

BiLog

A Framework for Structural Logics

Vladimiro Sassone

University of Southampton, UK

Forum on Separation Logics
Cambridge 13–14.03.06

with G. Conforti and D. Macedonio

Spatial v Separation Logics

Spatial and Separation Logics are relatives but not twins.

- Spatial logics: Separation in space

$$\ell_1[a @ \ell. P] \mid \ell_2[\bar{a} @ \ell. Q]$$

- Separation logics: Separation of resources

$$\ell[a.nil \mid b.nil]$$

- Why not together?

A logic to support:

- ▶ Multiple kinds of separation;
- ▶ Multiple distribution models.

Spatial v Separation Logics

Spatial and Separation Logics are relatives but not twins.

- Spatial logics: Separation in space

$$\ell_1[a @ \ell. P] \mid \ell_2[\bar{a} @ \ell. Q]$$

- Separation logics: Separation of resources

$$\ell[a.nil \mid b.nil]$$

- **Why not together?**

A logic to support:

- ▶ Multiple kinds of separation;
- ▶ Multiple distribution models.

A Unifying Logical Framework?

We need:

- An expressive framework –

E.G.

$$\text{PC}_a(\text{in}_c \otimes \mathbf{T}) \stackrel{c}{\otimes} \text{PC}_b(\text{out}_c \otimes \mathbf{T})$$

- A metalogical framework –

Language Independent

One general framework to capture multiple calculi and models.

A Unifying Logical Framework?

We need:

- An expressive framework –

E.G.

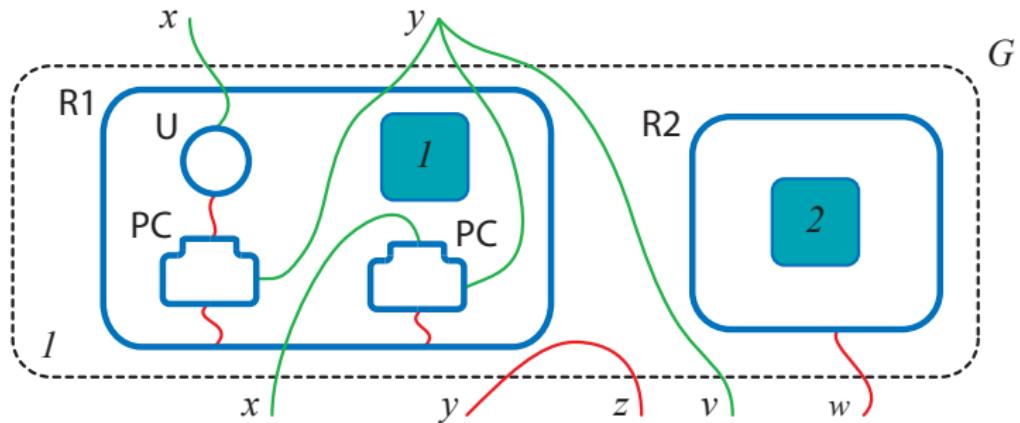
$$\text{PC}_a(\text{in}_c \otimes \mathbf{T}) \stackrel{c}{\otimes} \text{PC}_b(\text{out}_c \otimes \mathbf{T})$$

- A metalogical framework –

Language Independent

One general framework to capture multiple calculi and models.

Bigraphs: A Universal Model



The Bigraph (\otimes, \circ) -Algebra

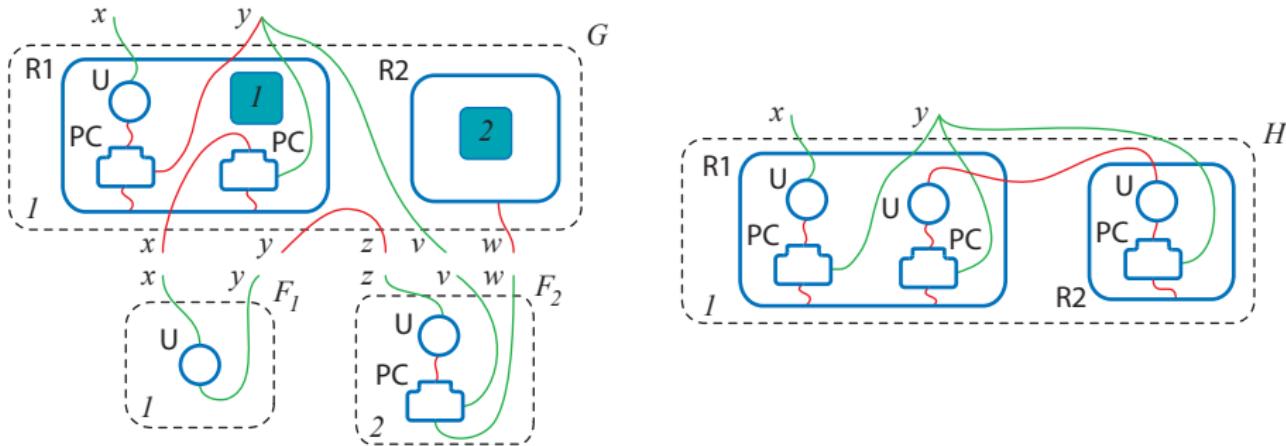


Figure: Bigraphical composition, $H \equiv G \circ (F_1 \otimes F_2)$.

