
BiLog
A Framework for Structural Logics

Vladimiro Sassone

University of Southampton, UK

Forum on Separation Logics
Cambridge 13–14.03.06

with G. Conforti and D. Macedonio

V. Sassone (Soton) BiLog Separation Logics Forum 1 / 23

Spatial v Separation Logics

Spatial and Separation Logics are relatives but not twins.

Spatial logics: Separation in space

`1[a@`.P] | `2[ā@`.Q]

Separation logics: Separation of resources

`[a.nil | b.nil]

Why not together?

A logic to support:
I Multiple kinds of separation;
I Multiple distribution models.

V. Sassone (Soton) BiLog Separation Logics Forum 2 / 23

Spatial v Separation Logics

Spatial and Separation Logics are relatives but not twins.

Spatial logics: Separation in space

`1[a@`.P] | `2[ā@`.Q]

Separation logics: Separation of resources

`[a.nil | b.nil]

Why not together?

A logic to support:
I Multiple kinds of separation;
I Multiple distribution models.

V. Sassone (Soton) BiLog Separation Logics Forum 2 / 23

A Unifying Logical Framework?

We need:

An expressive framework –

E.G.

PCa(inc ⊗ T)
c
⊗ PCb(outc ⊗ T)

A metalogical framework –

Language Independent

One general framework to capture
multiple calculi and models.

V. Sassone (Soton) BiLog Separation Logics Forum 3 / 23

A Unifying Logical Framework?

We need:

An expressive framework –

E.G.

PCa(inc ⊗ T)
c
⊗ PCb(outc ⊗ T)

A metalogical framework –

Language Independent

One general framework to capture
multiple calculi and models.

V. Sassone (Soton) BiLog Separation Logics Forum 3 / 23

Bigraphs: A Universal Model

PC

R1
R2

1

2

U

PC

1
wzyx

2

x y

v

G

Figure: A bigraph G : 〈2, {x , y , z, v , w}〉 → 〈1, {x , y}〉.

V. Sassone (Soton) BiLog Separation Logics Forum 4 / 23

The Bigraph (⊗, ◦)-Algebra

PC

R1 R2
1

2

U

PC

1
wzyx

2

x y

v

G

PC

R1

R2

U

PC

1

x y
H

U
U

PC

x y z v w

U
U

PC

1 2

F1 F2

Figure: Bigraphical composition, H ≡ G ◦ (F1 ⊗ F2).

V. Sassone (Soton) BiLog Separation Logics Forum 5 / 23

A tensor-and-composition logic

Two structural connectives: Horizontal ⊗ and Vertical ◦.
Intuition: ⊗ separated parallel composition, no sharing. ◦
‘contextual’ composition, with sharing.
(M,⊗, ε) a partial monoid of ‘resources.’
Tensor defined only if resources are ‘disjoint.’
Elements of discourse G : I → J, with ⊗ lifted and ◦ as obvious.

BiLog(M,⊗, ε, Θ,≡, τ)

Ω ::= transparent constructors in Θ (ignore the opaque ones)

A,B ::= F false A⇒ B implication

id identity ΩΩΩ constants (transparent)

A ⊗ B tensor product A ◦ B composition

A ◦−B left comp. adjunct A (B right comp. adjunct

A ⊗−B left prod. adjunct A −⊗B right prod. adjunct

V. Sassone (Soton) BiLog Separation Logics Forum 6 / 23

A tensor-and-composition logic

Two structural connectives: Horizontal ⊗ and Vertical ◦.
Intuition: ⊗ separated parallel composition, no sharing. ◦
‘contextual’ composition, with sharing.
(M,⊗, ε) a partial monoid of ‘resources.’
Tensor defined only if resources are ‘disjoint.’
Elements of discourse G : I → J, with ⊗ lifted and ◦ as obvious.

BiLog(M,⊗, ε, Θ,≡, τ)

Ω ::= transparent constructors in Θ (ignore the opaque ones)

A,B ::= F false A⇒ B implication

id identity ΩΩΩ constants (transparent)

