
¿ ≪ ≫ À

Deriving Bisimulation Congruences:

2-categories vs precategories
FOSSACS 2003

Vladimiro Sassone

��� ��� � �� � 	 � � �
��
�� � � � � � � � � �� � 	 �

University of Sussex,

FOSSACS 2003 – pp.1/23

¿ ≪ ≫ À

Introduction

Process calculi are often presented as:
1. Syntax

2. Structural congruence

3. Reactions

4. Labelled transition system(s) (LTS)

This talk is about categorical machinery which allows the derivation of a
LTS from reactions.

Bisimulation on such an LTS is a congruence, provided a general condition is
met.

FOSSACS 2003 – pp.2/23

¿ ≪ ≫ À

Introduction

Process calculi are often presented as:
1. Syntax

2. Structural congruence

3. Reactions

4. Labelled transition system(s) (LTS)

This talk is about categorical machinery which allows the derivation of a
LTS from reactions.

Bisimulation on such an LTS is a congruence, provided a general condition is
met.

FOSSACS 2003 – pp.2/23

¿ ≪ ≫ À

What is a Reduction System?

A reduction system over a signature Σ is a relation ↘ ⊆ TΣ × TΣ, TΣ is the set of
terms Σ.

Reduction systems are often presented parametrically.

Contexts: terms with variables: C [x1, . . . , xn]

Reduction rules: set R of parametric rewriting rules:
C [x1, . . . , xn]↘ D [x1, . . . , xn].

Evaluation Contexts: chosen set E of single-variable contexts.

C [x1, . . . , xn]↘ D [x1, . . . , xn] ∈ R E evaluation context

E [C [t1, . . . , tn]]↘ E [D [t1, . . . , tn]]

FOSSACS 2003 – pp.3/23

¿ ≪ ≫ À

A Reduction System for CCS

Syntax:
p ::=

∑

i αi.pi | p | p | (νa)p | A〈~u〉

with ~A(~x) = ~p a set of parametric, mutually recursive definitions.

Structural Congruence:

summands in
∑

i can be rearranged arbitrarily

| is a monoid with 0 ,
∑

∅ for unit

(νa)p ≡ (νb)p{a := b} (b not in p)

(νa)(p | q) ≡ (νa)p | q (a not in q)

A〈~u〉 ≡ p{~x := ~u} (if A(~x) = p is a def)

Reduction Rules: (a.p+
∑

i αi.pi) | (ā.q +
∑

j βj .qj)↘ p | q

Evaluation Contexts: E ::= () | E | p | p | E | (νa)E

FOSSACS 2003 – pp.4/23

¿ ≪ ≫ À

Barbed Congruence

Observations:

p ↓a iff p ≡ (νb)(α.p+
∑

i αi.pi) with α ∈ {a, ā}, a 6= b

p ⇓a iff p↘∗ p′ and p′ ↓a

Barbed Bisimulation: is symmetric relation R which is

reduction closed: p R q and p↘ p′ implies q ↘∗ q′ with p′ R q′;

barb preserving: p R q and p ↓a implies q ⇓a.

p
·
∼= q if there exists a barbed bisimulation R such that p R q.

Barbed Congruence: p ∼= q if C (p)
·
∼= C (q) for all contexts C .

FOSSACS 2003 – pp.5/23

¿ ≪ ≫ À

Barbed Congruence

Observations:

p ↓a iff p ≡ (νb)(α.p+
∑

i αi.pi) with α ∈ {a, ā}, a 6= b

p ⇓a iff p↘∗ p′ and p′ ↓a

Barbed Bisimulation: is symmetric relation R which is

reduction closed: p R q and p↘ p′ implies q ↘∗ q′ with p′ R q′;

barb preserving: p R q and p ↓a implies q ⇓a.

p
·
∼= q if there exists a barbed bisimulation R such that p R q.

Barbed Congruence: p ∼= q if C (p)
·
∼= C (q) for all contexts C .

