

A Framework for Concrete Reputation Systems

with applications to History-Based Access Control

Vladimiro Sassone

Department of Informatics
University of Sussex

7 July 2005

Access Control

Resource access control is paramount for open-ended systems:

Correctness

If entity p gets access to resource r , then p is “authorised” to access r .

Different mechanisms provide for different meanings of “authorised.”

- Identity-based for centralised systems: e.g., *Access Control Matrices* – p is authorised to access r if entry (p, r) is true.
- Identity-based for decentralised systems: e.g., *Public Key Digital Signatures* – p is authorised to access r if p can sign with key k_p .
- Credential-based for decentralised systems: e.g., *Traditional Trust Management* – p using public key pk_p is authorised if it carries a certificate from an appropriate authority.

Access Control

Resource access control is paramount for open-ended systems:

Correctness

If entity p gets access to resource r , then p is “authorised” to access r .

Different mechanisms provide for different meanings of “authorised.”

- **Identity-based for centralised systems:** e.g., *Access Control Matrices* – p is authorised to access r if entry (p, r) is true.
- **Identity-based for decentralised systems:** e.g., *Public Key Digital Signatures* – p is authorised to access r if p can sign with key k_p .
- **Credential-based for decentralised systems:** e.g., *Traditional Trust Management* – p using public key pk_p is authorised if it carries a certificate from an appropriate authority.

Access Control

Resource access control is paramount for open-ended systems:

Correctness

If entity p gets access to resource r , then p is “authorised” to access r .

Different mechanisms provide for different meanings of “authorised.”

- **Identity-based for centralised systems:** e.g., *Access Control Matrices* – p is authorised to access r if entry (p, r) is true.
- **Identity-based for decentralised systems:** e.g., *Public Key Digital Signatures* – p is authorised to access r if p can sign with key k_p .
- **Credential-based for decentralised systems:** e.g., *Traditional Trust Management* – p using public key pk_p is authorised if it carries a certificate from an appropriate authority.

Access Control

Resource access control is paramount for open-ended systems:

Correctness

If entity p gets access to resource r , then p is “authorised” to access r .

Different mechanisms provide for different meanings of “authorised.”

- **Identity-based for centralised systems:** e.g., *Access Control Matrices* – p is authorised to access r if entry (p, r) is true.
- **Identity-based for decentralised systems:** e.g., *Public Key Digital Signatures* – p is authorised to access r if p can sign with key k_p .
- **Credential-based for decentralised systems:** e.g., *Traditional Trust Management* – p using public key pk_p is authorised if it carries a certificate from an appropriate authority.

Reputation Systems

and *dynamic* trust management...

Reputation

- **Behaviour-based**: an entity's (perceived) behaviour in past interactions is used to determine its privilege in future ones.
- Relevant for large decentralised systems with multiple interactions.

But, when is an entity in a reputation system "authorised"?

- Existing systems provide no "correctness" criteria.
- often "*reputation information*" undergoes heavy abstraction
 - e.g., **Eigentrust** and **Ebay**.

Reputation System Security

The degree of confidence (trust) in p 's actions at time t , is determined by p 's behaviour up *until* time t according to a given policy ψ .

Reputation Systems

and *dynamic* trust management...

Reputation

- **Behaviour-based**: an entity's (perceived) behaviour in past interactions is used to determine its privilege in future ones.
- Relevant for large decentralised systems with multiple interactions.

But, when is an entity in a reputation system "authorised"?

- Existing systems provide no "correctness" criteria.
- often "*reputation information*" undergoes heavy abstraction
 - e.g., [Eigentrust](#) and [Ebay](#).

Reputation System Security

The degree of confidence (trust) in p 's actions at time t , is determined by p 's behaviour up *until* time t according to a given policy ψ .

Reputation Systems

and *dynamic* trust management...

Reputation

- **Behaviour-based**: an entity's (perceived) behaviour in past interactions is used to determine its privilege in future ones.
- Relevant for large decentralised systems with multiple interactions.

But, when is an entity in a reputation system "authorised"?

- Existing systems provide no "correctness" criteria.
- often "*reputation information*" undergoes heavy abstraction
 - e.g., [Eigentrust](#) and [Ebay](#).

Reputation System Security

The degree of confidence (trust) in p 's actions at time t , is determined by p 's behaviour up *until* time t according to a given policy ψ .

History-Based Access Control

and reputation systems

Example:

- Suppose you download what claims to be a new cool browser from some unknown site. Your trust policy may be:
- *allow the program to connect to a remote site if and only if it has neither tried to open a local file that it has not created, nor to modify a file it has created, nor to create a sub-process.*

This definition of reputation system security fits well with the goals of history-based access control.

Reputation-Based Access Control

If entity p gains access to resource r at time t , then p 's behaviour up until time t satisfies a given requirement ψ_r .

History-Based Access Control

and reputation systems

Example:

- Suppose you download what claims to be a new cool browser from some unknown site. Your trust policy may be:
- *allow the program to connect to a remote site if and only if it has neither tried to open a local file that it has not created, nor to modify a file it has created, nor to create a sub-process.*

This definition of reputation system security fits well with the goals of history-based access control.

Reputation-Based Access Control

If entity p gains access to resource r at time t , then p 's behaviour up until time t satisfies a given requirement ψ_r .

Outline

1 Modelling behavioural information

- Event Structures as a general model

2 A Simple Policy Language

- Examples
- History Verification

3 Extended Policy Languages

- Parameters and Quantification
- Verifying Quantified Policies
- References and Quantitative Properties

Outline

1 Modelling behavioural information

- Event Structures as a general model

2 A Simple Policy Language

- Examples
- History Verification

3 Extended Policy Languages

- Parameters and Quantification
- Verifying Quantified Policies
- References and Quantitative Properties

A Model based on Event Structure

Interactions and Protocols

- At an abstract level, entities in a distributed system interact according to protocols;
- Information about an external entity is just information about a number of (past) protocol runs with that entity.

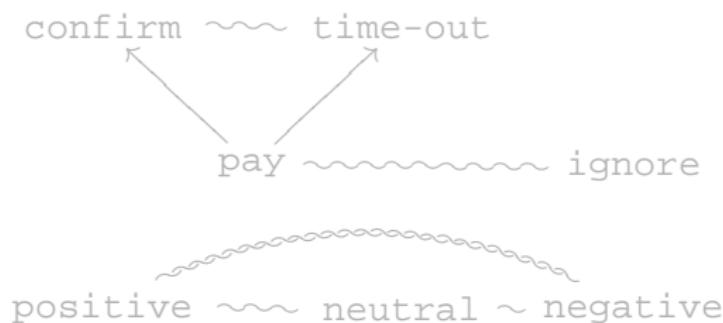
Events as Model of Information

- A protocol can be specified as a **concurrent process**, at different levels of abstractions.
- Event structures were invented to give formal semantics to truly concurrent processes, expressing "**causation**" and "**conflict**".