A ⊗ B tensor product A ◦ B composition

A ◦−B left comp. adjunct A (B right comp. adjunct

A ⊗−B left prod. adjunct A −⊗B right prod. adjunct

V. Sassone (Soton) BiLog Separation Logics Forum 6 / 23

The Forcing Relation

G |= F never
G |= ΩΩΩ def

= G ≡ Ω
G |= id def

= G ≡ id I

G |= A⇒ B def
= G |= A implies G |= B

G |= A ⊗ B def
= G ≡ G1 ⊗ G2 and G1 |= A and G2 |= B

G |= A ◦ B def
= G ≡ G1 ◦ G2 and τ(G1) and G1 |= A and G2 |= B

G |= A ◦−B def
= ∀G′.G′ |= A, τ(G′) and (G′ ◦ G)↓ implies G′ ◦ G |= B

G |= A (B def
= τ(G),∀G′.G′ |= A and (G ◦ G′)↓ implies G ◦ G′ |= B

G |= A⊗−B def
= ∀G′.G′ |= A and (G′ ⊗ G)↓ implies G′ ⊗ G |= B

G |= A−⊗B def
= ∀G′.G′ |= A and (G ⊗ G′)↓ implies G ⊗ G′ |= B

V. Sassone (Soton) BiLog Separation Logics Forum 7 / 23

The Forcing Relation

G |= F never
G |= ΩΩΩ def

= G ≡ Ω
G |= id def

= G ≡ id I

G |= A⇒ B def
= G |= A implies G |= B

G |= A ⊗ B def
= G ≡ G1 ⊗ G2 and G1 |= A and G2 |= B

G |= A ◦ B def
= G ≡ G1 ◦ G2 and τ(G1) and G1 |= A and G2 |= B

G |= A ◦−B def
= ∀G′.G′ |= A, τ(G′) and (G′ ◦ G)↓ implies G′ ◦ G |= B

G |= A (B def
= τ(G),∀G′.G′ |= A and (G ◦ G′)↓ implies G ◦ G′ |= B

G |= A⊗−B def
= ∀G′.G′ |= A and (G′ ⊗ G)↓ implies G′ ⊗ G |= B

G |= A−⊗B def
= ∀G′.G′ |= A and (G ⊗ G′)↓ implies G ⊗ G′ |= B

V. Sassone (Soton) BiLog Separation Logics Forum 7 / 23

The Forcing Relation

G |= F never
G |= ΩΩΩ def

= G ≡ Ω
G |= id def

= G ≡ id I

G |= A⇒ B def
= G |= A implies G |= B

G |= A ⊗ B def
= G ≡ G1 ⊗ G2 and G1 |= A and G2 |= B

G |= A ◦ B def
= G ≡ G1 ◦ G2 and τ(G1) and G1 |= A and G2 |= B

G |= A ◦−B def
= ∀G′.G′ |= A, τ(G′) and (G′ ◦ G)↓ implies G′ ◦ G |= B

G |= A (B def
= τ(G),∀G′.G′ |= A and (G ◦ G′)↓ implies G ◦ G′ |= B

G |= A⊗−B def
= ∀G′.G′ |= A and (G′ ⊗ G)↓ implies G′ ⊗ G |= B

G |= A−⊗B def
= ∀G′.G′ |= A and (G ⊗ G′)↓ implies G ⊗ G′ |= B

V. Sassone (Soton) BiLog Separation Logics Forum 7 / 23

The Forcing Relation

G |= F never
G |= ΩΩΩ def

= G ≡ Ω
G |= id def

= G ≡ id I

G |= A⇒ B def
= G |= A implies G |= B

G |= A ⊗ B def
= G ≡ G1 ⊗ G2 and G1 |= A and G2 |= B

G |= A ◦ B def
= G ≡ G1 ◦ G2 and τ(G1) and G1 |= A and G2 |= B

G |= A ◦−B def
= ∀G′.G′ |= A, τ(G′) and (G′ ◦ G)↓ implies G′ ◦ G |= B

G |= A (B def
= τ(G),∀G′.G′ |= A and (G ◦ G′)↓ implies G ◦ G′ |= B

G |= A⊗−B def
= ∀G′.G′ |= A and (G′ ⊗ G)↓ implies G′ ⊗ G |= B

G |= A−⊗B def
= ∀G′.G′ |= A and (G ⊗ G′)↓ implies G ⊗ G′ |= B

V. Sassone (Soton) BiLog Separation Logics Forum 7 / 23

The Forcing Relation

G |= F never
G |= ΩΩΩ def

= G ≡ Ω
G |= id def

= G ≡ id I

G |= A⇒ B def
= G |= A implies G |= B

G |= A ⊗ B def
= G ≡ G1 ⊗ G2 and G1 |= A and G2 |= B

G |= A ◦ B def
= G ≡ G1 ◦ G2 and τ(G1) and G1 |= A and G2 |= B

G |= A ◦−B def
= ∀G′.G′ |= A, τ(G′) and (G′ ◦ G)↓ implies G′ ◦ G |= B

G |= A (B def
= τ(G),∀G′.G′ |= A and (G ◦ G′)↓ implies G ◦ G′ |= B

G |= A⊗−B def
= ∀G′.G′ |= A and (G′ ⊗ G)↓ implies G′ ⊗ G |= B

G |= A−⊗B def
= ∀G′.G′ |= A and (G ⊗ G′)↓ implies G ⊗ G′ |= B

V. Sassone (Soton) BiLog Separation Logics Forum 7 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

Some Useful Derived Operators

T, ∧, ∨,⇔,⇐, ¬ as usual for classical logics