A tensor-and-composition logic

- Two structural connectives: Horizontal \otimes and Vertical \circ .
- Intuition: \otimes separated parallel composition, no sharing. \circ 'contextual' composition, with sharing.
- (M, \otimes, ϵ) a partial monoid of 'resources.'
Tensor defined only if resources are 'disjoint.'
Elements of discourse $G : I \rightarrow J$, with \otimes lifted and \circ as obvious.

$\text{BiLog}(M, \otimes, \epsilon, \Theta, \equiv, \tau)$

$\Omega ::=$ transparent constructors in Θ (ignore the opaque ones)

$A, B ::= \mathbf{F}$	false	$A \Rightarrow B$	implication
\mathbf{id}	identity	Ω	constants (transparent)
$A \otimes B$	tensor product	$A \circ B$	composition
$A \circ B$	left comp. adjunct	$A \multimap B$	right comp. adjunct
$A \otimes B$	left prod. adjunct	$A \multimap B$	right prod. adjunct

A tensor-and-composition logic

- Two structural connectives: Horizontal \otimes and Vertical \circ .
- Intuition: \otimes separated parallel composition, no sharing. \circ
'contextual' composition, with sharing.
- (M, \otimes, ϵ) a partial monoid of 'resources.'
Tensor defined only if resources are 'disjoint.'
Elements of discourse $G : I \rightarrow J$, with \otimes lifted and \circ as obvious.

$\text{BiLog}(M, \otimes, \epsilon, \Theta, \equiv, \tau)$

$\Omega ::=$ transparent constructors in Θ (ignore the opaque ones)

$A, B ::= \mathbf{F}$	false	$A \Rightarrow B$	implication
\mathbf{id}	identity	Ω	constants (transparent)
$A \otimes B$	tensor product	$A \circ B$	composition
$A \multimap B$	left comp. adjunct	$A \multimap B$	right comp. adjunct
$A \otimes B$	left prod. adjunct	$A \multimap B$	right prod. adjunct

The Forcing Relation

$$\begin{array}{ll} G \models F & \text{never} \\ G \models \Omega & \stackrel{\text{def}}{=} G \equiv \Omega \\ G \models \mathbf{id} & \stackrel{\text{def}}{=} G \equiv \mathbf{id}_I \end{array}$$

$$G \models A \Rightarrow B \stackrel{\text{def}}{=} G \models A \text{ implies } G \models B$$

$$G \models A \otimes B \stackrel{\text{def}}{=} G \equiv G_1 \otimes G_2 \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ B \stackrel{\text{def}}{=} G \equiv G_1 \circ G_2 \text{ and } \tau(G_1) \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A, \tau(G') \text{ and } (G' \circ G) \downarrow \text{ implies } G' \circ G \models B$$

$$G \models A \multimap B \stackrel{\text{def}}{=} \tau(G), \forall G'. G' \models A \text{ and } (G \circ G') \downarrow \text{ implies } G \circ G' \models B$$

$$G \models A \otimes \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G' \otimes G) \downarrow \text{ implies } G' \otimes G \models B$$

$$G \models A \multimap \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G \otimes G') \downarrow \text{ implies } G \otimes G' \models B$$

The Forcing Relation

$$\begin{array}{ll} G \models F & \text{never} \\ G \models \Omega & \stackrel{\text{def}}{=} G \equiv \Omega \\ G \models \mathbf{id} & \stackrel{\text{def}}{=} G \equiv \mathbf{id}_I \end{array}$$

$$G \models A \Rightarrow B \stackrel{\text{def}}{=} G \models A \text{ implies } G \models B$$

$$G \models A \otimes B \stackrel{\text{def}}{=} G \equiv G_1 \otimes G_2 \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ B \stackrel{\text{def}}{=} G \equiv G_1 \circ G_2 \text{ and } \tau(G_1) \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A, \tau(G') \text{ and } (G' \circ G) \downarrow \text{ implies } G' \circ G \models B$$

$$G \models A \multimap B \stackrel{\text{def}}{=} \tau(G), \forall G'. G' \models A \text{ and } (G \circ G') \downarrow \text{ implies } G \circ G' \models B$$

$$G \models A \otimes \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G' \otimes G) \downarrow \text{ implies } G' \otimes G \models B$$

$$G \models A \multimap \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G \otimes G') \downarrow \text{ implies } G \otimes G' \models B$$