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

EBay (simplified) example:

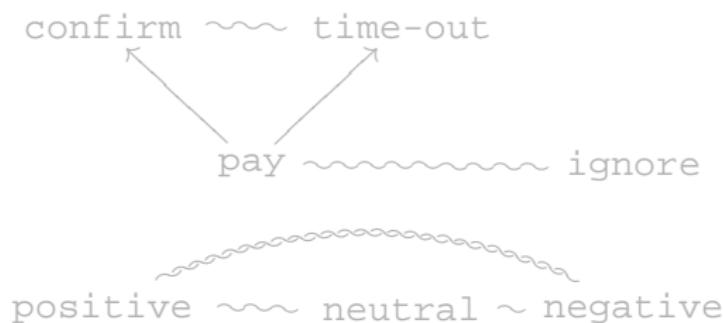


e.g., $h = \{\text{pay, confirm, pos}\} \{\text{pay, confirm, neu}\} \{\text{pay}\}$

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

EBay (simplified) example:

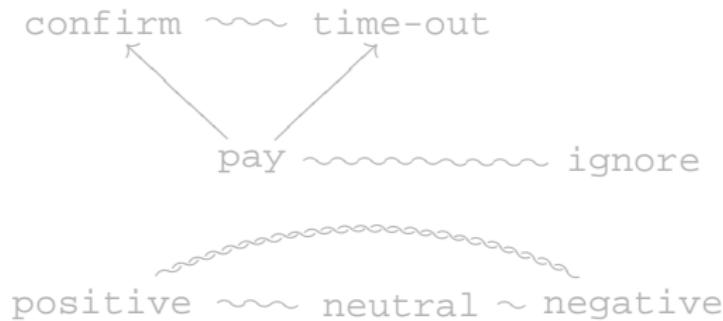


e.g., $h = \{\text{pay, confirm, pos}\} \{\text{pay, confirm, neu}\} \{\text{pay}\}$

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

EBay (simplified) example:

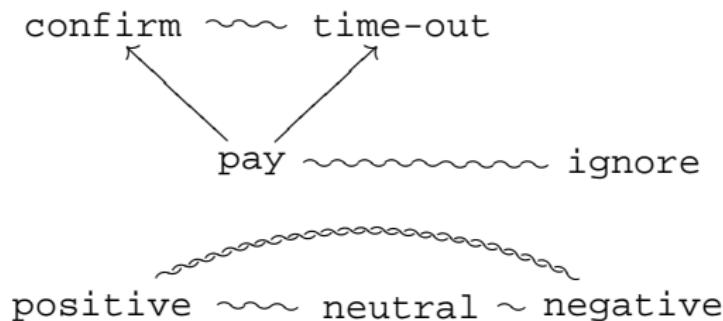


e.g., $h = \{\text{pay, confirm, pos}\} \{\text{pay, confirm, neu}\} \{\text{pay}\}$

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

EBay (simplified) example:

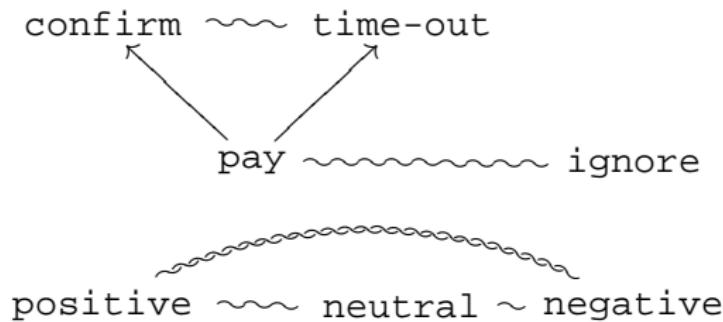


e.g., $h = \{\text{pay, confirm, pos}\} \{\text{pay, confirm, neu}\} \{\text{pay}\}$

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

EBay (simplified) example:



e.g., $h = \{\text{pay}, \text{confirm}, \text{pos}\} \{\text{pay}, \text{confirm}, \text{neu}\} \{\text{pay}\}$

The central issues

Reputation System Security

If entity p gains access to resource r at time t , then the p 's behaviour up *until* t satisfies requirement ψ_r .

Specification problem: How to specify requirements ψ_r ?

- The language must be expressive, intuitive, declarative, ...

Verification problem: given h and ψ_r does $h \models \psi_r$?

- but information is provided incrementally: the model checking must be **dynamic**, i.e., support the operations $h.\text{update}(e, i)$ and $h.\text{new}()$.
- and, of course, the “representation” of h must be such that the question $h \models \psi_r$ is efficient to answer.

The central issues

Reputation System Security

If entity p gains access to resource r at time t , then the p 's behaviour up *until* t satisfies requirement ψ_r .

Specification problem: How to specify requirements ψ_r ?

- The language must be expressive, intuitive, declarative, ...

Verification problem: given h and ψ_r does $h \models \psi_r$?

- but information is provided incrementally: the model checking must be **dynamic**, i.e., support the operations $h.\text{update}(e, i)$ and $h.\text{new}()$.
- and, of course, the “representation” of h must be such that the question $h \models \psi_r$ is efficient to answer.

The central issues

Reputation System Security

If entity p gains access to resource r at time t , then the p 's behaviour up *until* t satisfies requirement ψ_r .

Specification problem: How to specify requirements ψ_r ?

- The language must be expressive, intuitive, declarative, ...

Verification problem: given h and ψ_r does $h \models \psi_r$?

- but information is provided incrementally: the model checking must be **dynamic**, i.e., support the operations $h.\text{update}(e, i)$ and $h.\text{new}()$.
- and, of course, the “representation” of h must be such that the question $h \models \psi_r$ is efficient to answer.