AI

def
= A ◦ idI Source to be I

A→J
def
= idJ ◦ A Target to be J

AI→J
def
= (AI)→J Interface to be I → J

A ◦I B def
= A ◦ idI ◦ B Composition along interface I

A ◦−JB def
= A→J ◦−B Contexts with J as target

A (I B def
= AI (B Composing with I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal component satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical component satisfies A

�A def
= A∃⊗∃◦ Somewhere modality

�A def
= ¬�¬A Anywhere modality

V. Sassone (Soton) BiLog Separation Logics Forum 8 / 23

How new is all this?
Not very much, I’m afraid. . .

The news is that this is simply the (internal language of) a free (partial)
monoidal category.

Let C be the free partial monoidal category generated by (M,⊗, ε)
and Ω : I → J in Θ.

Let G range over the arrows of C and let ≡ be equality in C.

Then:

Theorem
If all constants are transparent, then

G =L G′ if and only if G ≡ G′,

for all G, G′.

V. Sassone (Soton) BiLog Separation Logics Forum 9 / 23

How new is all this?
Not very much, I’m afraid. . .

The news is that this is simply the (internal language of) a free (partial)
monoidal category.

Let C be the free partial monoidal category generated by (M,⊗, ε)
and Ω : I → J in Θ.

Let G range over the arrows of C and let ≡ be equality in C.

Then:

Theorem
If all constants are transparent, then

G =L G′ if and only if G ≡ G′,

for all G, G′.

V. Sassone (Soton) BiLog Separation Logics Forum 9 / 23

How new is all this?
Not very much, I’m afraid. . .

The news is that this is simply the (internal language of) a free (partial)
monoidal category.

Let C be the free partial monoidal category generated by (M,⊗, ε)
and Ω : I → J in Θ.

Let G range over the arrows of C and let ≡ be equality in C.

Then:

Theorem
If all constants are transparent, then

G =L G′ if and only if G ≡ G′,

for all G, G′.

V. Sassone (Soton) BiLog Separation Logics Forum 9 / 23

BiLog as a Logic for Bigraphs

This amounts to instantiate the parameters

M, ⊗, ε, Θ, ≡, τ

appropriately.

As bigraphs consist of two superimposed graph structures, the place
graphs and the link graphs, it is convenient to describe BiLog by
superimposing two logics:

The Place Graph Logic (PGL) and the Link Graph Logic (LGL)

V. Sassone (Soton) BiLog Separation Logics Forum 10 / 23

Place Graph Logic

Place graphs are ordered lists of labelled trees with holes. The
labels of the trees correspond to controls K belonging to the fixed
signature K.
Monoid (N,+, 0): interfaces here represent the number of holes
and regions of place graphs.
Θ contains:

1 : 0→ 1, idn : n→ n, join : 2→ 1,
γm,n : m + n→ n + m, K : 1→ 1, for K ∈ K.

≡ is augmented with the usual axioms for symmetry of γm,n and
commutativity of join ◦ (⊗) .

PGL

Fixed the transparency predicate τ , PGL(K, τ) is

BiLog(N,+, 0,≡,K ∪ {1, join, γm,n}, τ).

V. Sassone (Soton) BiLog Separation Logics Forum 11 / 23

Encoding STL into PGL

BiLog restricted to prime ground place graphs (and the always-true
transparency predicate) is equivalent to the propositional spatial tree
logic (STL).

T ::= 0 | a[T] | T1 | T2.

A ::= 0 | a[A] | A | B | A@a | A . B.