FOSSACS 2003 – pp.5/23

¿ ≪ ≫ À

Barbed Congruence

Observations:

p ↓a iff p ≡ (νb)(α.p+
∑

i αi.pi) with α ∈ {a, ā}, a 6= b

p ⇓a iff p↘∗ p′ and p′ ↓a

Barbed Bisimulation: is symmetric relation R which is

reduction closed: p R q and p↘ p′ implies q ↘∗ q′ with p′ R q′;

barb preserving: p R q and p ↓a implies q ⇓a.

p
·
∼= q if there exists a barbed bisimulation R such that p R q.

Barbed Congruence: p ∼= q if C (p)
·
∼= C (q) for all contexts C .

FOSSACS 2003 – pp.5/23

¿ ≪ ≫ À

What is a Labelled Transition System?

Rather than describing the internal behaviour of a system (reductions) it describe
the interactions this is willing to offer to the surrounding enviroment.
These are characterised and described using label transitions, where a transition
indicates an activitiy and a label classifies it.

For instance client− ‘insert coin’ → client′. Or perhaps,

machine− ‘delivers candy’ → machine′.

This yield a compositional semantics, as e.g.:

client− ‘insert coin’ → client′ machine− ‘delivers candy’ → machine′

client | machine− ‘yum’→ client′ | machine′

Label transition systems admit proof techniques (LTS bisimulation), verification of
logic formulas (model-checking), . . .

FOSSACS 2003 – pp.6/23

¿ ≪ ≫ À

A Labelled Transition System for CCS

(Prefix)

∑

i αi.pi + α.p+
∑

j αj .pj
α

I p

(ParL)
p α

I p

p | q α
I p′ | q

(ParR)
q α

I q′

p | q α
I p | q′

(Sync)
p a

I p′ q ā
I q′

p | q τ
I p′ | q′

(Restr)
p α

I p′

α 6∈ {a, ā}
(νa)p α

I (νa)p′

(Def)
p{~x := ~u} α

I p′

A〈~x〉 = p
A〈~u〉 α

I p′

FOSSACS 2003 – pp.7/23

¿ ≪ ≫ À

LTS Bisimulation

LTS Bisimulation: is symmetric relation R which is transition closed:

p R q and p α
I p′ implies q τ∗α̂τ∗

I q′ with p′ R q′;

p ≈ q if there exists a LTS bisimulation R such that p R q.

Coinduction principle: To prove p ≈ q it suffices to present R with p R q.

LTSs Desiderata:
Congruence: ≈ is a congruence.

FOSSACS 2003 – pp.8/23

¿ ≪ ≫ À

LTS Bisimulation

LTS Bisimulation: is symmetric relation R which is transition closed:

p R q and p α
I p′ implies q τ∗α̂τ∗

I q′ with p′ R q′;

p ≈ q if there exists a LTS bisimulation R such that p R q.

Coinduction principle: To prove p ≈ q it suffices to present R with p R q.

LTSs Desiderata:
Congruence: ≈ is a congruence.

FOSSACS 2003 – pp.8/23

¿ ≪ ≫ À

Coinduction Principles for Reductions

The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-calculus, . . .)

How can we give a congruent equivalence using the reaction rules?

Barbed bisimulation
(Milner, Sangiorgi 92)

Equating insensitive terms
(Honda, Yoshida 95)

Deriving an LTS
(Sewell 98, Leifer and Milner 00, this talk)

LTSs Desiderata:
Operational Correspondence: p↘ q iff p τ

I q (up to ≡)

Correctness: p ≈ q implies p ∼= q

Completeness: p ∼= q implies p ≈ q

FOSSACS 2003 – pp.9/23

¿ ≪ ≫ À

Coinduction Principles for Reductions

The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-calculus, . . .)

How can we give a congruent equivalence using the reaction rules?

Barbed bisimulation
(Milner, Sangiorgi 92)

Equating insensitive terms
(Honda, Yoshida 95)

Deriving an LTS
(Sewell 98, Leifer and Milner 00, this talk)

LTSs Desiderata:
Operational Correspondence: p↘ q iff p τ

I q (up to ≡)

Correctness: p ≈ q implies p ∼= q

Completeness: p ∼= q implies p ≈ q

FOSSACS 2003 – pp.9/23

¿ ≪ ≫ À

Coinduction Principles for Reductions

The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-calculus, . . .)