Outline

1 Modelling behavioural information

- Event Structures as a general model

2 A Simple Policy Language

- Examples
- History Verification

3 Extended Policy Languages

- Parameters and Quantification
- Verifying Quantified Policies
- References and Quantitative Properties

Pure-Past Linear Temporal Logic

- Syntax

$$\psi ::= e \mid \diamond e \mid \psi_0 \wedge \psi_1 \mid \psi_0 \vee \psi_1 \mid \neg \psi \mid X^{-1} \psi \mid \psi_0 \mathbf{S} \psi_1$$

- Semantics: forcing \models of formulas ψ by histories $h = x_1 x_2 \cdots x_n$

$$h \models \psi \iff (h, |h|) \models \psi \quad (h \neq \epsilon)$$

$$(h, i) \models e \quad \text{iff} \quad e \in x_i$$

$$(h, i) \models \diamond e \quad \text{iff} \quad e \notin x_i$$

$$(h, i) \models \psi_0 \wedge \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ and } (h, i) \models \psi_1$$

$$(h, i) \models \psi_0 \vee \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ or } (h, i) \models \psi_1$$

$$(h, i) \models \neg \psi \quad \text{iff} \quad (h, i) \not\models \psi$$

$$(h, i) \models X^{-1} \psi \quad \text{iff} \quad i > 0 \text{ and } (h, i-1) \models \psi$$

$$(h, i) \models \psi_0 \mathbf{S} \psi_1 \quad \text{iff} \quad \exists j \leq i. (h, j) \models \psi_1 \text{ and } \forall j'. j < j' \leq i \Rightarrow (h, j') \models \psi_0$$

Pure-Past Linear Temporal Logic

- Syntax

$$\psi ::= e \mid \diamond e \mid \psi_0 \wedge \psi_1 \mid \psi_0 \vee \psi_1 \mid \neg \psi \mid X^{-1} \psi \mid \psi_0 \mathbf{S} \psi_1$$

- Semantics: forcing \models of formulas ψ by histories $h = x_1 x_2 \cdots x_n$

$$h \models \psi \iff (h, |h|) \models \psi \quad (h \neq \epsilon)$$

$$(h, i) \models e \quad \text{iff} \quad e \in x_i$$

$$(h, i) \models \diamond e \quad \text{iff} \quad e \neq x_i$$

$$(h, i) \models \psi_0 \wedge \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ and } (h, i) \models \psi_1$$

$$(h, i) \models \psi_0 \vee \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ or } (h, i) \models \psi_1$$

$$(h, i) \models \neg \psi \quad \text{iff} \quad (h, i) \not\models \psi$$

$$(h, i) \models X^{-1} \psi \quad \text{iff} \quad i > 0 \text{ and } (h, i-1) \models \psi$$

$$(h, i) \models \psi_0 \mathbf{S} \psi_1 \quad \text{iff} \quad \exists j \leq i. (h, j) \models \psi_1 \text{ and } \forall j'. j < j' \leq i \Rightarrow (h, j') \models \psi_0$$

Pure-Past Linear Temporal Logic

- Syntax

$$\psi ::= e \mid \diamond e \mid \psi_0 \wedge \psi_1 \mid \psi_0 \vee \psi_1 \mid \neg \psi \mid X^{-1} \psi \mid \psi_0 \mathbf{S} \psi_1$$

- Semantics: forcing \models of formulas ψ by histories $h = x_1 x_2 \cdots x_n$

$$h \models \psi \iff (h, |h|) \models \psi \quad (h \neq \epsilon)$$

$$(h, i) \models e \quad \text{iff} \quad e \in x_i$$

$$(h, i) \models \diamond e \quad \text{iff} \quad e \not\in x_i$$

$$(h, i) \models \psi_0 \wedge \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ and } (h, i) \models \psi_1$$

$$(h, i) \models \psi_0 \vee \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ or } (h, i) \models \psi_1$$

$$(h, i) \models \neg \psi \quad \text{iff} \quad (h, i) \not\models \psi$$

$$(h, i) \models X^{-1} \psi \quad \text{iff} \quad i > 0 \text{ and } (h, i-1) \models \psi$$

$$(h, i) \models \psi_0 \mathbf{S} \psi_1 \quad \text{iff} \quad \exists j \leq i. (h, j) \models \psi_1 \text{ and } \forall j'. j < j' \leq i \Rightarrow (h, j') \models \psi_0$$

Pure-Past Linear Temporal Logic

- Syntax

$$\psi ::= e \mid \diamond e \mid \psi_0 \wedge \psi_1 \mid \psi_0 \vee \psi_1 \mid \neg \psi \mid X^{-1} \psi \mid \psi_0 \mathbf{S} \psi_1$$

- Semantics: forcing \models of formulas ψ by histories $h = x_1 x_2 \cdots x_n$

$$h \models \psi \iff (h, |h|) \models \psi \quad (h \neq \epsilon)$$

$$(h, i) \models e \quad \text{iff} \quad e \in x_i$$

$$(h, i) \models \diamond e \quad \text{iff} \quad e \neq x_i$$

$$(h, i) \models \psi_0 \wedge \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ and } (h, i) \models \psi_1$$

$$(h, i) \models \psi_0 \vee \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ or } (h, i) \models \psi_1$$

$$(h, i) \models \neg \psi \quad \text{iff} \quad (h, i) \not\models \psi$$

$$(h, i) \models X^{-1} \psi \quad \text{iff} \quad i > 0 \text{ and } (h, i-1) \models \psi$$

$$(h, i) \models \psi_0 \mathbf{S} \psi_1 \quad \text{iff} \quad \exists j \leq i. (h, j) \models \psi_1 \text{ and } \forall j'. j < j' \leq i \Rightarrow (h, j') \models \psi_0$$

Pure-Past Linear Temporal Logic

- Syntax

$$\psi ::= e \mid \diamond e \mid \psi_0 \wedge \psi_1 \mid \psi_0 \vee \psi_1 \mid \neg \psi \mid X^{-1} \psi \mid \psi_0 \mathbf{S} \psi_1$$

- Semantics: forcing \models of formulas ψ by histories $h = x_1 x_2 \cdots x_n$

$$h \models \psi \iff (h, |h|) \models \psi \quad (h \neq \epsilon)$$

$$(h, i) \models e \quad \text{iff} \quad e \in x_i$$

$$(h, i) \models \diamond e \quad \text{iff} \quad e \neq x_i$$

$$(h, i) \models \psi_0 \wedge \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ and } (h, i) \models \psi_1$$

$$(h, i) \models \psi_0 \vee \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ or } (h, i) \models \psi_1$$

$$(h, i) \models \neg \psi \quad \text{iff} \quad (h, i) \not\models \psi$$

$$(h, i) \models X^{-1} \psi \quad \text{iff} \quad i > 0 \text{ and } (h, i-1) \models \psi$$

$$(h, i) \models \psi_0 \mathbf{S} \psi_1 \quad \text{iff} \quad \exists j \leq i. (h, j) \models \psi_1 \text{ and } \forall j'. j < j' \leq i \Rightarrow (h, j') \models \psi_0$$

