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Spatial v Separation Logics

Spatial and Separation Logics are relatives but not twins.

@ Spatial logics: Separation in space

([ QP | 5] 50L.Q]

@ Separation logies: Separation of resources

([ a.nil| b.nil]
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Spatial v Separation Logics

Spatial and Separation Logics are relatives but not twins.

@ Spatial logics: Separation in space

([ QP | 5] 50L.Q]

@ Separation logies: Separation of resources

([ a.nil| b.nil]

@ Why not together?

A logic to support:
» Multiple kinds of separation;
» Multiple distribution models.
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A Unifying Logical Framework?

We need:
@ An expressive framework —

PCq(ine @ T) & PCp(oute @ T)
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A Unifying Logical Framework?

We need:
@ An expressive framework —

PCq(ine @ T) & PCp(oute @ T)

@ A metalogical framework —

Language Independent

One general framework to capture
mulfiple calculi and models.
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Bigraphs: A Universal Model
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Figure: A bigraph G : (2,{x,y,z,v,w}) — (1,{x, y}).
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The Bigraph (®, o)-Algebra
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Figure: Bigraphical composition, H= G o (F; @ F,).
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A tensor-and-composition logic

@ Two structural connectives: Horizontal @ and Vvertical o,

@ Intuition: ® separated parallel composition, no sharing. o
‘contextual’” composition, with sharing.

@ (M, ®,¢) a partial monoid of ‘resources.’
Tensor defined only if resources are ‘disjoint.’
Elements of discourse G : | — J, with @ liffed and o as obvious.
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A tensor-and-composition logic

@ Two structural connectives: Horizontal @ and Vvertical o,

@ Intuition: ® separated parallel composition, no sharing. o
‘contextual’” composition, with sharing.
@ (M, ®,¢) a partial monoid of ‘resources.’

Tensor defined only if resources are ‘disjoint.’
Elements of discourse G : | — J, with @ lifted and o as obvious.

BiLog(M, ®,¢,0, =, 7)

Q .= fransparent constructors in © (ignore the opagque ones)

A B:=F false A= B implication
id identity Q constants (fransparent)
A® B tensor product Ao B composition

Ao-B left comp. adjunct A —B right comp. adjunct
A ®&-B left prod. adjunct A ®B right prod. adjunct
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The Forcing Relation

GEF never
GEQ XG=Q
GEid € G =id,

CEA=BXGCE Aimplies G| B

CEA®B ¥G=G®G, and G =Aand G, = B
GlEAoB ©G=G 06, and(G)and G, =Aand G, = B

Gl AoB ©VYG.G A (G)and (G o G)| implies G o G =B
Gl A—-B¥(G),VG.C £ Aand (Go G| imples Go G = B

CEA®RBEVE.G'EAand (G ® G)| implies G @ G =B
CEA®BEVG.G' EAand (G ® &) implies G® G =B
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The Forcing Relatfion

GEF never
GEQ XG=Q
GEid *' G =id,

CEA=BXGCE Aimplies G B

GCEA®RB =G, G, and G EAand G, =B
GCEAoB #G=GoG,andr(G)and G; =Aand G, =B

Gl AoB ©VYG.G A (G)and (G o G)| implies G o G =B
GlEA—-B®(G),YE.G =Aand (Go &)| implies Go G = B

and (G ® G)| implies
and (G ® G&')| implies
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The Forcing Relatfion

GEF never
GEQ X C=Q
GEid *' G =id,
CEA=BXGCE Aimplies G B

GCEA®RB =G, G, and G EAand G, =B
GCEAoB #G=GoG,andr(G)and G; =Aand G, =B

GEAo-B £VG.G | A (G)and (G o G)| implies G o G |= B
GEA—-B®(G),YG.G =Aand (Go &) implies Go G = B

CEA®BEVG.G = Aand (G ® G)| implies & ® G = B
GEA-®BEVGE.G =Aand (G &) imples G® G | B
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Some Useful Derived Operators

T, A, V., &, <, = as usual for classical logics
Al ® Aoid,
AL, Zid;oA
Ay E(A)-y
Ao B ® Aocid o B
AO—JB d__efA_}J O—B
A— BXA —B

ASB % (-A® -B)
AeB % —~(~Ao -B)

AR TR AT
AT ToAoT

DA & AFe3
BA @ -0-A
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How new is all this?

Not very much, I'm afraid. ..

The news is that this is simply the (infernal language of) a

@ Let C be the free partial monoidal category generated by

and in
@ Let Grange over the of Candlet = be in
Then:

If all constants are transparent, then

forall G, &',
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How new is all this?

Not very much, I'm afraid. ..