The Forcing Relation

$$\begin{array}{ll} G \models F & \text{never} \\ G \models \Omega & \stackrel{\text{def}}{=} G \equiv \Omega \\ G \models \mathbf{id} & \stackrel{\text{def}}{=} G \equiv \mathbf{id}_I \end{array}$$

$$G \models A \Rightarrow B \stackrel{\text{def}}{=} G \models A \text{ implies } G \models B$$

$$G \models A \otimes B \stackrel{\text{def}}{=} G \equiv G_1 \otimes G_2 \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ B \stackrel{\text{def}}{=} G \equiv G_1 \circ G_2 \text{ and } \tau(G_1) \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A, \tau(G') \text{ and } (G' \circ G) \downarrow \text{ implies } G' \circ G \models B$$

$$G \models A \multimap B \stackrel{\text{def}}{=} \tau(G), \forall G'. G' \models A \text{ and } (G \circ G') \downarrow \text{ implies } G \circ G' \models B$$

$$G \models A \otimes \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G' \otimes G) \downarrow \text{ implies } G' \otimes G \models B$$

$$G \models A \multimap \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G \otimes G') \downarrow \text{ implies } G \otimes G' \models B$$

The Forcing Relation

$$\begin{array}{ll} G \models F & \text{never} \\ G \models \Omega & \stackrel{\text{def}}{=} G \equiv \Omega \\ G \models \mathbf{id} & \stackrel{\text{def}}{=} G \equiv \mathbf{id}_I \end{array}$$

$$G \models A \Rightarrow B \stackrel{\text{def}}{=} G \models A \text{ implies } G \models B$$

$$G \models A \otimes B \stackrel{\text{def}}{=} G \equiv G_1 \otimes G_2 \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ B \stackrel{\text{def}}{=} G \equiv G_1 \circ G_2 \text{ and } \tau(G_1) \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A, \tau(G') \text{ and } (G' \circ G) \downarrow \text{ implies } G' \circ G \models B$$

$$G \models A \multimap B \stackrel{\text{def}}{=} \tau(G), \forall G'. G' \models A \text{ and } (G \circ G') \downarrow \text{ implies } G \circ G' \models B$$

$$G \models A \otimes \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G' \otimes G) \downarrow \text{ implies } G' \otimes G \models B$$

$$G \models A \multimap \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G \otimes G') \downarrow \text{ implies } G \otimes G' \models B$$

The Forcing Relation

$$\begin{array}{ll} G \models F & \text{never} \\ G \models \Omega & \stackrel{\text{def}}{=} G \equiv \Omega \\ G \models \mathbf{id} & \stackrel{\text{def}}{=} G \equiv \mathbf{id}_I \end{array}$$

$$G \models A \Rightarrow B \stackrel{\text{def}}{=} G \models A \text{ implies } G \models B$$

$$G \models A \otimes B \stackrel{\text{def}}{=} G \equiv G_1 \otimes G_2 \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ B \stackrel{\text{def}}{=} G \equiv G_1 \circ G_2 \text{ and } \tau(G_1) \text{ and } G_1 \models A \text{ and } G_2 \models B$$

$$G \models A \circ \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A, \tau(G') \text{ and } (G' \circ G) \downarrow \text{ implies } G' \circ G \models B$$

$$G \models A \neg \circ B \stackrel{\text{def}}{=} \tau(G), \forall G'. G' \models A \text{ and } (G \circ G') \downarrow \text{ implies } G \circ G' \models B$$

$$G \models A \otimes \neg B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G' \otimes G) \downarrow \text{ implies } G' \otimes G \models B$$

$$G \models A \neg \otimes B \stackrel{\text{def}}{=} \forall G'. G' \models A \text{ and } (G \otimes G') \downarrow \text{ implies } G \otimes G' \models B$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

Some Useful Derived Operators

$\top, \wedge, \vee, \Leftrightarrow, \Leftarrow, \neg$ as usual for classical logics

$$A_I \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \quad \text{Source to be } I$$

$$A_{\rightarrow J} \stackrel{\text{def}}{=} \mathbf{id}_J \circ A \quad \text{Target to be } J$$

$$A_{I \rightarrow J} \stackrel{\text{def}}{=} (A_I)_{\rightarrow J} \quad \text{Interface to be } I \rightarrow J$$

$$A \circ_I B \stackrel{\text{def}}{=} A \circ \mathbf{id}_I \circ B \quad \text{Composition along interface } I$$

$$A \circ_{-J} B \stackrel{\text{def}}{=} A_{\rightarrow J} \circ B \quad \text{Contexts with } J \text{ as target}$$

$$A \multimap_I B \stackrel{\text{def}}{=} A_I \multimap B \quad \text{Composing with } I \text{ as source}$$

$$A \ominus B \stackrel{\text{def}}{=} \neg(\neg A \otimes \neg B) \quad \text{Dual of tensor product}$$

$$A \bullet B \stackrel{\text{def}}{=} \neg(\neg A \circ \neg B) \quad \text{Dual of composition}$$

$$A^{\exists \otimes} \stackrel{\text{def}}{=} \mathbf{T} \otimes A \otimes \mathbf{T} \quad \text{Some horizontal component satisfies } A$$

$$A^{\exists \circ} \stackrel{\text{def}}{=} \mathbf{T} \circ A \circ \mathbf{T} \quad \text{Some vertical component satisfies } A$$

$$\Box A \stackrel{\text{def}}{=} A^{\exists \otimes \exists \circ} \quad \text{Somewhere modality}$$

$$\blacksquare A \stackrel{\text{def}}{=} \neg \Box \neg A \quad \text{Anywhere modality}$$

How new is all this?