How can we give a congruent equivalence using the reaction rules?

Barbed bisimulation
(Milner, Sangiorgi 92)

Equating insensitive terms
(Honda, Yoshida 95)

Deriving an LTS
(Sewell 98, Leifer and Milner 00, this talk)

LTSs Desiderata:
Operational Correspondence: p↘ q iff p τ

I q (up to ≡)

Correctness: p ≈ q implies p ∼= q

Completeness: p ∼= q implies p ≈ q

FOSSACS 2003 – pp.9/23

¿ ≪ ≫ À

Coinduction Principles for Reductions

The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-calculus, . . .)

How can we give a congruent equivalence using the reaction rules?

Barbed bisimulation
(Milner, Sangiorgi 92)

Equating insensitive terms
(Honda, Yoshida 95)

Deriving an LTS
(Sewell 98, Leifer and Milner 00, this talk)

LTSs Desiderata:
Operational Correspondence: p↘ q iff p τ

I q (up to ≡)

Correctness: p ≈ q implies p ∼= q

Completeness: p ∼= q implies p ≈ q

FOSSACS 2003 – pp.9/23

¿ ≪ ≫ À

Coinduction Principles for Reductions

The reactions in a process calculus often give the computational intuitions of the
calculus (eg. CCS, pi-calculus, ambient-calculus, . . .)

How can we give a congruent equivalence using the reaction rules?

Barbed bisimulation
(Milner, Sangiorgi 92)

Equating insensitive terms
(Honda, Yoshida 95)

Deriving an LTS
(Sewell 98, Leifer and Milner 00, this talk)

LTSs Desiderata:
Operational Correspondence: p↘ q iff p τ

I q (up to ≡)

Correctness: p ≈ q implies p ∼= q

Completeness: p ∼= q implies p ≈ q

FOSSACS 2003 – pp.9/23

¿ ≪ ≫ À

Contexts as Labels

The intuition:
a C

I b iff C [a]↘ b

For instance:

a
−|ā

I 0 M
(λx.−)N

I M{N/x} KM −N
I M

Yep, but not quite:

Too many labels not desirable:

Useless combinatorial explosion: λx.xx −MN
I MMN

Messes up the bisimulation (too coarse): l D
I D [r] for all rules l↘ r.

Choose only ‘minimal’ redex-enabling contexts

Case analysis of basic situations: Sewell. Abstract approach: Leifer-Milner

a | ā | a

FOSSACS 2003 – pp.10/23

¿ ≪ ≫ À

Contexts as Labels

The intuition:
a C

I b iff C [a]↘ b

For instance:

a
−|ā

I 0 M
(λx.−)N

I M{N/x} KM −N
I M

Yep, but not quite:

Too many labels not desirable:

Useless combinatorial explosion: λx.xx −MN
I MMN

Messes up the bisimulation (too coarse): l D
I D [r] for all rules l↘ r.

Choose only ‘minimal’ redex-enabling contexts

Case analysis of basic situations: Sewell. Abstract approach: Leifer-Milner

a | ā | a

FOSSACS 2003 – pp.10/23

¿ ≪ ≫ À

Contexts as Labels

The intuition:
a C

I b iff C [a]↘ b

For instance:

a
−|ā

I 0 M
(λx.−)N

I M{N/x} KM −N
I M

Yep, but not quite:

Too many labels not desirable:

Useless combinatorial explosion: λx.xx −MN
I MMN

Messes up the bisimulation (too coarse): l D
I D [r] for all rules l↘ r.

Choose only ‘minimal’ redex-enabling contexts

Case analysis of basic situations: Sewell. Abstract approach: Leifer-Milner

a | ā | a

FOSSACS 2003 – pp.10/23

¿ ≪ ≫ À

Contexts as Labels

The intuition:
a C

I b iff C [a]↘ b

For instance:

a
−|ā

I 0 M
(λx.−)N

I M{N/x} KM −N
I M

Yep, but not quite:

Too many labels not desirable:

Useless combinatorial explosion: λx.xx −MN
I MMN

Messes up the bisimulation (too coarse): l D
I D [r] for all rules l↘ r.