The news is that this is simply the (internal language of) a free (partial)
monoidal category.

@ Let C be the free partial monoidal category generated by (M, ®, ¢)
andQ:/— Jin©.

@ Let Grange over the arrows of C and let = be equality in C.
Then:

Theorem
If all constants are fransparent, then

G =& ifandonlyif G=&,
forall G, G'.
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BiLog as a Logic for Bigraphs

This amounts to instantiate the parameters
M, ®, € © = T
appropriately.
As bigraphs consist of fwo superimposed graph structures, the place
graphs and the link graphs, it is convenient to describe BiLog by

superimposing two logics:

The Place Graph Logic (PGL) and the Link Graph Logic (LGL)
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Place Graph Logic

@ Place graphs are ordered lists of labelled trees with holes. The
labels of the frees correspond to conftrols K belonging to the fixed
signature K.

@ Monoid (N, +,0): interfaces here represent the number of holes
and regions of place graphs.

@ O contains:

1:0—1, idy:n—n, join:2—1,
Ymn:M+nNn—n+m, K:1—1forKek.

@ = is augmented with the usual axioms for symmetry of v, , and
commutativity of joino (- ® _) .

Fixed the transparency predicate 7, PGL(KC, ) is

BiLog(N, +,0,=, KU {1, join, ymn}, 7).

V. Sassone (Soton) BiLog Separation Logics Forum 11/23



Encoding STL into PGL

BiLog restricted to prime ground place graphs (and the always-true
tfransparency predicate) is equivalent to the propositional spatial tree
logic (STL).

r.= 0 | CI[T] | T | To.

A= 0 | oAl | A|B | Aea | A»B.

Trees into Prime Ground Place Graphs
[O1=1 [allll=K(@)o[T] [h|R]=joine([h]e[]])

STL formulae into PGL formulae

[0] =1 [alAl] ='K(a) o1 [A]
[F]<F [Aea] £ K(a)o—[A]
[A=Bl=[A]l=[8] [AIBI=[A]I[8]

[A>B] = ([A] [idy) o—1[B]
where A | B¥'join o (A_; ® B_,y) is the parallel composition

Separation Logics Forum 12/23



Encoding STL intfo PGL (ctd)

Theorem

For all tfrees T and formulae A of STL we have that
Tesn A

ifandonlyif [T]E [A].

=] 5 = E = vawr
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Link Graph Logic

@ Link graphs are simply directed graphs where nodes (aka ports)
are connected by named links.

@ Monoid (P(A), ¥, 0), for A a set of names and ¥ is the union on
disjoint pairs of sets and undefined otherwise.

@ O contains ions and wirings, to map inner name to outer names.

/a:{a} —0 U {a} = X Ks:0—a

a --- ay
a N\ \
a X1 oeee Xk ;: K
closure /a substitution “/x discrete ion Kz

Important special cases for substitutions:
a® %, a—=b¥ %y as=b¥ %Ygp.
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Link Graph Logic (ctd)

Fixed the transparency predicate 7, LGL(KC, 7) is

BiLog(P(N),,0,=, K U {/a, Yy}, 7).
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Resource Sharing in LGL
Fixed G and &, let b be fresh names (as many as 4d).

C& G *[G=bBlo(([b—dlo6) e &)
At the level of formulae, we need a
style of Nominal Logic

using which we can define

in the
names in order to explore names linked o a:

Finally, we can define

for fresh

connective.
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CHG ®[G=blo(([b—dloBG)e )

At the level of formulae, we need a fresh name quantification in the
style of Nominal Logic

G WX A% 3G ¢ f(G)UM(A). G = A{X — &}

using which we can define a-linked name quantification for fresh
names in order to explore names linked to a:

GLX. A= VX (6 = %) @ id) o A.

Finally, we can define separation-upto connective.
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Encoding SGL into LGL

LGL can be seen as a contextual (and multi-edge) version of Spatial
Graph Logic (SGL).

Gu= nil | axy) | GG | (w)G.
o= nil [ alxy) | F | ¢é=v | ¢|v

Spatial Graphs into two-ported Ground Link Graphs
[nillx = X [atx, ) Ix Z K(A)xy @ X\ {X,y}
[61 I =[Gl & [ETx  [W)CLx = ((/x @ idxp) o [G1x) @ X
SGL formulae into LGL formulae

[nil]x = X [o(x ¥)Ix ZK(A)xy © X\ {X, ¥}
[Flx=F [¢=¢Ix=Tolx = [vIx

X
[o[vIxE[elx @ [¥]x



Encoding SGL info LGL (ctd)

Theorem

For all graphs G and formulae ¢ of the propositional fragment of SGL,
we have that

G lseL ¢ ifandonlyif [Glx = [¢]lx-

V. Sassone (Soton) BiLog Separation Logics Forum 18/23




Bigraph Logic, finally

@ The product monoid (N x P(A), ®, ¢) where
(m,X) @ (n,X) € (m+n,XyY)and e = (0,0).

