = E na
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An automata-based algorithm
Consider x1X5 -
reading symbols from Cgs.

Xn = 1)? as an acceptance problem for an automata
Language

is regular. Can identify an
automata to recognise the “good” histories.
Transition

save a factor

depends only on current state s and configuration

In fact, this amounts to precompute the transitions, and
at runtime at the price of a cost at startup time.

=] = = E na
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An automata-based algorithm

Consider x1%, - - - Xy = 9? as an acceptance problem for an automata
reading symbols from Cgs.

Theorem

Language L, = {h € Ces™ | h |= ¢} is regular. Can identify an
automata to recognise the “good” histories.

oy Xi . .
Transition s = s’ depends only on current state s and configuration X;.
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An automata-based algorithm

Consider x1%, - - - Xy = 9? as an acceptance problem for an automata
reading symbols from Cgs.

Theorem

Language L, = {h € Ces™ | h |= ¢} is regular. Can identify an
automata to recognise the “good” histories.

oy Xi . .
Transition s = s’ depends only on current state s and configuration X;.

Complexity: In fact, this amounts to precompute the transitions, and
save a factor |¢| at runtime at the price of a cost at startup time.

DMC.init () o2l |Ces| - [¥)
DMC.new() O(1)
DMC.update (e,i) O(K —i+1)
DMC.check () O(1)
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Outline

e Extended Policy Languages
@ Parameters and Quantification
@ Verifying Quantified Policies
@ References and Quantitative Properties
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Parameters and Quantification

Recall example property:

“...[never] open a local file that it has not created ...”

Want for any file f:
“if open (f) then F~1create (f)”
Need a notion of parametrised event structure.

@ events e occur with parameters p from (infinite) parameter sets P
@ otherwise as usual event structures

Specify property as

Gt (VX. [open (x) — F~Y(create (x))D

V. Sassone (Sussex) Concrete Reputation Systems 05.07.07 18/25



Extended Policy Language

Yu=--e(v) | Ce(v) | -+ | Qx: P
Vv is a variable or a parameter, P is a parameter set, Q is vV or 3.

@ Histories h are now sequences of configurations from
parameterised event-structures.

@ A configuration x; is a partial map events — parameters.
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Extended Policy Language

Yu=--e(v) | Ce(v) | -+ | Qx: P
Vv is a variable or a parameter, P is a parameter set, Q is vV or 3.

@ Histories h are now sequences of configurations from
parameterised event-structures.

@ A configuration x; is a partial map events — parameters.

Semantics is relative to an environment o

(h,i) =7 e(v) iff e € dom(xj) and x;(e) = o(v)

(h,i) £ ¥x : Py iff forallp € Py.(h,i) (x—=P)/o)
(h,i) =7 3x : Pj.yp iff there exists p € Pj.(h,i) |:((X'—>I0)/U) ¥
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Verifying Quantified Policies
Given history h and quantified policy v, does h |= ¢?

We can generalise boolean array algorithm by:
@ Eliminating quantifiers by (careful) instantiation of variables
@ Binding variables to parameters via a constraints language
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Constraints:
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Verifying Quantified Policies
Given history h and quantified policy v, does h |= ¢?

We can generalise boolean array algorithm by:
@ Eliminating quantifiers by (careful) instantiation of variables
@ Binding variables to parameters via a constraints language

Constraints:

co=1|x=p|cAc]|cvec | —cC (x € Var,p € Par)

We map (h, k, 1) into a constraint [¢[; e.g.,

x=p if v=xandhg(e)=p;
[[e(v)]]ﬁ =< T if v=pandhg(e)=p;
s if otherwise

[Qx : P.w]}ﬁ is obtained by a conjuction/disjunction of constraints over
all possible instantiations of x: there are only finitely many!
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Constraint-Array Algorithm

:\]/-I atlnta:]n 9 Invariant J
ISOI‘y :Xl...xn’an . .
boolean arrays B, ..., By. (h,k) E¢i < Bli] = true

Xk

Xk+1

[{UlﬂkJrl suppose

then we can define

: Ck+1[i] = Ck+1[i =i 2] Vv
' (Ck[i] A Crpali + 1)
LK e o TK+L
il %E 'ﬂhﬂ so we can fill array Cy .1 in linear
[ :Eﬂh time (in [¢|) given Cy.

o = na
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Constraint-Array Algorithm

Maintain Invariant
history h = x4 - - - xp, and _— . J
constraint arrays Cy, . . ., Cn LI ET = o[BGl
Xk Xk+1
[l 2] ol
[al [r]k+t  Suppose

then we can define

; Cital] = Crpali+2]V
| (Ck[i] A Crqa[i +11)
LK e o TK+L
il %i 'ﬂhﬂ so we can fill array Cy .1 in linear
[ :Eﬂh time (in [¢|) given Cy.

