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Introduction
➤ Process calculi are often presented as:

1. Syntax

2. Structural congruence

3. Reactions

4. Labelled transition system(s) (LTS)

➤ This talk is about categorical machinery which allows the derivation of a
LTS from reactions.

➤ Bisimulation on such an LTS is a congruence, provided a general condition
is met.
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A Reduction System for CCS
Syntax:

p ::=
∑

i αi.pi | p | p | (νa)p | A〈~u〉

with ~A(~x) = ~p a set of parametric, mutually recursive definitions.

Structural Congruence:

summands in
∑

i can be rearranged arbitrarily

| is a monoid with 0 ,
∑

∅ for unit

(νa)p ≡ (νb)p{a := b} (b not in p)

(νa)(p | q) ≡ (νa)p | q (a not in q)

A〈~u〉 ≡ p{~x := ~u} (if A(~x) = p is a def)

Reduction Rules: (a.p+
∑

i αi.pi) | (ā.q +
∑

j βj .qj)↘ p | q

Reactive Contexts: E ::= ( ) | E | p | p | E | (νa)E

Labelled Transitions: . . .
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Coinduction Principles for Reductions
The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-calculus, . . . )

How can we give a congruent equivalence using the reaction rules?

➤ Barbed bisimulation ∼=
➤ (Milner, Sangiorgi 92)

➤ Equating insensitive terms
➤ (Honda, Yoshida 95)

➤ Deriving an LTS
➤ (Sewell 98, Leifer and Milner 00, this talk)

LTSs Desiderata:
➤ Operational Correspondence: p↘ q iff p τ

I q (up to ≡)
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Contexts as Labels
The intuition:

a C
I b iff C [a]↘ b

For instance:

a
−|ā

I 0 M
(λx.−)N

I M{N/x} KM −N
I M

Yep, but not quite:

➤ Too many labels not desirable:

➤ Useless combinatorial explosion: λx.xx −MN
I MMN

➤ Messes up the bisimulation (too coarse): l D
I D [r] for all rules l↘ r.

Choose only ‘minimal’ redex-enabling contexts

➤ Case analysis of basic situations: Sewell. Abstract approach: Leifer-Milner

a | ā | a

FMM – pp.5/24
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Reactive Systems
A generalisation of ground term rewriting systems.

➤ A category C with distinguished object I.

➤ A set of reaction rules R ⊆
⋃

C∈C C(I, C)× C(I, C).

➤ A set D of arrows of C called the reactive contexts.
Assume that d0 . d1 ∈ D implies d0 and d1 ∈ D.

The reaction relation is defined as

a I b iff a = d . l, b = d . r, d ∈ D and 〈l, r〉 ∈ R.

I
l

++

r

33 C0
d // C1
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Well-known Reactive Systems
➤ Term rewriting systems

➤ Graph rewriting systems

➤ via cospans

➤ Simple process calculi
➤ with terms up to structural congruence

FMM – pp.7/24



¿ ≪

¨

≫ À

RPOs
Suppose that C is a category and consider a redex square

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
•

d

__??????????????

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c // •

p

OO

m
»»
00
00

•++
c′′

uu
d′′

p′

UU

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

➤ a relative pushout (RPO) is a tuple 〈c, d, p〉 which satisfies the universal
property that:

➤ for any other such 〈c′, d′, p′〉 there exists a unique mediating morphism m.

FMM – pp.8/24
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Deriving LTS
The LTS derived from the reactive system has:

➤ Nodes: a : I → N

➤ Transitions: a f
I dr iff for 〈l, r〉 ∈ R and d ∈ D, 〈f, d, id〉 is a relative

pushout (idem pushout or IPO) of the square

•

•

f
??~~~~~~~

•

d

__@@@@@@@

•

a

__@@@@@@@ l

??~~~~~~~

➤ Thm. If all redex squares like the above have IPOs then the bisimulation

on the derived LTS is a congruence [Leifer-Milner 00]
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Applying RPOs
➤ When applied to term rewriting, RPOs yield the same LTS as Sewell’s.

➤ Leifer (2000) found RPOs in a restricted class of action graph contexts.

➤ Milner (2001) worked out RPOs for a graphical formalism called bigraphs.

➤ Jensen and Milner (2003) derived (essentially) the usual π labelled bisimulation

on asynchronous π using RPOs.

What about even very simple process calculi?

The technique doesn’t actually scale up!
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A Simple Calculus
Syntax:

p ::= 0 | a | a | p | p where a ∈ N.