Trees into Prime Ground Place Graphs

[[0]] def
= 1 [[a[T]]] def

= K (a) ◦ [[T]] [[T1 | T2]] def
= join ◦ ([[T1]] ⊗ [[T2]])

STL formulae into PGL formulae

[[0]] def
= 1 [[a[A]]] def

= K(a) ◦1 [[A]]

[[F]] def
= F [[A@a]] def

= K(a) ◦−1[[A]]

[[A⇒ B]] def
= [[A]]⇒ [[B]] [[A | B]] def

= [[A]] | [[B]]

[[A . B]] def
= ([[A]] | id1) ◦−1[[B]]

where A | B def
= join ◦ (A→1 ⊗ B→1) is the parallel composition

connective.V. Sassone (Soton) BiLog Separation Logics Forum 12 / 23

Encoding STL into PGL (ctd)

Theorem
For all trees T and formulae A of STL we have that

T |=STL A if and only if [[T]] |= [[A]].

V. Sassone (Soton) BiLog Separation Logics Forum 13 / 23

Link Graph Logic

Link graphs are simply directed graphs where nodes (aka ports)
are connected by named links.
Monoid (P(Λ),], ∅), for Λ a set of names and] is the union on
disjoint pairs of sets and undefined otherwise.
Θ contains ions and wirings, to map inner name to outer names.

/a : {a} → ∅ a/X : {a} → X K~a : ∅ → ~a

a

a

x1 xk. . . K

a1 . . . ak

1

closure /a substitution a/X discrete ion K!a

Fig. 3. Elementary linking bigraphs and a discrete ion. Da chiamare “esopPic3.eps”Important special cases for substitutions:

a def
=

a/∅; a ← b def
=

a/{b}; a ⇔ b def
=

a/{a,b}.

V. Sassone (Soton) BiLog Separation Logics Forum 14 / 23

Link Graph Logic (ctd)

LGL

Fixed the transparency predicate τ , LGL(K, τ) is

BiLog(P(Λ),], ∅,≡,K ∪ {/a, a/X}, τ).

V. Sassone (Soton) BiLog Separation Logics Forum 15 / 23

Resource Sharing in LGL

Fixed G and G′, let ~b be fresh names (as many as ~a).

G
~a
⊗ G′ def

= [~a ⇔ ~b] ◦ (([~b← ~a] ◦ G) ⊗ G′)

At the level of formulae, we need a fresh name quantification in the
style of Nominal Logic

G |= N~x .A def
= ∃~a /∈ fn(G) ∪ fn(A).G |= A{~x ← ~a}

using which we can define ~a-linked name quantification for fresh
names in order to explore names linked to ~a:

~a L~x .A def
= N~x . ((~a ⇔ ~x) ⊗ id) ◦ A.

Finally, we can define separation-upto connective.

A
~a
⊗ B def

= ~a L~x . (((~x ← ~a) ⊗ id) ◦ A) ⊗ B.

V. Sassone (Soton) BiLog Separation Logics Forum 16 / 23

Resource Sharing in LGL

Fixed G and G′, let ~b be fresh names (as many as ~a).

G
~a
⊗ G′ def

= [~a ⇔ ~b] ◦ (([~b← ~a] ◦ G) ⊗ G′)

At the level of formulae, we need a fresh name quantification in the
style of Nominal Logic

G |= N~x .A def
= ∃~a /∈ fn(G) ∪ fn(A).G |= A{~x ← ~a}

using which we can define ~a-linked name quantification for fresh
names in order to explore names linked to ~a:

~a L~x .A def
= N~x . ((~a ⇔ ~x) ⊗ id) ◦ A.

Finally, we can define separation-upto connective.

A
~a
⊗ B def

= ~a L~x . (((~x ← ~a) ⊗ id) ◦ A) ⊗ B.

V. Sassone (Soton) BiLog Separation Logics Forum 16 / 23

Resource Sharing in LGL

Fixed G and G′, let ~b be fresh names (as many as ~a).

G
~a
⊗ G′ def

= [~a ⇔ ~b] ◦ (([~b← ~a] ◦ G) ⊗ G′)

At the level of formulae, we need a fresh name quantification in the
style of Nominal Logic

G |= N~x .A def
= ∃~a /∈ fn(G) ∪ fn(A).G |= A{~x ← ~a}

using which we can define ~a-linked name quantification for fresh
names in order to explore names linked to ~a:

~a L~x .A def
= N~x . ((~a ⇔ ~x) ⊗ id) ◦ A.

Finally, we can define separation-upto connective.

A
~a
⊗ B def

= ~a L~x . (((~x ← ~a) ⊗ id) ◦ A) ⊗ B.

V. Sassone (Soton) BiLog Separation Logics Forum 16 / 23

Resource Sharing in LGL

Fixed G and G′, let ~b be fresh names (as many as ~a).