Not very much, I'm afraid...

The news is that this is simply the (internal language of) a free (partial) monoidal category.

- Let \mathbf{C} be the free partial monoidal category generated by (M, \otimes, ϵ) and $\Omega : I \rightarrow J$ in Θ .
- Let G range over the arrows of \mathbf{C} and let \equiv be equality in \mathbf{C} .

Then:

Theorem

If all constants are transparent, then

$$G =_L G' \quad \text{if and only if} \quad G \equiv G',$$

for all G, G' .

How new is all this?

Not very much, I'm afraid...

The news is that this is simply the (internal language of) a **free (partial) monoidal category**.

- Let \mathbf{C} be the free partial monoidal category generated by (M, \otimes, ϵ) and $\Omega : I \rightarrow J$ in Θ .
- Let G range over the **arrows** of \mathbf{C} and let \equiv be **equality** in \mathbf{C} .

Then:

Theorem

If all constants are transparent, then

$$G =_L G' \quad \text{if and only if} \quad G \equiv G',$$

for all G, G' .

How new is all this?

Not very much, I'm afraid...

The news is that this is simply the (internal language of) a **free (partial) monoidal category**.

- Let \mathbf{C} be the free partial monoidal category generated by (M, \otimes, ϵ) and $\Omega : I \rightarrow J$ in Θ .
- Let G range over the **arrows** of \mathbf{C} and let \equiv be **equality** in \mathbf{C} .

Then:

Theorem

If all constants are transparent, then

$$G =_L G' \quad \text{if and only if} \quad G \equiv G',$$

for all G, G' .

BiLog as a Logic for Bigraphs

This amounts to instantiate the parameters

$$M, \quad \otimes, \quad \epsilon, \quad \Theta, \quad \equiv, \quad \tau$$

appropriately.

As bigraphs consist of two superimposed graph structures, the [place graphs](#) and the [link graphs](#), it is convenient to describe [BiLog](#) by superimposing two logics:

The Place Graph Logic (PGL) and the [Link Graph Logic \(LGL\)](#)

Place Graph Logic

- Place graphs are ordered lists of labelled trees with holes. The labels of the trees correspond to **controls** K belonging to the fixed signature \mathcal{K} .
- Monoid $(\mathbb{N}, +, 0)$: interfaces here represent the number of holes and regions of place graphs.
- Θ contains:

$$1 : 0 \rightarrow 1, \quad id_n : n \rightarrow n, \quad join : 2 \rightarrow 1, \\ \gamma_{m,n} : m + n \rightarrow n + m, \quad K : 1 \rightarrow 1, \text{ for } K \in \mathcal{K}.$$

- \equiv is augmented with the usual axioms for symmetry of $\gamma_{m,n}$ and commutativity of $join \circ (- \otimes -)$.

PGL

Fixed the transparency predicate τ , $PGL(\mathcal{K}, \tau)$ is

$$BiLog(\mathbb{N}, +, 0, \equiv, \mathcal{K} \cup \{1, join, \gamma_{m,n}\}, \tau).$$

Encoding STL into PGL

BiLog restricted to prime ground place graphs (and the always-true transparency predicate) is equivalent to the propositional spatial tree logic (STL).

$$T ::= 0 \quad | \quad a[T] \quad | \quad T_1 \mid T_2.$$

$$A ::= 0 \quad | \quad a[A] \quad | \quad A \mid B \quad | \quad A @ a \quad | \quad A \triangleright B.$$

Trees into Prime Ground Place Graphs

$$[\![0]\!] \stackrel{\text{def}}{=} 1 \quad [\![a[T]]\!] \stackrel{\text{def}}{=} K(a) \circ [\![T]\!] \quad [\![T_1 \mid T_2]\!] \stackrel{\text{def}}{=} \text{join} \circ ([\![T_1]\!] \otimes [\![T_2]\!])$$