@ O is the union of place and link graph constructors, but the controls
are replaced by the new discrete ion constructor Kz : 1 — <1, a>,-
this is a prime bigraph containing a single node with ports named
d and an hole inside.

@ = for link graphs is refined with obvious axioms for links, modelling
a-conversion and extrusion of closed names.
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Bigraph Logic, finally

@ The product monoid (N x P(A), ®, ¢) where
(m,X) @ (n,X) € (m+n,XyY)and e = (0,0).

@ O is the union of place and link graph constructors, but the controls
are replaced by the new discrete ion constructor Kz : 1 — <1, a>,-
this is a prime bigraph containing a single node with ports named
d and an hole inside.

@ = for link graphs is refined with obvious axioms for links, modelling
a-conversion and extrusion of closed names.

Theorem

There exists an enconding of the Context Tree Logic into BGL which
extends the encoding of STL info PGL.
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Deriving a 'next-step’” modality?

@ In process algebras the dynamics is often presented by reaction
(or rewriting) rules of the form r —> r’. The same happens with
bigraphical reactive systems:

actq[]y | coacta[lo —> []1 | []2

No reaction can occur inside the controls act and coact, as they
are passive. In general, we have an activeness predicate § on
contexts.

@ A ground bigraph g reduces to ¢’ if thereis (R, R’) € S, a set of
names Y, a bigraph D with ¢(D) true, and a ground bigraph d,
such that:

g=Do(R®idy)od and ¢ =Do (R ®@idy)od.

@ The next step modality
gECA iff g—gd and g E A
can then in some circumstances be expressed in BILOg.
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Modelling a small CCS

Let’s assume there is only a finite set of actions X. The following
encoding yields bigraphs with the outer faces (1, X).

[o] = X
[a.P] *  (acty® idy)o [P];
[a.P] = (coacty® idy) o [P];
[Pl <« /'Oi”O([[P]]é[[@]])-
We have P—> P ifand only if [P]—>[P'].
The logie Lgpat:
AB:= 0 | AAB | A[B | -A | AsB | JA
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Modelling a small CCS

Let’s assume there is only a finite set of actions X. The following
encoding yields bigraphs with the outer faces (1, X).
o = X
[a.P] *  (acty® idy)o [P];
[a.P] = (coacty® idy) o [P];
[Pl@] = joino(IP1&[Q]).
We have P—> P ifand only if [P]—>[P'].
The logie Lgpat:
AB:= 0 | AAB | A|B | -A | AsB | 0A

Theorem

Lspat €aN be encoded info BiLog(M, ®,€,©,=, 1) where © is standard,
with K = {act, coact}, and 7 is always frue.
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The Encoding of Lspqr infO Bilog

Rules (Rg, R5) = (a.[li | a.[l2, [1 | []2). for every a € X.
[O] X
[-AL=~[A]
[AAB] = TATATLBI

[A|B]=[A] & [8]
[AsB] = WNX . (X — X) @ id) o [A]) —®
(joino (X = X’) ® idy) o—[ B])
[0AT 2 \/ Rao [(Ryo—[AD) A (Thxy @ T)]

aeX
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The Encoding of Lspqr info Bilog

Rules (Rg, R5) = (a.[li | a.[l2, [1 | []2). for every a € X.
[0] & X

[-A] & -[A]

[AAB] = TATATLBI

[A|B]=[A] & [8]

[AsB] £ UNX". (X' — X) @ id) o [A].) —®

(join o (X = X') ® idy) o—[ B])

[0A] 2 \/ Ra o [(Ryo—[AD) A (Tax @ T)]

aeX

Theorem
For every CCS process P,

Plegat A ifandonlyif [P] = [A]
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Further work

A metalogical framework for static and dynamic resources, controlling
sharing and separation.

@ Place Graph Logic, Link Graph Logic, BiGraph Logic
@ Spatial Tree Logic, Spatial Graph Logic, Context Tree Logic
@ XML and Web Services

To be done:
@ The role of transparency.

@ Proof theory (not obvious how a completeness result can be
obtained).

@ Model checking for significant fragments (within the boundaries
fixed by existing undecidability results).

@ Monadic second order quantification for dynamics.

OA © IX(ActAX)o(Ro[(XoR)o-A])
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