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Introduction

1 Process calcull are often presented as:
1. Syntax

2. Structural congruence
3. Reactions
4. Labelled transition sysmm(s) (LTS)
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Introduction

1 Process calcull are often presented as:
1. Syntax

2. Structural congruence
3. Reactions
4. Labelled transition systgm(s) (LTS)

] This talk is about categorical machinery which allows the derivation of a
LTS from reactions.

[ Bisimulation on such an LTS is a CONEruence, provided a general condition
Is met.
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A Reduction System for CCS

Syntax:
pu=>_.o;.p; | plp| (va)p| A

with ff(f) — p a set of parametric, mutually recursive definitions.

Struetural COﬂgTUQY\QQZ

summands in ). can be rearranged arbitrarily
| is a monoid with 0 = " for unit
(va)p = (vb)p{a := b} (b not in p)

(va)(p|q) = (va)p|q (anoting)
AT) = p{T =@} (if A(Z) =pis a def)

Reduction Rules: (a.p+ >, cipi) | (@.g+ >, B5.45) \up|q
Reactive contexts. & == () | &lp | p| & | (va)&

Labelled Transitions. ...
S
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coinduction PT'\T\Q'\p\QS for Reductions

The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-caleulus, ... )

How can we give a CONEruent QqU'\\/&\QT\QQ using the reaction rules?
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coinduction PY\T\Q\p\QS for Reductions

The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-caleulus, ... )

How can we give a COngruent QC\U'\\/&\QT\QQ using the reaction rules?

[ Barbed bisimulation =
[ (Milner, Sangiorgi 92)
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[ Barbed bisimulation =
[ (Milner, Sangiorgi 92)

[] Equat'mg Insansitive terms
(1 (Honda, Yoshida 95)
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coinduction PY\T\Q\p\QS for Reductions

The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-caleulus, ... )

How can we give a CONEruent equivalence using the reaction rules?
[ Barbed bisimulation =
[ (Milner, Sangiorgi 92)

[] Equat'mg Insansitive terms
(1 (Honda, Yoshida 95)

1 Deriving an LTS
(1 (Sewell 98, Leifer and Milner 00, this talk)
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coinduction PY\T\Q\p\QS for Reductions

The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-caleulus, ... )

How can we give a CONEruent equivalence using the reaction rules?
[ Barbed bisimulation =
[ (Milner, Sangiorgi 92)

[] Equat'mg Insansitive terms
(1 (Honda, Yoshida 95)

1 Deriving an LTS
(1 (Sewell 98, Leifer and Milner 00, this talk)

LTSS Desiderata:
] Operational Correspondence: p \, ¢ iff p —» ¢ (up to =)
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Contexts as Labels

The intuition:

a —Z b iff €la] \, b
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Contexts as Labels

The intuition:

FOr instance:

_|a

a—» 0

M

a —Z b iff €la] \, b

(Ax.—)N
—>

MA{N/x}
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Contexts as Labels

The intuition:

For instanca:
a —_|a> 0

Yep, but not quite:

M

a -9 b iff €la] \, b

L] "Too many labels not desirable:

KM —X M

(] Useless combinatorial explosion: Ax.xx — YNy MMN

(] Messes up the bisimulation (too coarsey. / Zy 9 7| for all rules [ ™\, .
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Contexts as Labels

The intuition:

a -9 b iff €la] \, b

FOr instance:

0 —|a 0 M (Ax.—)N

Yep, but not quite:
L] "Too many labels not desirable:

M{N/x}

KM —X M

(] Useless combinatorial explosion: Ax.xx — YNy MMN

(] Messes up the bisimulation (too coarsey. / Zy 9 7| for all rules [ ™\, .

Choose omy ‘minimal’ YQGQX—QT\QD\H\% CONTAxTs

L1 Case &ﬂ&\yS\S O hasic situations: Sewell. Abstract &ppfO&Qh'. Leifer-Miiner

a

| a

| a

< K

=>1 >




Reactive Systems

A generalisation of ground term rewriting systems.

] A category C with distinguished object I.
[ A set of reaction rules R € (Joc C(1,C) x C(I,C).

(1 A set D of arrows of C called the 1eactive contexts.
Assume that dy.d; € D implies dy and dy € D.