o = na
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Constraint-Array Algorithm

Maintain
history h = x4 - - - xp, and
constraint arrays Cy, ..., Cy
Xk Xk+1
[ol [[wo]]E“
[ ]K [a]ftt
[l [l
[Wia]EH
[[¢i+2]]h+l

Invariant

Vo.(h,K) 7 ¢i < o = Ckli]

J

Algorithm — case S

suppose ¥ = Yit1 S Yiyo
then we can define

so we can fill array in linear

time (in |¢|) given
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Constraint-Array Algorithm

::/.I Tmalhn : Invariant
IStory N = Xg -+ Xp, an o o J
constraint arrays Cy, ..., Cy Vo.(h,k) 7 ¢ <= o = Ckli]

Xk+1

[vo]k
L]k

[

0
1

Tg] |#
x~

Algorithm — case S
[l

MEH suppose ¢ = i1 S Yiy2

then we can define

Cktali] = Cynli+2]V

: k+1 SO we can fill array
[Wina] time (in |¢|) given

(Ckli] A Cyqali +1])

in linear
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Constraint-Array Algorithm

Maintain

history h = x4 - - - xp, and
constraint arrays Cy, ..., Cy

Xk+1

[vo]k
L]k

[

[Wo]]EH
[we] ™

[ 'ﬁ“
[Wira]ET
[[¢i+2]]h+l

Invariant

Vo.(h,k) E7 ¢ <= o | Cli]

J

Algorithm — case S

suppose ¥ = Yit1 S Yiyo
then we can define

Cktali] = Cynli+2]V

(Ckli] A Cyqali +1])

so we can fill array Cy .1 in linear

time (in |¢|) given Cy.
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Complexity results
Theorem
Model checking of quantified policies is decidable.

Caveat: deciding h |~ ¢ for a closed « even in small models is
PSPACE complete.

@ Proof: reduction from quantified boolean logic)

(n number of quantifiers)
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Complexity results

Theorem
Model checking of quantified policies is decidable.

Caveat: deciding h |= ¢ for a closed ¢) even in small models is
PSPACE complete.

@ Proof: reduction from quantified boolean logic)

Theorem
DMC.init () O(l¥l)
DMC.new() O(l¥| - (IPn| +21)")
DMC.update (e,p,i) O((K —i+1)- 4| (|Pn|+2)")
DMC.check () O(1)

(n number of quantifiers)
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References

Add references to other principal’s observations.

T ou= piY|mo AT | p € Prin

Policy p : v expresses that p’s observations satisfy .
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References

Add references to other principal’s observations.

T ou= piY|mo AT | p € Prin
Policy p : v expresses that p’s observations satisfy .
eBay revisited: Requirement by p — “seller has never provided negative

feedback in auctions where | made payment, and has never cheated
me or any of my friends.”

bid
p

p: G l(negative —ignore ) A
Nacippy....pnt O -F~1(time-out )
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Quantitative Properties
Add event counting to the language.

¢ L= |R(¥¢la¥w2’7¥d)k)

+#1) denotes the number of times v has been true in the current
sessions, R is a computable predicate on integers.
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Quantitative Properties
Add event counting to the language.

¢ L= |R(¥¢la¥w2’a¥¢k)

+#1) denotes the number of times v has been true in the current
sessions, R is a computable predicate on integers.

P2P File-sharing: We express a policy used by server p for granting
download, “the number of uploads should be at least a third of the
number of downloads.”

client-dI

™ =p:(#dl <3-#ul)
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Quantitative Properties
Add event counting to the language.

¢ L= |R(¥¢la¥w2’7¥d)k)

+#1) denotes the number of times v has been true in the current
sessions, R is a computable predicate on integers.

P2P File-sharing: We express a policy used by server p for granting
download, “the number of uploads should be at least a third of the
number of downloads.”

moem = p (Fdl < 3-F#ul)

“Frequency” policy: We express that “statistically, event ev € E occurs
with frequency at least 75%.”

71_Brobab —p- - #ev > 3/4
#ev + #(—ev A ~Cev) + 1
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Summary

@ A framework for “reputation systems” and a notion of “security” for
such systems.

» applications to history-based access control.

@ Basic Policies can be specified declaratively and verified
efficiently.

@ Quantified policies are expressive, and quantified model checking
is decidable (though hard with many quantifiers).

@ Future Work?
» Tighten bounds on quantified algorithm
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