G
~a
⊗ G′ def

= [~a ⇔ ~b] ◦ (([~b← ~a] ◦ G) ⊗ G′)

At the level of formulae, we need a fresh name quantification in the
style of Nominal Logic

G |= N~x .A def
= ∃~a /∈ fn(G) ∪ fn(A).G |= A{~x ← ~a}

using which we can define ~a-linked name quantification for fresh
names in order to explore names linked to ~a:

~a L~x .A def
= N~x . ((~a ⇔ ~x) ⊗ id) ◦ A.

Finally, we can define separation-upto connective.

A
~a
⊗ B def

= ~a L~x . (((~x ← ~a) ⊗ id) ◦ A) ⊗ B.

V. Sassone (Soton) BiLog Separation Logics Forum 16 / 23

Encoding SGL into LGL

LGL can be seen as a contextual (and multi-edge) version of Spatial
Graph Logic (SGL).

G ::= nil | a(x , y) | G1 | G2 | (νx)G.

φ ::= nil | a(x , y) | F | φ⇒ ψ | φ | ψ

Spatial Graphs into two-ported Ground Link Graphs

[[nil]]X def
= X [[a(x , y)]]X

def
= K (a)x,y ⊗ X \ {x , y}

[[G | G′]]X
def
= [[G]]X

X
⊗ [[G′]]X [[(νx)G]]X

def
= ((/x ⊗ idX\{x}) ◦ [[G]]X) ⊗ x

SGL formulae into LGL formulae

[[nil]]X def
= X [[a(x , y)]]X

def
= K(a)x,y ⊗ X \ {x , y}

[[F]]X
def
= F [[φ⇒ ψ]]X

def
= [[φ]]X ⇒ [[ψ]]X

[[φ | ψ]]X
def
= [[φ]]X

X
⊗ [[ψ]]X

V. Sassone (Soton) BiLog Separation Logics Forum 17 / 23

Encoding SGL into LGL (ctd)

Theorem
For all graphs G and formulae φ of the propositional fragment of SGL,
we have that

G |=SGL φ if and only if [[G]]X |= [[φ]]X .

V. Sassone (Soton) BiLog Separation Logics Forum 18 / 23

Bigraph Logic, finally

The product monoid (N× P(Λ),⊗, ε) where
〈m,X〉 ⊗ 〈n,X〉 def

= 〈m + n,X] Y 〉 and ε def
= 〈0, ∅〉.

Θ is the union of place and link graph constructors, but the controls
are replaced by the new discrete ion constructor K~a : 1→

〈
1, ~a

〉
;

this is a prime bigraph containing a single node with ports named
~a and an hole inside.
≡ for link graphs is refined with obvious axioms for links, modelling
α-conversion and extrusion of closed names.

Theorem
There exists an enconding of the Context Tree Logic into BGL which
extends the encoding of STL into PGL.

V. Sassone (Soton) BiLog Separation Logics Forum 19 / 23

Bigraph Logic, finally

The product monoid (N× P(Λ),⊗, ε) where
〈m,X〉 ⊗ 〈n,X〉 def

= 〈m + n,X] Y 〉 and ε def
= 〈0, ∅〉.

Θ is the union of place and link graph constructors, but the controls
are replaced by the new discrete ion constructor K~a : 1→

〈
1, ~a

〉
;

this is a prime bigraph containing a single node with ports named
~a and an hole inside.
≡ for link graphs is refined with obvious axioms for links, modelling
α-conversion and extrusion of closed names.

Theorem
There exists an enconding of the Context Tree Logic into BGL which
extends the encoding of STL into PGL.

V. Sassone (Soton) BiLog Separation Logics Forum 19 / 23

Deriving a ‘next-step’ modality?

In process algebras the dynamics is often presented by reaction
(or rewriting) rules of the form r —. r ′. The same happens with
bigraphical reactive systems:

acta[]1 | coacta[]2 —. []1 | []2
No reaction can occur inside the controls act and coact, as they
are passive. In general, we have an activeness predicate δ on
contexts.
A ground bigraph g reduces to g′ if there is (R,R′) ∈ S, a set of
names Y , a bigraph D with δ(D) true, and a ground bigraph d,
such that:

g ≡ D ◦ (R ⊗ idY) ◦ d and g′ ≡ D ◦ (R′ ⊗ idY) ◦ d.

The next step modality

g |= ♦A iff g —. g′ and g′ |= A.

can then in some circumstances be expressed in BiLog.