Pure-Past Linear Temporal Logic

- Syntax

$$\psi ::= e \mid \diamond e \mid \psi_0 \wedge \psi_1 \mid \psi_0 \vee \psi_1 \mid \neg \psi \mid X^{-1} \psi \mid \psi_0 \mathbf{S} \psi_1$$

- Semantics: forcing \models of formulas ψ by histories $h = x_1 x_2 \cdots x_n$

$$h \models \psi \iff (h, |h|) \models \psi \quad (h \neq \epsilon)$$

$$(h, i) \models e \quad \text{iff} \quad e \in x_i$$

$$(h, i) \models \diamond e \quad \text{iff} \quad e \neq x_i$$

$$(h, i) \models \psi_0 \wedge \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ and } (h, i) \models \psi_1$$

$$(h, i) \models \psi_0 \vee \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ or } (h, i) \models \psi_1$$

$$(h, i) \models \neg \psi \quad \text{iff} \quad (h, i) \not\models \psi$$

$$(h, i) \models X^{-1} \psi \quad \text{iff} \quad i > 0 \text{ and } (h, i-1) \models \psi$$

$$(h, i) \models \psi_0 \mathbf{S} \psi_1 \quad \text{iff} \quad \exists j \leq i. (h, j) \models \psi_1 \text{ and } \forall j'. j < j' \leq i \Rightarrow (h, j') \models \psi_0$$

Pure-Past Linear Temporal Logic

- Syntax

$$\psi ::= e \mid \diamond e \mid \psi_0 \wedge \psi_1 \mid \psi_0 \vee \psi_1 \mid \neg \psi \mid X^{-1} \psi \mid \psi_0 \mathbf{S} \psi_1$$

- Semantics: forcing \models of formulas ψ by histories $h = x_1 x_2 \cdots x_n$

$$h \models \psi \iff (h, |h|) \models \psi \quad (h \neq \epsilon)$$

$$(h, i) \models e \quad \text{iff} \quad e \in x_i$$

$$(h, i) \models \diamond e \quad \text{iff} \quad e \neq x_i$$

$$(h, i) \models \psi_0 \wedge \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ and } (h, i) \models \psi_1$$

$$(h, i) \models \psi_0 \vee \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ or } (h, i) \models \psi_1$$

$$(h, i) \models \neg \psi \quad \text{iff} \quad (h, i) \not\models \psi$$

$$(h, i) \models X^{-1} \psi \quad \text{iff} \quad i > 0 \text{ and } (h, i-1) \models \psi$$

$$(h, i) \models \psi_0 \mathbf{S} \psi_1 \quad \text{iff} \quad \exists j \leq i. (h, j) \models \psi_1 \text{ and } \forall j'. j < j' \leq i \Rightarrow (h, j') \models \psi_0$$

Pure-Past Linear Temporal Logic

- Syntax

$$\psi ::= e \mid \diamond e \mid \psi_0 \wedge \psi_1 \mid \psi_0 \vee \psi_1 \mid \neg \psi \mid X^{-1} \psi \mid \psi_0 \mathbf{S} \psi_1$$

- Semantics: forcing \models of formulas ψ by histories $h = x_1 x_2 \cdots x_n$

$$h \models \psi \iff (h, |h|) \models \psi \quad (h \neq \epsilon)$$

$$(h, i) \models e \quad \text{iff} \quad e \in x_i$$

$$(h, i) \models \diamond e \quad \text{iff} \quad e \neq x_i$$

$$(h, i) \models \psi_0 \wedge \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ and } (h, i) \models \psi_1$$

$$(h, i) \models \psi_0 \vee \psi_1 \quad \text{iff} \quad (h, i) \models \psi_0 \text{ or } (h, i) \models \psi_1$$

$$(h, i) \models \neg \psi \quad \text{iff} \quad (h, i) \not\models \psi$$

$$(h, i) \models X^{-1} \psi \quad \text{iff} \quad i > 0 \text{ and } (h, i-1) \models \psi$$

$$(h, i) \models \psi_0 \mathbf{S} \psi_1 \quad \text{iff} \quad \exists j \leq i. (h, j) \models \psi_1 \text{ and } \forall j'. j < j' \leq i \Rightarrow (h, j') \models \psi_0$$

A Simple Example

eBay Auction

- Policy: “only bids on auctions run by a seller that has never failed to send goods for won auctions in the past.”

$$\psi^{\text{bid}} \equiv \neg F^{-1}(\text{time-out})$$

- Furthermore, the buyer might require that “the seller has never provided negative feedback in auctions where payment was made.”

$$\psi^{\text{bid}} \equiv \neg F^{-1}(\text{time-out}) \wedge G^{-1}(\text{negative} \rightarrow \text{ignore})$$

A Simple Example

eBay Auction

- Policy: “only bids on auctions run by a seller that has never failed to send goods for won auctions in the past.”

$$\psi^{\text{bid}} \equiv \neg F^{-1}(\text{time-out})$$

- Furthermore, the buyer might require that “the seller has never provided negative feedback in auctions where payment was made.”

$$\psi^{\text{bid}} \equiv \neg F^{-1}(\text{time-out}) \wedge G^{-1}(\text{negative} \rightarrow \text{ignore})$$

An efficient algorithm for (dynamic) verification

Goal: To answer “ $h \models \psi$?”

- Identify a datastructure DMC , maintaining a history h , and supporting three methods:

- ▶ $DMC.\mathbf{new}()$ $h \mapsto h\emptyset$
- ▶ $DMC.\mathbf{update}(e, i)$ $h \mapsto h[i/(x_i \cup \{e\})]$
- ▶ $DMC.\mathbf{check}()$ $h \models \psi?$

In the following fix an enumeration of subformulas of ψ :

$$\psi_0 = \psi_1 \wedge \psi_2 = \neg F^{-1}(\text{time-out}) \wedge G^{-1}(\text{negative} \rightarrow \text{ignore})$$

$$\psi_1 = \neg \psi_3$$

$$\psi_2 = G^{-1}(\psi_4)$$

$$\psi_3 = F^{-1}(\psi_5)$$

$$\psi_4 = \psi_6 \rightarrow \psi_7$$

$$\psi_5 = \text{time-out}$$

$$\psi_6 = \text{negative}$$

$$\psi_7 = \text{ignore}$$

An efficient algorithm for (dynamic) verification

Goal: To answer “ $h \models \psi$?”

