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Introduction

‘ ® Process calcull are often presented as: \

1. Syntax

2. Structural congruence

3. Reactions

4. Labelled transition system(s) (LTS)

® This talk is about categorical machinery which allows the derivation of a
LTS from reactions.

® Bisimulation on such an LTS is a congruence, provided a general condition is
met.
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What 15 a Reduction System?

‘ A reduction system over a signature X is a relation \, C T, X T, Tx; is the set of \
tarms >0,

Reduction systems are often presented parametrically.
CONtexts: terms with variables: &'[x1, ..., x,]

Raeduction rules: set % of parametric rewriting rules:
‘5[:171, « o ,ZlZn] \ .@[3)1, . o ,.Cljn].

Evaluation Contexts: chosen set & of single-variable contexts.

Clry,....,xn] N D)x1,... 00| €EZ & evaluation context
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A Requction System IOT CCSs
Syntax:
pu=,a.pi | p|p| (va)p | Ad)

with ff(f) — p a set of parametric, mutually recursive definitions.

Struetural COﬂgTUQY\QQZ

summands in ). can be rearranged arbitrarily
| is a monoid with 0 £ " _ for unit
(va)p = (vb)p{a :=b} (b not in p)

(va)(p | q) = (va)p|q (anotin q)
AT = p{z =@} (if A) =pis a def)

Reduction Rules: (a.p+ >, ipi) | (a.g+ >, Bi-q5) \plq

Evaluation Comexts: & == () | &lp | p|& | (va)&
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Barved C ongruence
‘ Observations: \

ple Iff p=wb)(ap+) . a;.p;) withae{a,a}, a#b
plla iff p\"p and p' |,
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Barbed C ongruence
‘ ODbservations: \

ple Iff p=wb)(ap+) . a;.p;) withae{a,a}, a#b
pla iff pNJp andp’ |,

Barped Bisimulation: is symmetric relation % which is
» reduetion closed: p Z ¢ and p N\, p’ implies ¢ \* ¢’ with p" Z ¢;
& barb preserving. p % g and p |, implies g |l,,.

D ~ q if there exists a barbed bisimulation % such that p Z q.
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Barbed C ongruence
‘ ODbservations: \

ple Iff p=wb)(ap+) . a;.p;) withae{a,a}, a#b
pla iff pNJp andp’ |,

Barped Bisimulation: is symmetric relation % which is
» reduetion closed: p Z ¢ and p N\, p’ implies ¢ \* ¢’ with p" Z ¢;
& barb preserving. p % g and p |, implies g |l,,.

D ~ q if there exists a barbed bisimulation % such that p Z q.

Barbed congruence. p = g if ¢'(p) ~ % (q) for all contexts .
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what 1s a Labelled Transition System?

ITRather than describing the internal behaviour of a system (reductions) it descm
the interactions this is willing to offer to the surrounding enviroment.
These are characterised and described using label transitions, where a transition
indicates an activitiy and a label classifies it.

. . i - 7 - /

For instance client — ‘insert coin’ — client’. Or perhaps,
. / = 7 - /

machine — ‘delivers candy’ — machine’.

® This yield a compositional semantics, as e.g.:

. i . y . / . / = 7 " /
client — ‘insert coin’ — client’ machine — ‘delivers candy’ — machine

: : . ) : / c
client | machine — ‘yum’ — client’ | machine

® | abel transition systems admit proof techniques (LTS bisimulation), verification of
logic formulas (model-checking), . ..
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A Labelled Transttion System IOT CCS

N o

(Prefix)

> i +ap+ Y ajp; = p

(ParL) (ParR) (SynQ) )
(6% (87 / a / Qa /
p—=»p q—=»q p—»p q—» q
plg—=»p|q plg—=»p|{ plg—»p |
(Restr) (Dar)
p—=»p ) piZ:=u}—»p
-a ¢ {a,a} - A@) =p

(va)p = (va)p
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LTS BisStmulation

‘ LTS Bisimulation: is symmetric relation % which is Transition closed. \
® p%qand p-w p implies ¢ —T » ¢ with p' Z ¢':
p ~ q if there exists a LTS bisimulation % such that p Z q.

Coinduction principle. To prove p = ¢ it suffices to present % with p Z q.
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LTS BisStmulation

‘ LTS Bisimulation: is symmetric relation % which is Transition closed. \
® p%qand p-w p implies ¢ —T » ¢ with p' Z ¢':
p ~ q if there exists a LTS bisimulation % such that p Z q.

Coinduction principle. To prove p = ¢ it suffices to present % with p Z q.

LTSS Desiderata:
® Congruence. ~ is a congruence.
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comauction Pr ?}TLC’ZT)LQS Jor Reductions

‘ The reactions in a process calculus often give the computational intuitions of the \
calculus (eg. CCS, pi-calculus, ambient-caleulus, ... )

How can we give a CONgruent Q(\U'\\/&\QT\QQ using the reaction rules?
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comauction Pr ?}TLC’ZT)LQS Jor Reductions

‘ The reactions in a process calculus often give the computational intuitions of the \
calculus (eg. CCS, pi-calculus, ambient-caleulus, ... )

How can we give a CONgruent Q(\U'\\/&\QT\QQ using the reaction rules?