STL formulae into PGL formulae

$$[\![\mathbf{0}]\!] \stackrel{\text{def}}{=} 1$$

$$[\![a[A]]\!] \stackrel{\text{def}}{=} K(a) \circ_1 [\![A]\!]$$

$$[\![\mathbf{F}]\!] \stackrel{\text{def}}{=} \mathbf{F}$$

$$[\![A @ a]\!] \stackrel{\text{def}}{=} K(a) \circ_{-1} [\![A]\!]$$

$$[\![A \Rightarrow B]\!] \stackrel{\text{def}}{=} [\![A]\!] \Rightarrow [\![B]\!]$$

$$[\![A \mid B]\!] \stackrel{\text{def}}{=} [\![A]\!] \mid [\![B]\!]$$

$$[\![A \triangleright B]\!] \stackrel{\text{def}}{=} ([\![A]\!] \mid \mathbf{id}_1) \circ_{-1} [\![B]\!]$$

where $A \mid B \stackrel{\text{def}}{=} \mathbf{join} \circ (A \rightarrow_1 \otimes B \rightarrow_1)$ is the *parallel composition*

Encoding STL into PGL (ctd)

Theorem

For all trees T and formulae A of STL we have that

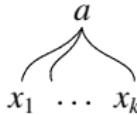
$$T \models_{STL} A \quad \text{if and only if} \quad \llbracket T \rrbracket \models \llbracket A \rrbracket.$$

Link Graph Logic

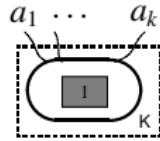
- Link graphs are simply directed graphs where nodes (aka ports) are connected by named links.
- Monoid $(\mathcal{P}(\Lambda), \sqcup, \emptyset)$, for Λ a set of names and \sqcup is the union on disjoint pairs of sets and undefined otherwise.
- Θ contains ions and wirings, to map inner name to outer names.

$$/a : \{a\} \rightarrow \emptyset \quad {}^a/x : \{a\} \rightarrow X \quad K_{\vec{a}} : \emptyset \rightarrow \vec{a}$$

closure $/a$



substitution ${}^a/X$



discrete ion $K_{\vec{a}}$

Important special cases for substitutions:

$$a \stackrel{\text{def}}{=} {}^a/\emptyset; \quad a \leftarrow b \stackrel{\text{def}}{=} {}^a/\{b\}; \quad a \sqsubseteq b \stackrel{\text{def}}{=} {}^a/\{a,b\}.$$

Link Graph Logic (ctd)

LGL

Fixed the transparency predicate τ , $LGL(\mathcal{K}, \tau)$ is

$$BiLog(\mathcal{P}(\Lambda), \uplus, \emptyset, \equiv, \mathcal{K} \cup \{/a, {}^a/x\}, \tau).$$

Resource Sharing in LGL

Fixed G and G' , let \vec{b} be fresh names (as many as \vec{a}).

$$G \overset{\vec{a}}{\otimes} G' \stackrel{\text{def}}{=} [\vec{a} \Leftarrow \vec{b}] \circ (([\vec{b} \leftarrow \vec{a}] \circ G) \otimes G')$$

At the level of formulae, we need a **fresh name quantification** in the style of Nominal Logic

$$G \models \mathcal{N}\vec{x}. A \stackrel{\text{def}}{=} \exists \vec{a} \notin \text{fn}(G) \cup \text{fn}(A). G \models A\{\vec{x} \leftarrow \vec{a}\}$$

using which we can define \vec{a} -linked name quantification for fresh names in order to explore names linked to \vec{a} :

$$\vec{a} \mathbf{L} \vec{x}. A \stackrel{\text{def}}{=} \mathcal{N}\vec{x}. ((\vec{a} \Leftarrow \vec{x}) \otimes \mathbf{id}) \circ A.$$

Finally, we can define **separation-up-to** connective.

$$A \overset{\vec{a}}{\otimes} B \stackrel{\text{def}}{=} \vec{a} \mathbf{L} \vec{x}. (((\vec{x} \leftarrow \vec{a}) \otimes \mathbf{id}) \circ A) \otimes B.$$

Resource Sharing in LGL

Fixed G and G' , let \vec{b} be fresh names (as many as \vec{a}).

$$G \overset{\vec{a}}{\otimes} G' \stackrel{\text{def}}{=} [\vec{a} \Leftarrow \vec{b}] \circ (([\vec{b} \leftarrow \vec{a}] \circ G) \otimes G')$$

At the level of formulae, we need a **fresh name quantification** in the style of Nominal Logic

$$G \models \mathcal{N}\vec{x}. A \stackrel{\text{def}}{=} \exists \vec{a} \notin \text{fn}(G) \cup \text{fn}(A). G \models A\{\vec{x} \leftarrow \vec{a}\}$$

using which we can define \vec{a} -linked name quantification for fresh names in order to explore names linked to \vec{a} :

$$\vec{a} \mathbf{L} \vec{x}. A \stackrel{\text{def}}{=} \mathcal{N}\vec{x}. ((\vec{a} \Leftarrow \vec{x}) \otimes \mathbf{id}) \circ A.$$

Finally, we can define **separation-up-to** connective.

$$A \overset{\vec{a}}{\otimes} B \stackrel{\text{def}}{=} \vec{a} \mathbf{L} \vec{x}. (((\vec{x} \leftarrow \vec{a}) \otimes \mathbf{id}) \circ A) \otimes B.$$