- Identify a datastructure DMC , maintaining a history h , and supporting three methods:

- ▶ $DMC.\mathbf{new}()$ $h \mapsto h\emptyset$
- ▶ $DMC.\mathbf{update}(e, i)$ $h \mapsto h[i/(x_i \cup \{e\})]$
- ▶ $DMC.\mathbf{check}()$ $h \models \psi?$

In the following fix an enumeration of subformulas of ψ :

$$\psi_0 = \psi_1 \wedge \psi_2 = \neg F^{-1}(\text{time-out}) \wedge G^{-1}(\text{negative} \rightarrow \text{ignore})$$

$$\psi_1 = \neg \psi_3$$

$$\psi_2 = G^{-1}(\psi_4)$$

$$\psi_3 = F^{-1}(\psi_5)$$

$$\psi_4 = \psi_6 \rightarrow \psi_7$$

$$\psi_5 = \text{time-out}$$

$$\psi_6 = \text{negative}$$

$$\psi_7 = \text{ignore}$$

Array-based Algorithm

Maintain

history $h = x_1 \dots x_n$, and
boolean arrays B_1, \dots, B_n .

x_k	x_{k+1}
$\begin{array}{ c c } \hline \top & \psi_0 \\ \hline \perp & \psi_1 \\ \hline \end{array}$	$\begin{array}{ c c } \hline ? & \psi_0 \\ \hline ? & \psi_1 \\ \hline \end{array}$
\vdots	\vdots
$\begin{array}{ c c } \hline \perp & \psi_i \\ \hline \end{array}$	$\begin{array}{ c c } \hline ? & \psi_i \\ \hline \top & \psi_{i+1} \\ \hline \perp & \psi_{i+2} \\ \hline \end{array}$
\vdots	\vdots

Invariant

$(h, k) \models \psi_i \iff B_k[i] = \text{true}$

Algorithm – case S

suppose $\psi_i = \psi_{i+1} \mathrel{\text{S}} \psi_{i+2}$
then we can define

$$B_{k+1}[i] = B_{k+1}[i+2] \vee (B_k[i] \wedge B_{k+1}[i+1])$$

so we can fill array B_{k+1} in linear time (in $|\psi|$) given B_k .

Array-based Algorithm

Maintain

history $h = x_1 \dots x_n$, and
boolean arrays B_1, \dots, B_n .

x_k	x_{k+1}
$\begin{array}{ c c } \hline \top & \psi_0 \\ \hline \perp & \psi_1 \\ \hline \end{array}$	$\begin{array}{ c c } \hline ? & \psi_0 \\ \hline ? & \psi_1 \\ \hline \end{array}$
\vdots	\vdots
$\begin{array}{ c c } \hline \perp & \psi_i \\ \hline \end{array}$	$\begin{array}{ c c } \hline ? & \psi_i \\ \hline \top & \psi_{i+1} \\ \hline \perp & \psi_{i+2} \\ \hline \end{array}$
\vdots	\vdots

Invariant

$(h, k) \models \psi_i \iff B_k[i] = \text{true}$

Algorithm – case S

suppose $\psi_i = \psi_{i+1} \text{ S } \psi_{i+2}$
then we can define

$$B_{k+1}[i] = B_{k+1}[i+2] \vee (B_k[i] \wedge B_{k+1}[i+1])$$

so we can fill array B_{k+1} in linear time (in ψ) given B_k .

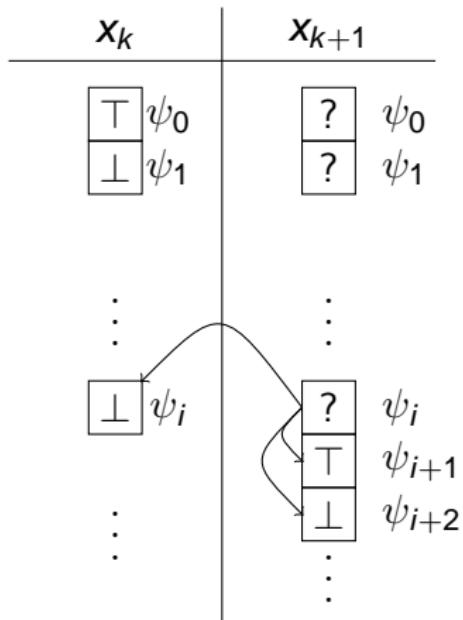
Array-based Algorithm

Maintain

history $h = x_1 \dots x_n$, and
boolean arrays B_1, \dots, B_n .

Invariant

$(h, k) \models \psi_i \iff B_k[i] = \text{true}$



Algorithm – case S

suppose $\psi_i = \psi_{i+1} \text{ S } \psi_{i+2}$
then we can define

$$B_{k+1}[i] = B_{k+1}[i+2] \vee (B_k[i] \wedge B_{k+1}[i+1])$$

so we can fill array B_{k+1} in linear time (in $|\psi|$) given B_k .

Array-based Algorithm

Maintain

history $h = x_1 \dots x_n$, and
boolean arrays B_1, \dots, B_n .

x_k	x_{k+1}
$\begin{array}{ c c } \hline \top & \psi_0 \\ \hline \perp & \psi_1 \\ \hline \end{array}$	$\begin{array}{ c c } \hline ? & \psi_0 \\ \hline ? & \psi_1 \\ \hline \end{array}$
\vdots	\vdots
$\begin{array}{ c c } \hline \perp & \psi_i \\ \hline \end{array}$	$\begin{array}{ c c } \hline \perp & \psi_i \\ \hline \top & \psi_{i+1} \\ \hline \perp & \psi_{i+2} \\ \hline \end{array}$
\vdots	\vdots

Invariant

$$(h, k) \models \psi_i \iff B_k[i] = \text{true}$$

Algorithm – case S

suppose $\psi_i = \psi_{i+1} \text{ S } \psi_{i+2}$
then we can define

$$\begin{aligned} B_{k+1}[i] &= B_{k+1}[i+2] \vee \\ &(B_k[i] \wedge B_{k+1}[i+1]) \end{aligned}$$

so we can fill array B_{k+1} in linear time (in $|\psi|$) given B_k .

Complexity results

Theorem

DMC.init() $O(|\psi|)$

DMC.new() $O(|\psi|)$

DMC.update(e, i) $O((K - i + 1) \cdot |\psi|)$

DMC.check() $O(1)$

An automata-based algorithm

Consider $x_1 x_2 \cdots x_n \models \psi$? as an acceptance problem for an automata reading symbols from \mathcal{C}_{ES} .

Theorem

Language $L_\psi = \{h \in \mathcal{C}_{ES}^* \mid h \models \psi\}$ is regular. Can identify an automata to recognise the “good” histories.

Transition $s \xrightarrow{x_i} s'$ depends only on current state s and configuration x_i .

Complexity: In fact, this amounts to precompute the transitions, and save a factor $|\psi|$ at runtime at the price of a cost at startup time.