Choose only ‘minimal’ redex-enabling contexts

Case analysis of basic situations: Sewell. Abstract approach: Leifer-Milner

a | ā | a

FOSSACS 2003 – pp.10/23

¿ ≪ ≫ À

Reactive Systems

A generalisation of ground term rewriting systems.

A category C with distinguished object I.

A set of reaction rules R ⊆
⋃

C∈C C(I, C)× C(I, C).

A set D of arrows of C called the reactive contexts.
Assume that d0 . d1 ∈ D implies d0 and d1 ∈ D.

The reaction relation is defined as

a I b iff a = d . l, b = d . r, d ∈ D and 〈l, r〉 ∈ R.

I
l

++

r

33 C0
d // C1

FOSSACS 2003 – pp.11/23

¿ ≪ ≫ À

Well-known Reactive Systems

Term rewriting systems

Graph rewriting systems
via cospans

Simple process calculi
with terms up to structural congruence

FOSSACS 2003 – pp.12/23

¿ ≪
¨

≫ À

RPOs

Suppose that C is a category and consider a redex square

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
•

d

__??????????????

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c // •

p

OO

m
»»
00
00

•++
c′′

uu
d′′

p′

UU

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

a relative pushout (RPO) is a tuple 〈c, d, p〉 which satisfies the universal
property that:

for any other such 〈c′, d′, p′〉 there exists a unique mediating morphism m.

FOSSACS 2003 – pp.13/23

¿ ≪
¨

≫ À

RPOs

Suppose that C is a category and consider a redex square

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c // •

p

OO

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

a relative pushout (RPO) is a tuple 〈c, d, p〉 which satisfies the universal
property that:

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c // •

p

OO

m
»»
00
00

•++
c′′

uu
d′′

p′

UU

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

a relative pushout (RPO) is a tuple 〈c, d, p〉 which satisfies the universal
property that:

for any other such 〈c′, d′, p′〉 there exists a unique mediating morphism m.

FOSSACS 2003 – pp.13/23

¿ ≪
¨

≫ À

RPOs

Suppose that C is a category and consider a redex square

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c // •

p

OO

m
»»
00
00

•++
c′′

uu
d′′

p′

UU

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

a relative pushout (RPO) is a tuple 〈c, d, p〉 which satisfies the universal
property that:

for any other such 〈c′, d′, p′〉 there exists a unique mediating morphism m.

FOSSACS 2003 – pp.13/23

¿ ≪ ≫ À

Deriving LTS

The LTS derived from the reactive system has:
Nodes: a : I → N

Transitions: a f
I dr iff for 〈l, r〉 ∈ R and d ∈ D, 〈f, d, id〉 is a relative

pushout (idem pushout or IPO) of the square

•

•

f
??~~~~~~~

•

d

__@@@@@@@

•

a

__@@@@@@@ l

??~~~~~~~

Thm. If all redex squares like the above have IPOs then the bisimulation on
the derived LTS is a congruence [Leifer-Milner 00]

FOSSACS 2003 – pp.14/23

¿ ≪ ≫ À

Deriving LTS

The LTS derived from the reactive system has:
Nodes: a : I → N

Transitions: a f
I dr iff for 〈l, r〉 ∈ R and d ∈ D, 〈f, d, id〉 is a relative

pushout (idem pushout or IPO) of the square

•

•

f
??~~~~~~~

•

d

__@@@@@@@

•

a

__@@@@@@@ l

??~~~~~~~

Thm. If all redex squares like the above have IPOs then the bisimulation on
the derived LTS is a congruence [Leifer-Milner 00]

FOSSACS 2003 – pp.14/23

¿ ≪ ≫ À

Applying RPOs

When applied to term rewriting, RPOs yield the same LTS as Sewell’s.