Structural Congruence:

‘|’ associative, commutative with identity 0

Reactions:
a | a I 0

The Standard Labelled Transition System:

a a
I 0 a a

I 0 a | a τ
I 0

p x
I p′

q | p x
I q | p′

p ≡ p′ p′ x
I q′ q′ ≡ q

p x
I q
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Simple Calculus (ctd.)

0
a|a

//

a|a

²²

1

−

²²

1
−

// 1

0
a|a

//

a|a

²²

1

−|a

²²

1
−|a

// 1

0
a|a

//

a|a

²²

1

−|a

²²

1
−|a

// 1.

Only the left one could possibly be an IPO!

Yet, because of the structural congruence, the redex could partially come from

the context. The derived LTS cannot account for this: only a a | a −
I 0

transition. And that is bad!

We need to keep track of structural congruence to locate the reaction.
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Bunches and Wiring
Studied by Leifer and Milner (2000). A ‘minimalistic’ approach to connections and

wiring.

➤ A bunch

K L L M K

➤ A bunch context

N M

➤ The composition (substitution)

K L L M K N M

FMM – pp.13/24
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A commutative diamond
1

1

K

??¡¡¡¡¡¡¡¡¡¡¡
1

K

__>>>>>>>>>>>

0K

__>>>>>>>>>>>
K

??¡¡¡¡¡¡¡¡¡¡¡

1

1

K

??¡¡¡¡¡¡¡¡¡¡¡
1

K

__>>>>>>>>>>>

0K

__>>>>>>>>>>>
K

??¡¡¡¡¡¡¡¡¡¡¡

1

1 //

K

??¡¡¡¡¡¡¡¡¡¡¡
1

K

OO

1oo

K

__>>>>>>>>>>>

0K

__>>>>>>>>>>>
K

??¡¡¡¡¡¡¡¡¡¡¡

Another Canditate 1

1 K
//

K

??¡¡¡¡¡¡¡¡¡¡¡
2

OO

1
K

oo

K

__>>>>>>>>>>>

0K

__>>>>>>>>>>>
K

??¡¡¡¡¡¡¡¡¡¡¡
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Same problem, again!
1

1 //

K

??¡¡¡¡¡¡¡¡¡¡¡
1

K

OO

1oo

K

__>>>>>>>>>>>

0K

__>>>>>>>>>>>
K

??¡¡¡¡¡¡¡¡¡¡¡

1

1 K
//

K

??¡¡¡¡¡¡¡¡¡¡¡
2

OO

1
K

oo

K

__>>>>>>>>>>>

0K

__>>>>>>>>>>>
K

??¡¡¡¡¡¡¡¡¡¡¡

They are incomparable!
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2-categories
In other words, we need to keep track of how regions in the diagrams commute!

2-categories:

➤ Objects and arrows like in categories

➤ 2-cells: morphisms between arrows

A

a
&&

b

88

ÂÂ ÂÂ
®¶ B

FMM – pp.16/24
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GRPOs
Suppose that C is a 2-category with all 2-cells isomorphisms

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ρ +3 •

d

__??????????????

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

Suppose that C is a category

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c // •

p

OO

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

➤ a relative pushout ( RPO) is a tuple 〈c, d, p 〉 which satisfies
pc = c and pd = d, and the universal property that:

➤ for any other such 〈c′, d′, p′ 〉 there exists a unique
mediating morphism m.

FMM – pp.17/24
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GRPOs
Suppose that C is a 2-category with all 2-cells isomorphisms

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c //

α +3

γ
+3

•

p

OO

δ +3

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

➤ a G-relative pushout (GRPO) is a tuple 〈c, d, p, α, γ, δ〉 which satisfies
δl • pα • γa = ρ, and the universal property that:

➤ for any other such 〈c′, d′, p′, α′, γ′, δ′〉 there exists an essentially unique
mediating morphism m.
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Essential Uniqueness (I)
Suppose that C is a 2-category with all 2-cells isomorphisms

γ

•

•

c

??~~~~~~~~~~~~~~
c′ // •

δ

p

OO

•

d

__@@@@@@@@@@@@@@
d′oo

I

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

α

➤ δl • pα • γa = ρ

FMM – pp.18/24
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Essential Uniqueness (I)
Suppose that C is a 2-category with all 2-cells isomorphisms