Resource Sharing in LGL

Fixed G and G' , let \vec{b} be fresh names (as many as \vec{a}).

$$G \overset{\vec{a}}{\otimes} G' \stackrel{\text{def}}{=} [\vec{a} \Leftarrow \vec{b}] \circ (([\vec{b} \leftarrow \vec{a}] \circ G) \otimes G')$$

At the level of formulae, we need a **fresh name quantification** in the style of Nominal Logic

$$G \models \mathcal{N}\vec{x}. A \stackrel{\text{def}}{=} \exists \vec{a} \notin \text{fn}(G) \cup \text{fn}(A). G \models A\{\vec{x} \leftarrow \vec{a}\}$$

using which we can define **\vec{a} -linked name quantification** for fresh names in order to explore names linked to \vec{a} :

$$\vec{a} \mathbf{L} \vec{x}. A \stackrel{\text{def}}{=} \mathcal{N}\vec{x}. ((\vec{a} \Leftarrow \vec{x}) \otimes \mathbf{id}) \circ A.$$

Finally, we can define **separation-up-to** connective.

$$A \overset{\vec{a}}{\otimes} B \stackrel{\text{def}}{=} \vec{a} \mathbf{L} \vec{x}. (((\vec{x} \leftarrow \vec{a}) \otimes \mathbf{id}) \circ A) \otimes B.$$

Resource Sharing in LGL

Fixed G and G' , let \vec{b} be fresh names (as many as \vec{a}).

$$G \overset{\vec{a}}{\otimes} G' \stackrel{\text{def}}{=} [\vec{a} \Leftarrow \vec{b}] \circ (([\vec{b} \leftarrow \vec{a}] \circ G) \otimes G')$$

At the level of formulae, we need a **fresh name quantification** in the style of Nominal Logic

$$G \models \mathcal{N}\vec{x}. A \stackrel{\text{def}}{=} \exists \vec{a} \notin \text{fn}(G) \cup \text{fn}(A). G \models A\{\vec{x} \leftarrow \vec{a}\}$$

using which we can define **\vec{a} -linked name quantification** for fresh names in order to explore names linked to \vec{a} :

$$\vec{a} \mathbf{L} \vec{x}. A \stackrel{\text{def}}{=} \mathcal{N}\vec{x}. ((\vec{a} \Leftarrow \vec{x}) \otimes \mathbf{id}) \circ A.$$

Finally, we can define **separation-up-to** connective.

$$A \overset{\vec{a}}{\otimes} B \stackrel{\text{def}}{=} \vec{a} \mathbf{L} \vec{x}. (((\vec{x} \leftarrow \vec{a}) \otimes \mathbf{id}) \circ A) \otimes B.$$

Encoding SGL into LGL

LGL can be seen as a contextual (and multi-edge) version of Spatial Graph Logic (SGL).

$$G ::= \text{nil} \quad | \quad a(x, y) \quad | \quad G_1 \mid G_2 \quad | \quad (\nu x)G.$$

$$\phi ::= \text{nil} \quad | \quad a(x, y) \quad | \quad \mathbf{F} \quad | \quad \phi \Rightarrow \psi \quad | \quad \phi \mid \psi$$

Spatial Graphs into two-ported Ground Link Graphs

$$[\![\text{nil}]\!]_X \stackrel{\text{def}}{=} X \quad [\![a(x, y)]!]_X \stackrel{\text{def}}{=} K(a)_{x,y} \otimes X \setminus \{x, y\}$$

$$[\![G \mid G']\!]_X \stackrel{\text{def}}{=} [\![G]\!]_X \overset{X}{\otimes} [\![G']\!]_X \quad [\![(\nu x)G]\!]_X \stackrel{\text{def}}{=} ((/x \otimes id_{X \setminus \{x\}}) \circ [\![G]\!]_X) \otimes x$$

SGL formulae into LGL formulae

$$[\![\text{nil}]\!]_X \stackrel{\text{def}}{=} X$$

$$[\![a(x, y)]!]_X \stackrel{\text{def}}{=} \mathbf{K}(a)_{x,y} \otimes X \setminus \{x, y\}$$

$$[\![\mathbf{F}]\!]_X \stackrel{\text{def}}{=} \mathbf{F}$$

$$[\![\phi \Rightarrow \psi]\!]_X \stackrel{\text{def}}{=} [\![\phi]\!]_X \Rightarrow [\![\psi]\!]_X$$

$$[\![\phi \mid \psi]\!]_X \stackrel{\text{def}}{=} [\![\phi]\!]_X \overset{X}{\otimes} [\![\psi]\!]_X$$

Encoding SGL into LGL (ctd)

Theorem

For all graphs G and formulae ϕ of the propositional fragment of SGL, we have that

$$G \models_{SGL} \phi \quad \text{if and only if} \quad \llbracket G \rrbracket_x \models \llbracket \phi \rrbracket_x.$$