$DMC.init()$	$O(2^{ \psi } \cdot \mathcal{C}_{ES} \cdot \psi)$
$DMC.new()$	$O(1)$
$DMC.update(e, i)$	$O(K - i + 1)$
$DMC.check()$	$O(1)$

An automata-based algorithm

Consider $x_1 x_2 \cdots x_n \models \psi$? as an acceptance problem for an automata reading symbols from \mathcal{C}_{ES} .

Theorem

Language $L_\psi = \{h \in \mathcal{C}_{ES}^* \mid h \models \psi\}$ is regular. Can identify an automata to recognise the “good” histories.

Transition $s \xrightarrow{x_i} s'$ depends only on current state s and configuration x_i .

Complexity: In fact, this amounts to precompute the transitions, and save a factor $|\psi|$ at runtime at the price of a cost at startup time.

<i>DMC.init()</i>	$O(2^{ \psi } \cdot \mathcal{C}_{ES} \cdot \psi)$
<i>DMC.new()</i>	$O(1)$
<i>DMC.update</i> (e, i)	$O(K - i + 1)$
<i>DMC.check()</i>	$O(1)$

An automata-based algorithm

Consider $x_1 x_2 \cdots x_n \models \psi$? as an acceptance problem for an automata reading symbols from \mathcal{C}_{ES} .

Theorem

Language $L_\psi = \{h \in \mathcal{C}_{ES}^* \mid h \models \psi\}$ is regular. Can identify an automata to recognise the “good” histories.

Transition $s \xrightarrow{x_i} s'$ depends only on current state s and configuration x_i .

Complexity: In fact, this amounts to precompute the transitions, and save a factor $|\psi|$ at runtime at the price of a cost at startup time.

$DMC.init()$	$O(2^{ \psi } \cdot \mathcal{C}_{ES} \cdot \psi)$
$DMC.new()$	$O(1)$
$DMC.update(e, i)$	$O(K - i + 1)$
$DMC.check()$	$O(1)$

Outline

1 Modelling behavioural information

- Event Structures as a general model

2 A Simple Policy Language

- Examples
- History Verification

3 Extended Policy Languages

- Parameters and Quantification
- Verifying Quantified Policies
- References and Quantitative Properties

Parameters and Quantification

Recall example property:

“... [never] open a local file that it has not created ...”

Want for any file f :

“if $\text{open}(f)$ then $\text{F}^{-1}\text{create}(f)$ ”

Need a notion of *parametrised* event structure.

- events e occur with parameters p from (infinite) parameter sets P
- otherwise as usual event structures

Specify property as

$$\text{G}^{-1} \left(\forall x. \left[\text{open}(x) \rightarrow \text{F}^{-1}(\text{create}(x)) \right] \right)$$

Extended Policy Language

$$\psi ::= \dots e(v) \mid \diamond e(v) \mid \dots \mid Qx : P.\psi$$

v is a variable or a parameter, P is a parameter set, Q is \forall or \exists .

- Histories h are now sequences of configurations from parameterised event-structures.
- A configuration x_i is a partial map events \rightarrow parameters.

Semantics is relative to an environment σ :

$$(h, i) \models^\sigma e(v) \quad \text{iff} \quad e \in \text{dom}(x_i) \text{ and } x_i(e) = \sigma(v)$$

⋮

$$(h, i) \models^\sigma \forall x : P_j. \psi \quad \text{iff} \quad \text{for all } p \in P_j. (h, i) \models^{((x \mapsto p)/\sigma)} \psi$$

$$(h, i) \models^\sigma \exists x : P_j. \psi \quad \text{iff} \quad \text{there exists } p \in P_j. (h, i) \models^{((x \mapsto p)/\sigma)} \psi$$

Extended Policy Language

$$\psi ::= \dots e(v) \mid \diamond e(v) \mid \dots \mid Qx : P.\psi$$

v is a variable or a parameter, P is a parameter set, Q is \forall or \exists .

- Histories h are now sequences of configurations from parameterised event-structures.
- A configuration x_i is a partial map events \rightarrow parameters.

Semantics is relative to an environment σ :

$$\begin{aligned}(h, i) \models^\sigma e(v) &\quad \text{iff } e \in \text{dom}(x_i) \text{ and } x_i(e) = \sigma(v) \\ &\quad \vdots \\ (h, i) \models^\sigma \forall x : P_j. \psi &\quad \text{iff } \text{for all } p \in P_j. (h, i) \models^{((x \mapsto p)/\sigma)} \psi \\ (h, i) \models^\sigma \exists x : P_j. \psi &\quad \text{iff } \text{there exists } p \in P_j. (h, i) \models^{((x \mapsto p)/\sigma)} \psi\end{aligned}$$

Verifying Quantified Policies

Given history h and quantified policy ψ , does $h \models \psi$?

We can generalise boolean array algorithm by:

- Eliminating quantifiers by (careful) instantiation of variables
- Binding variables to parameters via a constraints language

Constraints:

$$c ::= \perp \mid x = p \mid c \wedge c \mid c \vee c \mid \neg c \quad (x \in \text{Var}, p \in \text{Par})$$

We map (h, k, ψ) into a constraint $[\![\psi]\!]_h^k$; e.g.,

$$[\![e(v)]!]_h^k = \begin{cases} x = p & \text{if } v = x \text{ and } h_k(e) = p; \\ \top & \text{if } v = p \text{ and } h_k(e) = p; \\ \perp & \text{if otherwise} \end{cases}$$

$[\![\exists x : P. \psi]\!]_h^k$ is obtained by a conjunction/disjunction of constraints over all possible instantiations of x : there are only finitely many!

Verifying Quantified Policies

Given history h and quantified policy ψ , does $h \models \psi$?

We can generalise boolean array algorithm by:

- Eliminating quantifiers by (careful) instantiation of variables
- Binding variables to parameters via a constraints language

Constraints:

$$c ::= \perp \mid x = p \mid c \wedge c \mid c \vee c \mid \neg c \quad (x \in \text{Var}, p \in \text{Par})$$

We map (h, k, ψ) into a constraint $[\![\psi]\!]_h^k$; e.g.,

$$[\![e(v)]!]_h^k = \begin{cases} x = p & \text{if } v = x \text{ and } h_k(e) = p; \\ \top & \text{if } v = p \text{ and } h_k(e) = p; \\ \perp & \text{if otherwise} \end{cases}$$

$[\![\exists x : P. \psi]\!]_h^k$ is obtained by a conjunction/disjunction of constraints over all possible instantiations of x : there are only finitely many!