γ

•

•

c

??~~~~~~~~~~~~~~
c′ // •

δ

p

OO

•

γ′ δ′

α′

++
c′′

uu
d′′

p′

UU

•

d

__@@@@@@@@@@@@@@
d′oo

I

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

α

➤ δl • pα • γa = ρ and δ′l • pα′ • γ′a = ρ
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Essential Uniqueness (I)
Suppose that C is a 2-category with all 2-cells isomorphisms

γ

•

•

c

??~~~~~~~~~~~~~~
c′ // •

δ

p

OO

m
»»

ϕ

τ

•

ψγ′ δ′

α′

++
c′′

uu
d′′

p′

UU

•

d

__@@@@@@@@@@@@@@
d′oo

I

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

α

➤ δl • pα • γa = ρ and δ′l • pα′ • γ′a = ρ

➤ τ . c′ • p′ . ϕ • γ′ = γ, δ′ • p′ . ψ • τ−1 . f = δ, ψ . l •m.α •ϕ . a = α′
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Essential Uniqueness (II)

γ

•

•

c

??~~~~~~~~~~~~~~
c′ // •

δ

p

OO

m
»»

ϕ

τ

•

ψγ′ δ′

α′

++
c′′

uu
d′′

p′

UU

•

d

__@@@@@@@@@@@@@@
d′oo

I

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

α

γ

•

•

c

??~~~~~~~~~~~~~~
c′ // •

δ

p

OO

m′

»»
ϕ′

τ ′

•

ψ′γ′ δ′

α′

++
c′′

uu
d′′

p′

UU

•

d

__@@@@@@@@@@@@@@
d′oo

I

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

α
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Essential Uniqueness (II)

γ

•

•

c

??~~~~~~~~~~~~~~
c′ // •

δ

p

OO

m
»»

ϕ

τ

•

ψγ′ δ′

α′

++
c′′

uu
d′′

p′

UU

•

d

``@@@@@@@@@@@@@@
d′oo

I

a
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➤ There exists unique ξ : m =⇒ m′ such that

➤ ξ . c′ •ϕ = ϕ′;

➤ ψ • ξ−1 . f = ψ′;

➤ τ ′ • p′ . ξ = τ .
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Deriving LTS
The LTS derived from the reactive system with structural congruence has:

➤ Nodes: [a] : I → N

➤ Transitions: [a]
[f ]

I [dr] iff there exists a 2-cell α such that for 〈l, r〉 ∈ R
and d ∈ D, 〈f, d, id, ρ, 1, 1〉 is a G-relative pushout (G-idem pushout or GIPO)
of the square

f
??ÄÄÄÄÄÄÄ ρ

+3

d

__???????

a

__??????? l

??ÄÄÄÄÄÄÄ

Thm. If every square in C such as the one above has a GRPO, then the LTS
bisimulation on the synthesised LTS is a congruence.

the theory is a generalisation of the theory of RPOs.
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Simple Process Calculus (ctd.)
Let C be the 2-category with

➤ A single Object

➤ Arrows: strings a1 | a2 | . . . | an
➤ composition by concatenation

➤ 2-cells: permutations a1 | a2 | . . . | an ⇒ aσ(1) | aσ(2) | . . . | aσ(n)

Then GRPOs exist and give the expected LTS.

In particular, a | a has transitions a | a
−|a

I a and a | a
−|a

I a, witnesses of its
potential interations with the environment.
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Simple Calculus (ctd.)
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Each of these squares is a GRPO!

The 2-cells trace the structural congruence and place the reaction.

Note: γ and δ swap the 1st/3rd and 2nd/3rd element, so
as to put in evidence the intended redex.

FMM – pp.22/24



¿ ≪ ≫ À

Bunches (ctd.)
Thm. The G-category of bunches and bunch isomorphisms as 2-cells has all GRPOs.
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Conclusion
➤ GRPOs have been applied successfully to simple, yet significative examples

such as Leifer-Milner’s category of ‘bunches and wires’ and simple process
algebras.

➤ They are a more standard categorical alternative to previous theory

➤ Milner’s ‘precategories;’
➤ Leifer’s ‘functorial reactive systems.’

➤ There is an easy encoding of the these two theories into the G-world.

So far, the price of the initial 2-categorical investment seems worth
paying. . .

Future Work
➤ Extend to more complicated process calculi (e.g. ambients), with complex

structural congruences (e.g. replication).

➤ Apply the theory to graph rewriting to obtain interesting new semantics.
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