® Barped bisimulation
® (Milner, Sangiorgi 92)
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comauction Pr ?}TLC’ZT)LQS Jor Reductions

‘ The reactions in a process calculus often give the computational intuitions of the \
calculus (eg. CCS, pi-calculus, ambient-caleulus, ... )

How can we give a CONgruent Q(\U'\\/&\QT\QQ using the reaction rules?

® Barped bisimulation
® (Milner, Sangiorgi 92)

N Equat‘mg Insansitive terms
# (Honda, Yoshida 95)
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comauction Pr ?}TLC’ZT)LQS Jor Reductions

‘ The reactions in a process calculus often give the computational intuitions of the \
calculus (eg. CCS, pi-calculus, ambient-caleulus, ... )

How can we give a CONgruent Q(\U'\\/&\QT\QQ using the reaction rules?

® Barped bisimulation
® (Milner, Sangiorgi 92)

N Equat‘mg Insansitive terms
# (Honda, Yoshida 95)

® Deriving an LTS
& (Sewell 98, Leifer and Milner 00, this talk)
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comauction Pr ?}TLC’ZT)LQS Jor Reductions

‘ The reactions in a process calculus often give the computational intuitions of the \
calculus (eg. CCS, pi-calculus, ambient-caleulus, ... )

How can we give a CONgruent Q(\U'\\/&\QT\QQ using the reaction rules?

® Barped bisimulation
® (Milner, Sangiorgi 92)

N Equat‘mg Insansitive terms
# (Honda, Yoshida 95)

® Deriving an LTS
& (Sewell 98, Leifer and Milner 00, this talk)

LTSS Desiderata.
& Operational Correspondence: p N\, ¢ iff p —» ¢ (up to =)
® Correetness: p ~ g implies p = ¢

& Completeness: p = ¢ implies p ~ ¢ \
‘ | |
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‘ The intuition:

SUSSEX

contexts as Labels

a L b iff €la] \, b



contexts as Labels

‘ The intuition:

FOr instance:

a L b iff €la] \, b

a—% 0 M LREDIN NN /2) KM —2 A
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contexts as Labels

‘ The intuition:.

FOr instance:

a L b iff €la] \, b

a —% 0 M L2V AN/ KM — M

Yep, but not quite:
» Too many lapels not desirable:

» Useless combinatorial explosion: Az.zz —2~—p MMN

® Messes up the bisimulation (too coarsey. / Z 5 9 ] for all rules [ ™\ .
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contexts as Labels

‘ The intuition:.

FOr instance:

a L b iff €la] \, b

(Az.—)N
—>

a— 0 M M{N/z} KM —Y 3 M

Yep, but not quite:
» To0 many lapels not desirable:

» Useless combinatorial explosion: Az.zz —2~—p MMN

® Messes up the bisimulation (too coarsey. / Z 5 9 ] for all rules [ ™\ .

Choose Oﬂ\y ‘minimal’ YQGQX—QY\&D\\D% CONTAxts

» Caso analysis of basic situations. Sewell. Abstract &ppfO&th Leiter-Milner
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Reactive S ystems

‘ A generalisation of ground term rewriting systems.

® A category C with distinguished object I.
& A set of reaction rules R € J, e C(I,C) x C(I,C).

® A set D of arrows of C called the reactive contexts.
Assume that dy.d; € D implies dy and d; € D.

The reaction relation is defined as

a—»b iff a=d.l,b=d.r, deDand (I,r) €R.

< «
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Well-knoum Reactive Systems

‘ » TOoIM rewriting systems \

® Graph rewriting systems
# via cospans

® Simple Process caleuli

# with terms up to structural congruence
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RPOS

‘ Suppose that C is a category and consider a redex square
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RPOS

‘ Suppose that C is a category and consider a redex square \
/p\

® A ralative pushout (RPO) is a tuple (c, d, p) which satisfies the universal
property that:
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RPOS

‘ Suppose that C is a category and consider a redex square \
[
c d
p
. c b ® 4 d .

® A ralative pushout (RPO) is a tuple (c, d, p) which satisfies the universal
property that:

® for any other such there @xists a unique mediating morphism m.

< = : =
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Deriving LTS

‘ The LTS derived from the reactive system has: \

® NodeS  a: 1 — N

& Transitions: « —L» dr iff for (I,r) € Rand d € D, (f,d,id) is a relative
pushout (idem pushout or IPO) of the square

N
NA

< = > |
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Derwing LTS

‘ The LTS derived from the reactive system has: \

® NodeS a: I — N

& Transitions: « - dr iff for (I,r) € Rand d € D, (f,d,id) is a relative
pushout (idem pushout or IPO) of the square

N
NA

® Thm. If all redex squares like the above have IPOS then the bisimulation on
the derived LTS is a CONgruence [Leifer-Milner 00]
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Applying RPOS
‘ ® When applied to term rewriting, RPOS yield the same LTS as Sewell’s. \
$  Laifer (2000) found RPOS in a restricted class of ACLION graph contexts.