Bigraph Logic, finally

- The product monoid $(\mathbb{N} \times \mathcal{P}(\Lambda), \otimes, \epsilon)$ where $\langle m, X \rangle \otimes \langle n, Y \rangle \stackrel{\text{def}}{=} \langle m+n, X \uplus Y \rangle$ and $\epsilon \stackrel{\text{def}}{=} \langle 0, \emptyset \rangle$.
- Θ is the union of place and link graph constructors, but the controls are replaced by the new *discrete ion* constructor $K_{\vec{a}} : 1 \rightarrow \langle 1, \vec{a} \rangle$; this is a prime bigraph containing a single node with ports named \vec{a} and an hole inside.
- \equiv for link graphs is refined with obvious axioms for links, modelling α -conversion and extrusion of closed names.

Theorem

There exists an encoding of the Context Tree Logic into BGL which extends the encoding of STL into PGL.

Bigraph Logic, finally

- The product monoid $(\mathbb{N} \times \mathcal{P}(\Lambda), \otimes, \epsilon)$ where $\langle m, X \rangle \otimes \langle n, Y \rangle \stackrel{\text{def}}{=} \langle m+n, X \uplus Y \rangle$ and $\epsilon \stackrel{\text{def}}{=} \langle 0, \emptyset \rangle$.
- Θ is the union of place and link graph constructors, but the controls are replaced by the new *discrete ion* constructor $K_{\vec{a}} : 1 \rightarrow \langle 1, \vec{a} \rangle$; this is a prime bigraph containing a single node with ports named \vec{a} and an hole inside.
- \equiv for link graphs is refined with obvious axioms for links, modelling α -conversion and extrusion of closed names.

Theorem

There exists an encoding of the Context Tree Logic into BGL which extends the encoding of STL into PGL.

Deriving a 'next-step' modality?

- In process algebras the dynamics is often presented by **reaction** (or rewriting) rules of the form $r \rightarrow r'$. The same happens with bigraphical reactive systems:

$$\text{act}_a[]_1 \mid \text{coact}_a[]_2 \rightarrow []_1 \mid []_2$$

No reaction can occur inside the controls **act** and **coact**, as they are **passive**. In general, we have an **activeness** predicate δ on contexts.

- A ground bigraph g reduces to g' if there is $(R, R') \in S$, a set of names Y , a bigraph D with $\delta(D)$ true, and a ground bigraph d , such that:

$$g \equiv D \circ (R \otimes \text{id}_Y) \circ d \quad \text{and} \quad g' \equiv D \circ (R' \otimes \text{id}_Y) \circ d.$$

- The **next step modality**

$$g \models \Diamond A \quad \text{iff} \quad g \rightarrow g' \text{ and } g' \models A.$$

can then in some circumstances be expressed in **BiLog**.

Modelling a small CCS

Let's assume there is only a finite set of actions X . The following encoding yields bigraphs with the outer faces $\langle 1, X \rangle$.

$$\begin{aligned} \llbracket 0 \rrbracket &\stackrel{\text{def}}{=} X; \\ \llbracket a.P \rrbracket &\stackrel{\text{def}}{=} (\text{act}_a \otimes \text{id}_X) \circ \llbracket P \rrbracket; \\ \llbracket \bar{a}.P \rrbracket &\stackrel{\text{def}}{=} (\text{coact}_a \otimes \text{id}_X) \circ \llbracket P \rrbracket; \\ \llbracket P \mid Q \rrbracket &\stackrel{\text{def}}{=} \text{join} \circ (\llbracket P \rrbracket \stackrel{X}{\otimes} \llbracket Q \rrbracket). \end{aligned}$$

We have $P \rightarrow P'$ if and only if $\llbracket P \rrbracket \rightarrow \llbracket P' \rrbracket$.

The logic $\mathcal{L}_{\text{spat}}$:

$$A, B ::= 0 \quad | \quad A \wedge B \quad | \quad A \mid B \quad | \quad \neg A \quad | \quad A \triangleright B \quad | \quad \Diamond A.$$

Theorem

$\mathcal{L}_{\text{spat}}$ can be encoded into $\text{BiLog}(M, \otimes, \epsilon, \Theta, \equiv, \tau)$ where Θ is standard, with $\mathcal{K} = \{\text{act}, \text{coact}\}$, and τ is always true.

Modelling a small CCS

Let's assume there is only a finite set of actions X . The following encoding yields bigraphs with the outer faces $\langle 1, X \rangle$.

$$\begin{aligned} \llbracket 0 \rrbracket &\stackrel{\text{def}}{=} X; \\ \llbracket a.P \rrbracket &\stackrel{\text{def}}{=} (\text{act}_a \otimes \text{id}_X) \circ \llbracket P \rrbracket; \\ \llbracket \bar{a}.P \rrbracket &\stackrel{\text{def}}{=} (\text{coact}_a \otimes \text{id}_X) \circ \llbracket P \rrbracket; \\ \llbracket P \mid Q \rrbracket &\stackrel{\text{def}}{=} \text{join} \circ (\llbracket P \rrbracket \stackrel{X}{\otimes} \llbracket Q \rrbracket). \end{aligned}$$

We have $P \rightarrow P'$ if and only if $\llbracket P \rrbracket \rightarrow \llbracket P' \rrbracket$.