Leifer (2000) found RPOs in a restricted class of action graph contexts.

Milner (2001) worked out RPOs for a graphical formalism called bigraphs.

Jensen and Milner (2002) derived (essentially) the usual bisimulation for

asynchronous π using RPOs.

What about even very simple process calculi?

The technique doesn’t actually scale up!

FOSSACS 2003 – pp.15/23

¿ ≪ ≫ À

Applying RPOs

When applied to term rewriting, RPOs yield the same LTS as Sewell’s.

Leifer (2000) found RPOs in a restricted class of action graph contexts.

Milner (2001) worked out RPOs for a graphical formalism called bigraphs.

Jensen and Milner (2002) derived (essentially) the usual bisimulation for

asynchronous π using RPOs.

What about even very simple process calculi?

The technique doesn’t actually scale up!

FOSSACS 2003 – pp.15/23

¿ ≪ ≫ À

A Simple Calculus

Syntax:
p ::= 0 | a | a | p | p where a ∈ N.

Structural Congruence:

‘|’ associative, commutative with identity 0

Reactions:
a | a I 0

The Standard Labelled Transition System:

a a
I 0 a a

I 0 a | a τ
I 0

p x
I p′

q | p x
I q | p′

p ≡ p′ p′ x
I q′ q′ ≡ q

p x
I q

FOSSACS 2003 – pp.16/23

¿ ≪ ≫ À

Simple Calculus ctd.

0
a|a

//

a|a

²²

1

−

²²

1
−

// 1

0
a|a

//

a|a

²²

1

−|a

²²

1
−|a

// 1

0
a|a

//

a|a

²²

1

−|a

²²

1
−|a

// 1.

Only the left one could possibly be an IPO!

Yet, because of the structural congruence, the redex could partially come from the
context. The derived LTS cannot account for this: only a a | a −

I 0 transition.
And that is bad!

We need to keep track of structural congruence to locate the reaction.

FOSSACS 2003 – pp.17/23

¿ ≪ ≫ À

Simple Calculus ctd.

0
a|a

//

a|a

²²

1

−

²²

1
−

// 1

0
a|a

//

a|a

²²

1

−|a

²²

1
−|a

// 1

0
a|a

//

a|a

²²

1

−|a

²²

1
−|a

// 1.

Only the left one could possibly be an IPO!

Yet, because of the structural congruence, the redex could partially come from the
context. The derived LTS cannot account for this: only a a | a −

I 0 transition.
And that is bad!

We need to keep track of structural congruence to locate the reaction.

FOSSACS 2003 – pp.17/23

¿ ≪ ≫ À

2-categories

In other words, we need to keep track of how regions in the diagrams commute!

2-categories:

Objects and arrows like in categories

2-cells: morphisms between arrows

A

a
&&

b

88

ÂÂ ÂÂ
®¶ B

FOSSACS 2003 – pp.18/23

¿ ≪
¨

≫ À

GRPOs

Suppose that C is a 2-category with all 2-cells isomorphisms

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c //

α
+3

γ
+3

•

p

OO

δ +3

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

a G-relative pushout (GRPO) is a tuple 〈c, d, p, α, γ, δ〉 which satisfies the
universal property that:

for any other such 〈c′, d′, p′, α′, γ′, δ′〉 there exists an essentially unique
mediating morphism m.

Suppose that C is a category

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c // •

p

OO

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

a relative pushout (RPO) is a tuple 〈c, d, p 〉 which satisfies the
universal property that:

for any other such 〈c′, d′, p′ 〉 there exists a unique
mediating morphism m.

FOSSACS 2003 – pp.19/23

¿ ≪
¨

≫ À

GRPOs

Suppose that C is a category

•

•

c

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
c // •

p

OO

•

d

__??????????????
doo

•

a

__??????????????

l

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

a relative pushout (RPO) is a tuple 〈c, d, p 〉 which satisfies the
universal property that:

for any other such 〈c′, d′, p′ 〉 there exists a unique
mediating morphism m.

FOSSACS 2003 – pp.19/23

¿ ≪ ≫ À

Simple Process Calculus ctd.