® Milner (2001) worked out RPOS for a graphical formalism called DIgrapns.

® Jensen and Milner (2002) derived (essentially) the usual bisimulation for
asynchronous 7 using RPOS.
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Applying RPOS

‘ ® When applied to term rewriting, RPOS yield the same LTS as Sewell’s. \

<

9

9

Leifer (2000) found RPOS in a restricted class of A¢TION grgph contexts.

Milner (2001) worked out RPOS for a graphical formalism called DIrapns.

Jensen and Milner (2002) derived (essentially) the usual bisimulation for
asynchronous 7 using RPOS.

What about even very simple process calculi?
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A S’mete Caleculus

Syntax:

pa=0]alalpl|p where a € N.

Struetural COﬂgTUQﬂQQZ

‘|" associative, commutative with identity O

Reactions:.
ala—» 0

The Standard Labelled Transition SyStle

a2 0 a0 a|a—<» 0
p—»p p=p p=p»q¢d ¢d=q
‘ qlp—=»q|p p—»q
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S@mpbe Calcultus cta.

Vi
<
yJ
yA
A\
Vi
N\

Only the left one could possibly be an |PO!

Yet, because of the Structural congruence, the redex could partially come from the

CONTEXT. The derived LTS ¢anN0Ol account for this: only a a | @ — 0 transition.
And that is bad!
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S?mebé Calcultus cta.

Vi
<
yJ
yA
A\
Vi
N\

Only the left one could possibly be an |PO!

Yet, because of the Structural congruence, the redex could partially come from the

CONTEXT. The derived LTS ¢anN0Ol account for this: only a a | @ — 0 transition.
And that is bad!

We need 10 KQQP track of structural congruence 1o |0Cate the reaction.
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2-Cateqores

‘ In other words, we need to keep track of NOW regions in the diagrams commute! \
2-categories.
® ODbjects and AITOWS like in categories

® 2-CllsT morphisms between arrows
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SUSSEX



GRPOS

‘ Suppose that C is a 2-category with all 2-cells isomorphisms \
D
:::;2;:§;> ::::éi::;>
c > < d

=

® 2 G-relative pushout (GRPO) is a tuple (¢, d, p, a, v, d) which satisfies the
universal property that:

® for any other such there exists an @ssentially unique

mediating morphism m.
‘ > | \
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GRPOS

‘ Suppose that C is a category

9

9
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p

Z

BN

N

a relative pushout ( RPO) is a tuple (¢, d,p

universal property that:

for any other such
mediating morphism m.

there exists a

) which satisfies the

unique
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S”mete Process Calculus cta.

Let C be the 2-category with \
® A single Object

® ATTOWS. strings ay |as | ... | ap
#® composition by concatenation

® 2-CellS: permutations ay | az | ... | ap = av1) | Go(2) | -+ - | @)

Then GRPOS exist and give the expected LTS.

. _ - — —|a — —|la. _— . .
In particular, a | @ has transitions a | @ 1% 4 and a | @ —1% %, witnesses of its

potential interations with the environment.
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Sv;mpLe Calcultus cta.

ala ala ala
° > o ° > ® ° > ®
_ id _ Y _ ) _
ala — ala —la ala —la
~ ~ ~ ~ ~ ~
° > @ ° > ® ° > ®
- —la —la

Each of these squares is a GRPO!

The 2-cells trace the structural congruence and place the reaction.

Note: ~ and o Swap the 2nd and 3rd element, so as 1o put
In Qvidence the intended redex.
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Derwing LTS

‘ The LTS daerived from the reactive system with structural congruence has: \

® Nodes. [a] : I — N

& Transitions: a Ly dr iff there exists a 2-cell o such that for (l,r) € R and
deD, (f,did,a,1,1) is a G-relative pushout (G-idem pushout or GIPO) of
the square

e - |

SUSSEX



Derwing LTS

‘ The LTS daerived from the reactive system with structural congruence has: \
® Nodes: [a]: I — N

® Transitions: a L dr iff there exists a 2-cell a such that for (l,r) € R and

deD, (f,did,a,1,1) is a G-relative pushout (G-idem pushout or GIPO) of
the square

Thm. If every square in C such as the one above has a GRPO, then the LTS
bisimulation on the synthesised LTS is a COngruence.

the theory is a generalisation of the theory of RPOs.
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conclusion

GRPOs have been applied successfully to simple, yet significative examples \
such as Leifer-Milner’s category of ‘Duncnes and Wires’, to the theory of
Milner’s ‘Drecategories’ and Leifer's category ‘above’ construction.

In all these cases, they uniformly yield labelled transition systems and
bisimulation congruences DQLTQr than those derived by the previous theories,
while G\SpQﬂS\ﬂg with complex, ad-hoc notions (such as ‘Trails’, ‘support

sats and translations’ and partially defined composition, and ‘TUNCTOrial
reactive systems’) in favour of streamline 2-category theory.

So far, the price of the initial 2-categorical investment seems WOTth paying. . .

Extend to more complicated Process calCull (e.g. ambients), with complex
structural congruences (e.g. replication).

Apply the theory to graph rewriting to obtain interesting new semantics.
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