The logic $\mathcal{L}_{\text{spat}}$:

$$A, B ::= 0 \quad | \quad A \wedge B \quad | \quad A \mid B \quad | \quad \neg A \quad | \quad A \triangleright B \quad | \quad \Diamond A.$$

Theorem

$\mathcal{L}_{\text{spat}}$ can be encoded into $\text{BiLog}(M, \otimes, \epsilon, \Theta, \equiv, \tau)$ where Θ is standard, with $\mathcal{K} = \{\text{act}, \text{coact}\}$, and τ is always true.

The Encoding of \mathcal{L}_{spat} into BiLog

Rules $(R_a, R'_a) = (a.[]_1 \mid \bar{a}.[]_2, []_1 \mid []_2)$, for every $a \in X$.

$$\begin{aligned}\llbracket 0 \rrbracket &\stackrel{\text{def}}{=} X \\ \llbracket \neg A \rrbracket &\stackrel{\text{def}}{=} \neg \llbracket A \rrbracket \\ \llbracket A \wedge B \rrbracket &\stackrel{\text{def}}{=} \llbracket A \rrbracket \wedge \llbracket B \rrbracket \\ \llbracket A \mid B \rrbracket &\stackrel{\text{def}}{=} \llbracket A \rrbracket \stackrel{X}{\otimes} \llbracket B \rrbracket \\ \llbracket A \triangleright B \rrbracket &\stackrel{\text{def}}{=} \mathcal{N}X'. (((X' \leftarrow X) \otimes id_1) \circ \llbracket A \rrbracket_\epsilon) \multimap \\ &\quad (\mathbf{join} \circ ((X \Leftarrow X') \otimes id_1) \circ \llbracket B \rrbracket) \\ \llbracket \Diamond A \rrbracket &\stackrel{\text{def}}{=} \bigvee_{a \in X} \tilde{R}_a \circ [(\tilde{R}'_a \circ \neg \llbracket A \rrbracket) \wedge (\mathbf{T}_{\langle 1, X \rangle} \otimes \mathbf{T})]\end{aligned}$$

Theorem

For every CCS process P ,

$$P \models_{spat} A \quad \text{if and only if} \quad \llbracket P \rrbracket \models \llbracket A \rrbracket.$$

The Encoding of \mathcal{L}_{spat} into BiLog

Rules $(R_a, R'_a) = (a.[]_1 \mid \bar{a}.[]_2, []_1 \mid []_2)$, for every $a \in X$.

$$\begin{aligned}\llbracket 0 \rrbracket &\stackrel{\text{def}}{=} X \\ \llbracket \neg A \rrbracket &\stackrel{\text{def}}{=} \neg \llbracket A \rrbracket \\ \llbracket A \wedge B \rrbracket &\stackrel{\text{def}}{=} \llbracket A \rrbracket \wedge \llbracket B \rrbracket \\ \llbracket A \mid B \rrbracket &\stackrel{\text{def}}{=} \llbracket A \rrbracket \stackrel{X}{\otimes} \llbracket B \rrbracket \\ \llbracket A \triangleright B \rrbracket &\stackrel{\text{def}}{=} \mathcal{N}X'. (((X' \leftarrow X) \otimes id_1) \circ \llbracket A \rrbracket_\epsilon) \multimap \\ &\quad (\mathbf{join} \circ ((X \Leftarrow X') \otimes id_1) \circ \llbracket B \rrbracket) \\ \llbracket \Diamond A \rrbracket &\stackrel{\text{def}}{=} \bigvee_{a \in X} \tilde{R}_a \circ [(\tilde{R}'_a \circ \neg \llbracket A \rrbracket) \wedge (\mathbf{T}_{\langle 1, X \rangle} \otimes \mathbf{T})]\end{aligned}$$

Theorem

For every CCS process P ,

$$P \models_{spat} A \quad \text{if and only if} \quad \llbracket P \rrbracket \models \llbracket A \rrbracket.$$

Further work

A metalogical framework for static and dynamic resources, controlling sharing and separation.

- Place Graph Logic, Link Graph Logic, BiGraph Logic
- Spatial Tree Logic, Spatial Graph Logic, Context Tree Logic
- XML and Web Services

To be done:

- The role of transparency.
- Proof theory (not obvious how a completeness result can be obtained).
- Model checking for significant fragments (within the boundaries fixed by existing undecidability results).
- Monadic second order quantification for dynamics.

$$\Diamond A \quad \stackrel{\text{def}}{=} \quad \exists X. (Act \wedge X) \circ (R \circ [(X \circ R') \circ \neg A])$$