Verifying Quantified Policies

Given history h and quantified policy ψ , does $h \models \psi$?

We can generalise boolean array algorithm by:

- Eliminating quantifiers by (careful) instantiation of variables
- Binding variables to parameters via a constraints language

Constraints:

$$c ::= \perp \mid x = p \mid c \wedge c \mid c \vee c \mid \neg c \quad (x \in \text{Var}, p \in \text{Par})$$

We map (h, k, ψ) into a constraint $[\![\psi]\!]_h^k$; e.g.,

$$[\![e(v)]!]_h^k = \begin{cases} x = p & \text{if } v = x \text{ and } h_k(e) = p; \\ \top & \text{if } v = p \text{ and } h_k(e) = p; \\ \perp & \text{if otherwise} \end{cases}$$

$[\![\exists x : P. \psi]\!]_h^k$ is obtained by a conjunction/disjunction of constraints over all possible instantiations of x : there are only finitely many!

Constraint-Array Algorithm

Maintain

history $h = x_1 \cdots x_n$, and
boolean arrays B_1, \dots, B_n .

Invariant

$(h, k) \models \psi_i \iff B_k[i] = \text{true}$

x_k	x_{k+1}
$\llbracket \psi_0 \rrbracket_h^k$	$\boxed{C_0}$
$\llbracket \psi_1 \rrbracket_h^k$	$\boxed{C_1}$
:	:
$\llbracket \psi_i \rrbracket_h^k$	$\boxed{C_i}$
:	:

Algorithm – case S

suppose $\psi_i = \psi_{i+1} \wedge \psi_{i+2}$
then we can define

$$\begin{aligned} C_{k+1}[i] &= C_{k+1}[i+2] \vee \\ &(C_k[i] \wedge C_{k+1}[i+1]) \end{aligned}$$

so we can fill array C_{k+1} in linear time (in $|\psi|$) given C_k .

Constraint-Array Algorithm

Maintain

history $h = x_1 \cdots x_n$, and
constraint arrays C_1, \dots, C_n

Invariant

$$\forall \sigma. (h, k) \models^\sigma \psi_i \iff \sigma \models C_k[i]$$

x_k	x_{k+1}
$\llbracket \psi_0 \rrbracket_h^k$	$\llbracket \psi_0 \rrbracket_h^{k+1}$
$\llbracket \psi_1 \rrbracket_h^k$	$\llbracket \psi_1 \rrbracket_h^{k+1}$
:	:
$\llbracket \psi_i \rrbracket_h^k$	$\llbracket \psi_i \rrbracket_h^{k+1}$
c_i	c'
:	:
	$\llbracket \psi_{i+1} \rrbracket_h^{k+1}$
	$\llbracket \psi_{i+2} \rrbracket_h^{k+1}$
	:
	:

Algorithm – case S

suppose $\psi_i = \psi_{i+1} \wedge \psi_{i+2}$
then we can define

$$\begin{aligned} C_{k+1}[i] &= C_{k+1}[i+2] \vee \\ &(C_k[i] \wedge C_{k+1}[i+1]) \end{aligned}$$

so we can fill array C_{k+1} in linear time (in $|\psi|$) given C_k .

Constraint-Array Algorithm

Maintain

history $h = x_1 \cdots x_n$, and
constraint arrays C_1, \dots, C_n

Invariant

$$\forall \sigma. (h, k) \models^\sigma \psi_i \iff \sigma \models C_k[i]$$

x_k	x_{k+1}
$\llbracket \psi_0 \rrbracket_h^k$	$\boxed{c_0}$
$\llbracket \psi_1 \rrbracket_h^k$	$\boxed{c_1}$
:	:
$\llbracket \psi_i \rrbracket_h^k$	$\boxed{c_i}$
:	:

Algorithm – case S

suppose $\psi_i = \psi_{i+1} \wedge \psi_{i+2}$
then we can define

$$C_{k+1}[i] = C_{k+1}[i+2] \vee (C_k[i] \wedge C_{k+1}[i+1])$$

so we can fill array C_{k+1} in linear time (in $|\psi|$) given C_k .

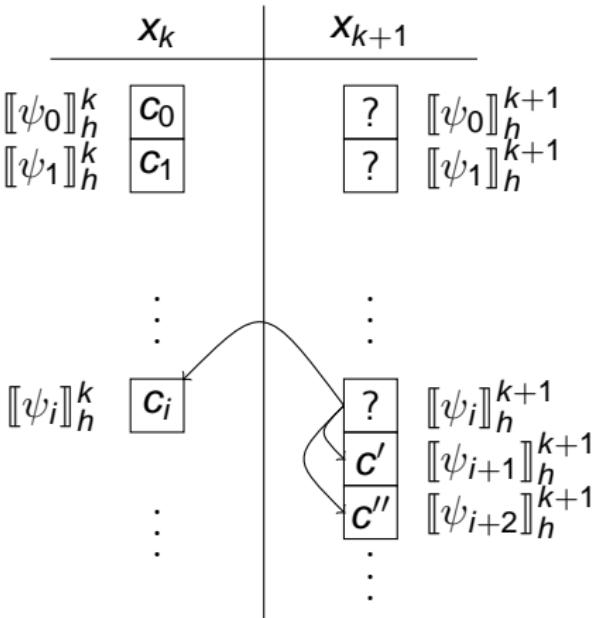
Constraint-Array Algorithm

Maintain

history $h = x_1 \cdots x_n$, and
constraint arrays C_1, \dots, C_n

Invariant

$$\forall \sigma. (h, k) \models^\sigma \psi_i \iff \sigma \models C_k[i]$$



Algorithm – case S

suppose $\psi_i = \psi_{i+1} \wedge \psi_{i+2}$
then we can define

$$\begin{aligned} C_{k+1}[i] &= C_{k+1}[i+2] \vee \\ &(C_k[i] \wedge C_{k+1}[i+1]) \end{aligned}$$

so we can fill array C_{k+1} in linear time (in $|\psi|$) given C_k .

Constraint-Array Algorithm

Maintain

history $h = x_1 \cdots x_n$, and
constraint arrays C_1, \dots, C_n

Invariant

$$\forall \sigma. (h, k) \models^\sigma \psi_i \iff \sigma \models C_k[i]$$

x_k	x_{k+1}
$\llbracket \psi_0 \rrbracket_h^k$	$\boxed{c_0}$
$\llbracket \psi_1 \rrbracket_h^k$	$\boxed{c_1}$
:	:
$\llbracket \psi_i \rrbracket_h^k$	$\boxed{c_i}$
:	:

Algorithm – case S

suppose $\psi_i = \psi_{i+1} \wedge \psi_{i+2}$
then we can define

$$C_{k+1}[i] = C_{k+1}[i+2] \vee (C_k[i] \wedge C_{k+1}[i+1])$$

so we can fill array C_{k+1} in linear time (in $|\psi|$) given C_k .