Let C be the 2-category with

A single Object

Arrows: strings a1 | a2 | . . . | an
composition by concatenation

2-cells: permutations a1 | a2 | . . . | an ⇒ aσ(1) | aσ(2) | . . . | aσ(n)

Then GRPOs exist and give the expected LTS.

In particular, a | a has transitions a | a
−|a

I a and a | a
−|a

I a, witnesses of its
potential interations with the environment.

FOSSACS 2003 – pp.20/23

¿ ≪ ≫ À

Simple Calculus ctd.

•
a|a

//

a|a

²²

•

−

²²
•

−
//

id
:B}}}}
}}}}

•

•
a|a

//

a|a

²²

•

−|a

²²
•

−|a
//

γ :B}}}}
}}}}

•

•
a|a

//

a|a

²²

•

−|a

²²
•

−|a
//

δ
:B}}}}
}}}}

•

Each of these squares is a GRPO!

The 2-cells trace the structural congruence and place the reaction.

Note: γ and δ swap the 2nd and 3rd element, so as to put
in evidence the intended redex.

FOSSACS 2003 – pp.21/23

¿ ≪ ≫ À

Deriving LTS

The LTS derived from the reactive system with structural congruence has:
Nodes: [a] : I → N

Transitions: a [f]
I dr iff there exists a 2-cell α such that for 〈l, r〉 ∈ R and

d ∈ D, 〈f, d, id, α, 1, 1〉 is a G-relative pushout (G-idem pushout or GIPO) of
the square

f
??ÄÄÄÄÄÄÄ α +3

d

__???????

a

__??????? l

??ÄÄÄÄÄÄÄ

Thm. If every square in C such as the one above has a GRPO, then the LTS
bisimulation on the synthesised LTS is a congruence.

the theory is a generalisation of the theory of RPOs.

FOSSACS 2003 – pp.22/23

¿ ≪ ≫ À

Deriving LTS

The LTS derived from the reactive system with structural congruence has:
Nodes: [a] : I → N

Transitions: a [f]
I dr iff there exists a 2-cell α such that for 〈l, r〉 ∈ R and

d ∈ D, 〈f, d, id, α, 1, 1〉 is a G-relative pushout (G-idem pushout or GIPO) of
the square

f
??ÄÄÄÄÄÄÄ α +3

d

__???????

a

__??????? l

??ÄÄÄÄÄÄÄ

Thm. If every square in C such as the one above has a GRPO, then the LTS
bisimulation on the synthesised LTS is a congruence.

the theory is a generalisation of the theory of RPOs.

FOSSACS 2003 – pp.22/23

¿ ≪ ≫ À

Conclusion

GRPOs have been applied successfully to simple, yet significative examples
such as Leifer-Milner’s category of ‘bunches and wires’, to the theory of
Milner’s ‘precategories’ and Leifer’s category ‘above’ construction.

In all these cases, they uniformly yield labelled transition systems and
bisimulation congruences better than those derived by the previous theories,
while dispensing with complex, ad-hoc notions (such as ‘trails’, ‘support
sets and translations’ and partially defined composition, and ‘functorial
reactive systems’) in favour of streamline 2-category theory.

So far, the price of the initial 2-categorical investment seems worth paying. . .

Extend to more complicated process calculi (e.g. ambients), with complex
structural congruences (e.g. replication).

Apply the theory to graph rewriting to obtain interesting new semantics.

FOSSACS 2003 – pp.23/23

	Introduction
	What is a Reduction System?
	A Reduction System for CCS
	Barbed Congruence
	What is a Labelled Transition System?
	A Labelled Transition System for CCS
	LTS Bisimulation
	Coinduction Principles for Reductions
	Contexts as Labels
	Reactive Systems
	Well-known Reactive Systems
	RPOs
	Deriving LTS
	Applying RPOs
	A Simple Calculus
	Simple Calculus ctd.
	2-categories
	GRPOs
	Simple Process Calculus ctd.
	Simple Calculus ctd.
	Deriving LTS
	Conclusion