The TRACTION TRIATION is defined as

a—»b iff a=d.l,b=d.r, deDand (I,r) € R.

l
1= 20—

r
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Wall-known Reactive Syst@ms

] TQrm rewriting systems

(1 Graph rewriting systems
[1 via cospans

I Simple Process caleul

(] with terms up to structural congruence
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RPOS

Suppose that C is a category and consider a redex square
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RPOS

Suppose that C is a category and consider a redex square

p F;\\\\\\\\\\\\\\\\\\
<

\

[ ]
o)
~-

N

1 a relative pushout (RPO) is a tuple (c, d, p) which satisfies the universal
property that:

< K

=>1 >

SUSSEX




RPOS

Suppose that C is a category and consider a redex square

c d
p
° (& > ® < d °
m\
a l

1 a relative pushout (RPO) is a tuple (c, d, p) which satisfies the universal
property that:

1 for any other such (c’,d’,p") there exists a unique mediating morphism m.
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Deriving LTS

The LTS derived from the reactive system has:
] Nodes. a: 1 — N

O Transitions. a —L dr iff for (I.r) € R and d € D, (f,d,id) is a relative

pushout (idem pushout or IPO) of the square

N
N4
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Deriving LTS

The LTS derived from the reactive system has:
] Nodes. a: 1 — N

0 Transitions: « L dr iff for (I,r) € R and d € D, (f,d,id) is a relative
pushout (idem pushout or IPO) of the square

N
N4

[ Tnm. If all redex squares like the above have IPOS then the bisimulation
on the derived LTS is a CONEruence [Laifer-Milner 00]
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Applying RPOS

1 When applied to term rewriting, RPOS yield the same LTS as Sewell's.

[ Laifer (2000) found RPOS in a restricted class of ACLI0ON graph contexts.
] Milner (2001) worked out RPOS for a graphical formalism called DIgrapns.

(] Jensen and Milner (2003) derived (essentially) the usual 7 labelled bisimulation
on asynchronous 7 using RPOS.
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Applying RPOS

1 When applied to term rewriting, RPOS yield the same LTS as Sewell's.

[ Laifer (2000) found RPOS in a restricted class of ACtion graph contexts.

] Milner (2001) worked out RPOS for a graphical formalism called DIgrapns.

(] Jensen and Milner (2003) derived (essentially) the usual 7 labelled bisimulation

on asynchronous 7 using RPOS.

What about even very simple process calculi?

The technique doesn't QQYU&\W scale up!
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A Simple Caleulus

Syntax:

pu=0|alal|p]|p

Struetural COﬂgTUQﬂQQ'.

Reactions:.

‘|" associative, commutative with identity O

ala—»0

The Standard Labelled Transition SyStle

where a € V.

a—=» 0

pi’p/

q|lp—»ql|p

T

a0 a|a—< 0

p=p p—=—>q ¢

q
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Simple Caleulus (ctd.)

Only the left one could possibly be an IPO!

Yet, because of the Structural congruence, the redex could partially come from

the CONTEXL. The derived LTS CANNOT account for this: only a a |a—» 0

transition. ANnd that is baq!
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Simple Caleulus (ctd.)

Only the left one could possibly be an |PO!

Yet, because of the Structural congruence, the redex could partially come from

the CONTEXL. The derived LTS CANNOT account for this: only a a |a—» 0
transition. And that is bad!

< K

We need 1o KQQP track of structural congruence 10 10Cate the reaction.
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Bunches and Wiring

Studied by Leifer and Milner (2000). A ‘minimalistic’ approach to connections and
wiring.
] A buneh

/\N

L M K
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Bunches and Wiring

Studied by Leifer and Milner (2000). A ‘minimalistic’ approach to connections and
wiring.
] A buneh

/\N

L M K

[~

N M

] A bunch context
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Bunches and Wiring

Studied by Leifer and Milner (2000). A ‘minimalistic’ approach to connections and
wiring.
] A buneh

/\N

L M K

[~

N M

] A bunch context

] The COMPOSITION (substitution)

AN

L LM KN M
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A commutative diamond

N
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A commutative diamond

BN AN
NV
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A commutative diamond

BN AN
NI

Another Canditate ﬁ ﬁ

%2%—1
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oame prob\o,m, agaln!

S s

L el 1N
NN
K 0 K K 0 K

They are incomparable!