Complexity results

Theorem

Model checking of quantified policies is decidable.

Caveat: deciding $h \models \psi$ for a closed ψ even in small models is PSPACE complete.

- Proof: reduction from quantified boolean logic)

Theorem

$DMC.init()$	$O(\psi)$
$DMC.new()$	$O(\psi \cdot (P_h + 1)^n)$
$DMC.update(e, p, i)$	$O((K - i + 1) \cdot \psi \cdot (P_h + 2)^n)$
$DMC.check()$	$O(1)$

(n number of quantifiers)

Complexity results

Theorem

Model checking of quantified policies is decidable.

Caveat: deciding $h \models \psi$ for a closed ψ even in small models is PSPACE complete.

- *Proof: reduction from quantified boolean logic)*

Theorem

<i>DMC.init()</i>	$O(\psi)$
<i>DMC.new()</i>	$O(\psi \cdot (P_h + 1)^n)$
<i>DMC.update</i> (e, p, i)	$O((K - i + 1) \cdot \psi \cdot (P_h + 2)^n)$
<i>DMC.check()</i>	$O(1)$ (n number of quantifiers)

Complexity results

Theorem

Model checking of quantified policies is decidable.

Caveat: deciding $h \models \psi$ for a closed ψ even in small models is PSPACE complete.

- *Proof: reduction from quantified boolean logic)*

Theorem

DMC.init() $O(|\psi|)$

DMC.new() $O(|\psi| \cdot (|P_h| + 1)^n)$

DMC.update(e, p, i) $O((K - i + 1) \cdot |\psi| \cdot (|P_h| + 2)^n)$

DMC.check() $O(1)$

(n number of quantifiers)

References

Add references to other principal's observations.

$$\pi ::= p : \psi \mid \pi_0 \wedge \pi_1 \mid \neg \pi \quad p \in \text{Prin}$$

Policy $p : \psi$ expresses that p 's observations satisfy ψ .

eBay revisited: Requirement by p – “*seller has never provided negative feedback in auctions where I made payment, and has never cheated me or any of my friends.*”

$$\begin{aligned}\pi_p^{\text{bid}} \equiv \quad p : \mathbf{G}^{-1}(\text{negative} \rightarrow \text{ignore}) \quad \wedge \\ \quad \wedge_{q \in \{p, p_1, \dots, p_n\}} q : \neg \mathbf{F}^{-1}(\text{time-out})\end{aligned}$$

References

Add references to other principal's observations.

$$\pi ::= p : \psi \mid \pi_0 \wedge \pi_1 \mid \neg \pi \quad p \in \text{Prin}$$

Policy $p : \psi$ expresses that p 's observations satisfy ψ .

eBay revisited: Requirement by p – “*seller has never provided negative feedback in auctions where I made payment, and has never cheated me or any of my friends.*”

$$\begin{aligned}\pi_p^{\text{bid}} \equiv \quad p : G^{-1}(\text{negative} \rightarrow \text{ignore}) \quad \wedge \\ \wedge_{q \in \{p, p_1, \dots, p_n\}} q : \neg F^{-1}(\text{time-out})\end{aligned}$$

Quantitative Properties

Add event counting to the language.

$$\psi ::= \dots \mid \mathcal{R}(\overline{\#}\psi_1, \overline{\#}\psi_2, \dots, \overline{\#}\psi_k)$$

$\overline{\#}\psi$ denotes the number of times ψ has been true in the current sessions, \mathcal{R} is a computable predicate on integers.

P2P File-sharing: We express a policy used by server p for granting download, “*the number of uploads should be at least a third of the number of downloads.*”

$$\pi_p^{\text{client-dl}} \equiv p : (\overline{\#}\text{dl} \leq 3 \cdot \overline{\#}\text{ul})$$

“Frequency” policy: We express that “*statistically, event $ev \in E$ occurs with frequency at least 75%.*”

$$\pi_p^{\text{probab}} \equiv p : \frac{\overline{\#}\text{ev}}{\overline{\#}\text{ev} + \overline{\#}(\neg\text{ev} \wedge \neg\Diamond\text{ev}) + 1} \geq 3/4$$

Quantitative Properties

Add event counting to the language.

$$\psi ::= \dots \mid \mathcal{R}(\overline{\#}\psi_1, \overline{\#}\psi_2, \dots, \overline{\#}\psi_k)$$

$\overline{\#}\psi$ denotes the number of times ψ has been true in the current sessions, \mathcal{R} is a computable predicate on integers.

P2P File-sharing: We express a policy used by server p for granting download, “*the number of uploads should be at least a third of the number of downloads.*”

$$\pi_p^{\text{client-dl}} \equiv p : (\overline{\#}\text{dl} \leq 3 \cdot \overline{\#}\text{ul})$$

“Frequency” policy: We express that “*statistically, event $ev \in E$ occurs with frequency at least 75%.*”

$$\pi_p^{\text{probab}} \equiv p : \frac{\overline{\#}\text{ev}}{\overline{\#}\text{ev} + \overline{\#}(\neg\text{ev} \wedge \neg\Diamond\text{ev}) + 1} \geq 3/4$$

Quantitative Properties

Add event counting to the language.

$$\psi ::= \dots \mid \mathcal{R}(\#\psi_1, \#\psi_2, \dots, \#\psi_k)$$

$\#\psi$ denotes the number of times ψ has been true in the current sessions, \mathcal{R} is a computable predicate on integers.

P2P File-sharing: We express a policy used by server p for granting download, “*the number of uploads should be at least a third of the number of downloads.*”

$$\pi_p^{\text{client-dl}} \equiv p : (\#\text{dl} \leq 3 \cdot \#\text{ul})$$

“Frequency” policy: We express that “*statistically, event $ev \in E$ occurs with frequency at least 75%.*”

$$\pi_p^{\text{probab}} \equiv p : \frac{\#\text{ev}}{\#\text{ev} + \#(\neg\text{ev} \wedge \neg\Diamond\text{ev}) + 1} \geq 3/4$$

Summary

- A framework for “reputation systems” and a notion of “security” for such systems.
 - ▶ applications to history-based access control.
- Basic Policies can be **specified declaratively** and **verified efficiently**.
- Quantified policies are expressive, and quantified model checking is **decidable** (though hard with many quantifiers).
- Future Work?
 - ▶ Tighten bounds on quantified algorithm