V. Sassone (Soton) BiLog Separation Logics Forum 20 / 23

Modelling a small CCS

Let’s assume there is only a finite set of actions X . The following
encoding yields bigraphs with the outer faces 〈1,X〉.

[[0]] def
= X ;

[[a.P]] def
= (acta

a
⊗ idX) ◦ [[P]];

[[ā.P]] def
= (coacta

a
⊗ idX) ◦ [[P]];

[[P | Q]] def
= join ◦ ([[P]]

X
⊗ [[Q]]).

We have P —. P ′ if and only if [[P]] —. [[P ′]].

The logic Lspat :

A,B ::= 0 | A ∧ B | A | B | ¬A | A . B | ♦A.

Theorem
Lspat can be encoded into BiLog(M,⊗, ε,Θ,≡, τ) where Θ is standard,
with K = {act,coact}, and τ is always true.

V. Sassone (Soton) BiLog Separation Logics Forum 21 / 23

Modelling a small CCS

Let’s assume there is only a finite set of actions X . The following
encoding yields bigraphs with the outer faces 〈1,X〉.

[[0]] def
= X ;

[[a.P]] def
= (acta

a
⊗ idX) ◦ [[P]];

[[ā.P]] def
= (coacta

a
⊗ idX) ◦ [[P]];

[[P | Q]] def
= join ◦ ([[P]]

X
⊗ [[Q]]).

We have P —. P ′ if and only if [[P]] —. [[P ′]].

The logic Lspat :

A,B ::= 0 | A ∧ B | A | B | ¬A | A . B | ♦A.

Theorem
Lspat can be encoded into BiLog(M,⊗, ε,Θ,≡, τ) where Θ is standard,
with K = {act,coact}, and τ is always true.

V. Sassone (Soton) BiLog Separation Logics Forum 21 / 23

The Encoding of Lspat into Bilog

Rules (Ra,R′
a) = (a.[]1 | ā.[]2 , []1 | []2), for every a ∈ X .

[[0]] def
= X

[[¬A]] def
= ¬ [[A]]

[[A ∧ B]] def
= [[A]] ∧ [[B]]

[[A | B]] def
= [[A]]

X
⊗ [[B]]

[[A . B]] def
= NX ′. (((X ′ ← X) ⊗ id1) ◦ [[A]]ε)−⊗

(join ◦ ((X ⇔ X ′) ⊗ id1) ◦−[[B]])

[[♦A]] def
=

∨
a∈X

R̃a ◦ [(R̃′
a ◦−[[A]]) ∧ (T〈1,X〉 ⊗ T)]

Theorem
For every CCS process P,

P |=spat A if and only if [[P]] |= [[A]].

V. Sassone (Soton) BiLog Separation Logics Forum 22 / 23

The Encoding of Lspat into Bilog

Rules (Ra,R′
a) = (a.[]1 | ā.[]2 , []1 | []2), for every a ∈ X .

[[0]] def
= X

[[¬A]] def
= ¬ [[A]]

[[A ∧ B]] def
= [[A]] ∧ [[B]]

[[A | B]] def
= [[A]]

X
⊗ [[B]]

[[A . B]] def
= NX ′. (((X ′ ← X) ⊗ id1) ◦ [[A]]ε)−⊗

(join ◦ ((X ⇔ X ′) ⊗ id1) ◦−[[B]])

[[♦A]] def
=

∨
a∈X

R̃a ◦ [(R̃′
a ◦−[[A]]) ∧ (T〈1,X〉 ⊗ T)]

Theorem
For every CCS process P,

P |=spat A if and only if [[P]] |= [[A]].

V. Sassone (Soton) BiLog Separation Logics Forum 22 / 23

Further work
A metalogical framework for static and dynamic resources, controlling
sharing and separation.

Place Graph Logic, Link Graph Logic, BiGraph Logic
Spatial Tree Logic, Spatial Graph Logic, Context Tree Logic
XML and Web Services

To be done:
The role of transparency.
Proof theory (not obvious how a completeness result can be
obtained).
Model checking for significant fragments (within the boundaries
fixed by existing undecidability results).
Monadic second order quantification for dynamics.

♦A def
= ∃X .(Act ∧ X) ◦ (R ◦ [(X ◦ R′) ◦−A])

V. Sassone (Soton) BiLog Separation Logics Forum 23 / 23

	Structural Logics
	A Universal Model
	The Structure of Concurrency
	BiLog
	Towards a Dynamic Logic
	Conclusion and Further work