2-categories

In other words, we need to keep track of NOW regions in the diagrams commute!
2-categories.
1 ODJeCts and Arrows like in categories

] 2-CellS. morphisms between arrows
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GRPOS

Suppose that C is a 2-category with all 2-cells isomorphisms

c d
° P > °
a l
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GRPOS

Suppose that C is a 2-category with all 2-cells isomorphisms

d
p

)
\

C
Y
—
> @< d

1 a G-relative pushout (GRPO) is a tuple (¢, d, p, a,,d) which satisfies
0l e paeya = p, and the universal property that:

] for any other such there exists an @SSeNTally unique
mediating morphism m.
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GRPOS

Suppose that C is a category

\
S ?

4N

S

1 a relative pushout ( RPO) is a tuple (¢, d,p ) which satisfies
pc = ¢ and pd = d, and the universal property that:

[ ]
e}
~-
o

] for any other such there exists a unique
mediating morphism m.
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—

Essential Uniqueness (1)

- 7

Suppose that C is a 2-category with all 2-cells isomorphisms

c d
p
v )
° c’ ° d’ °
o
a [
I

[] 5l.pa.7a:p
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—

Essential Uniqueness (1)

- 7

Suppose that C is a 2-category with all 2-cells isomorphisms

[] 5lopoz.7a:p and 5’l.po/.7’a:,0
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B

Essential Uniquenass (1)

- 7

Suppose that C is a 2-category with all 2-cells isomorphisms

[] 5lopoz.7a:p and 5/lop()é,o’}//&:,0

0 7.cep .pery =7, §ep el .f =6, W.lem.aep.a=da
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E 3santial Uuniqueness (\\)
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E 3santial Uuniqueness (\\)
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Deriving LTS

The LTS daerived from the reactive system with structural congruence has:
1 Nodes. [a] : I — N

-1 Transitions. [a Uly [dr] iff there exists a 2-cell « such that for ([,r) € R
and d € D, (f,d,id, p,1,1) is a G-relative pushout (G-idem pushout or GIPO]

of the square
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Deriving LTS

The LTS daerived from the reactive system with structural congruence has:
1 Nodes. [a] : I — N

-1 Transitions. [a Uly [dr] iff there exists a 2-cell « such that for ([,r) € R
and d € D, (f,d,id, p,1,1) is a G-relative pushout (G-idem pushout or GIPO]

of the square

Thm. If every square in C such as the one above has a GRPO, then the LTS

bisimulation on the synthesised LTS is a COngruence.

the theory is a generalisation of the theory of RPOs.
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Simple Process Caleulus (ctd. )

Let C be the 2-category with
1 A single Object

1 ATTOWS: strings a1 | as | ... | ay,
[] composition by concatenation

1 2-CQll8: permutations a1 | as | ... | an = ay1) | Go2) | -+ | Qo)
Then GRPOS exist and give the expected LTS.

In particular, a | @ has transitions a | @ 1% 4 and a | @ — @, witnesses of its
potential interations with the environment.
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Simple Caleulus (ctd.)

Each of these squares is a GRPO!

The 2-cells trace the structural congruence and place the reaction.

Note: ~ and o Swap the 1St/3¥d and 2ﬂd/3Yd elament, o
as 10 put in evidence the intended redex.
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Bunchas (Qtd.)

Thm. The G-category of bunches and bunch isomorphisms as 2-cells has all GRPOS.
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Bunchas (Qtd.)

Thm. The G-category of bunches and bunch isomorphisms as 2-cells has all GRPOS.

YN
Vi 4

NG X

o del 1N

=>1 >
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conclugion

1 GRPOs have been applied successfully to simple, yet significative examples
such as Leifer-Milner’s category of ‘DUNCNES and Wires' and simple process
algebras.

I They are a more standard categorical alternative to previous theory
[J Milner's ‘Precategories;’
[ Leifer’s ‘TUnctorial reactive systems.’

'] There is an easy encoding of the these two theories into the G-world.
So far, the price of the initial 2-categorical investment seems WOTTN

paying. ..

Future Work

] Extend to more complicated Process calCull (e.g. ambients), with complex
structural congruences (e.g. replication).

I Apply the theory to graph rewriting to obtain interesting new semantics.
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