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What does Inheritance do, after all?

class Buffer {
void put(Object v) { ...; }

void get() { ...; }
...

}

class Lock {
...

void lock() { ...; }
void unlock() { ...; }

}

Influence Buffer inheriting behaviour from Lock.

class LockableBuffer extends Buffer, Lock{ }

Do you expect a Buffer which is locked/unlocked via Lock?
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Objects and Concurrency

Objects: A fundamental, state-of-the-art concept for engineering complex software

systems. (Design Patterns, Refactoring, . . . )

Concurrency: A fundamental technology to meet today’s demands on software

functionalities. (Internet, Mobile and Embedded Devices, Software Agents, . . . )

Alas, a difficult marriage

Synchronisation of concurrent activities and inheritance do not mix:

Inheritance Anomaly (Yonezawa [1987])

So bad to justify banning inheritance from OO languages! (America [1991])

The plan

Explain the phenomenon via examples;

Illustrate the driving lines of the main existing approaches;

Design and implementation of the programming language Jeeg.
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Concurrency and Interference

The problem: x := 0; ( x := x+ 1‖x := x+ 2 ). Then, x ∈ {1, 2, 3}.

The solutions:

Operational Mechanisms: Semaphores and Locks, . . .

Linguistic Constructs: Critical Regions and Monitors, . . .

Alternative Models: Message Passing, Resource-Based, . . .

Their relevance: In the end the problem is in the concurrency model
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The Java Concurrency Model

public class Buffer {

protected Object[] buf;

protected int MAX, current = 0;

Buffer(int max) {

MAX = max;

buf = new Object[MAX];

}

public synchronized Object get() throws Exception {

while (current <= 0) wait();

Object ret = buf[--current];

notifyAll();

return ret;

}

public synchronized void put(Object v) throws Exception {

while (current >= MAX) wait();

buf[current++] = v;

notifyAll();

}

}
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Business and Synchronisation Code
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In sequential programming, clients can be asked to behave well. E.g., don’t get

unless you have put. (Synchronisation code and Business code.)
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In sequential programming, clients can be asked to behave well. E.g., don’t get
unless you have put.

In concurrency, the resource must contain synchronisation code. This results
essentially in methods not being available at certain moments in time.

Concurrent object oriented programs in common programming languages consist of
business code inextricably interwoven with synchronisation code.
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The Inheritance Anomaly

Inheritance Anomaly: Adding a new method morally unrelated, forces the
redefinition of all other methods of a class.

class Buffer {

...

void put(Object el) {

if ("buffer not full ") ...

}

Object get() {

if ("buffer not empty ") ...

}

}

Add a method freeze.

Chances are that the synchronisation code in Buffer must be totally rewritten for that.

All approaches to the anomaly so far consist of disentangling business and
synchronisation code. None is very successful.
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Partitioning of States

State Partition: Introduce an explicit partition of the object’s state, and explicit
enabling conditions for methods.

Example. In the case of Buffer, choose empty, partial, full and the declarations:

put: requires not full
get: requires not empty

Then

Object get() {
...

if ("buffer is now empty ") become empty;
else become partial;
return res;

}
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Partition of States

This solves the problem only very partially.

Consider adding get2 which retrieves two elements
at once. Then, the partition empty and full is not
enough anymore.

Need to distinguish those states where there is exactly one element: single.

Correspondingly, refine it to be:

get2: requires not empty or single

Object get() { ...

if ("buffer is now empty ") become empty;
else if ("buffer is singleton ") become single;
else become partial;
return res;

}
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History-Sensitiveness of Acceptable States

When methods’ enabling depends on the history of objects, we have a form of the

anomaly so-called history-sensitive.

For instance, a method withdraw available only after a method authenticate has been
completed.

To exemplify, we want to add to Buffer a method
gget enabled only if the last method invoked of
Buffer was other than get.

JEEG – pp.10/33



¿ ≪ ≫ À

History-Sensitiveness of Acceptable States

When methods’ enabling depends on the history of objects, we have a form of the

anomaly so-called history-sensitive.

For instance, a method withdraw available only after a method authenticate has been
completed.

To exemplify, we want to add to Buffer a method
gget enabled only if the last method invoked of
Buffer was other than get.

JEEG – pp.10/33



¿ ≪ ≫ À

History Buffer

public class HistoryBuffer extends Buffer {

boolean afterGet = false;

public HistoryBuffer(int max) super(max);

public synchronized Object gget() throws Exception {

while ( current <= 0 || afterGet ) wait();

Object ret = buf[--current]; afterGet = false;

notifyAll();

return ret;

}

public synchronized Object get() throws Exception {

while (current <= 0) wait();

Object ret = buf[--current]; afterGet = true;

notifyAll();

return ret;

}

public synchronized void put(Object v) throws Exception {

while (current>=MAX) wait();

buf[current++] = v; afterGet = false;

notifyAll();

}

}
JEEG – pp.11/33
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History Buffer, again

public class HistoryBuffer extends Buffer {

boolean afterGet = false;

public HistoryBuffer(int max) { super(max); }

public synchronized Object gget() throws Exception {

while ( current <= 0 || afterGet) wait();

afterGet = false;

return super.get();

}

public synchronized Object get() throws Exception {

Object o = super.get();

afterGet = true;

return o;

}

public synchronized void put(Object v) throws Exception {

super.put(v);

afterGet = false;

}

}
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Modification of Acceptable States

Anomaly when mix-in classes are used to add behaviour to object via multiple
inheritance.

class Lock {
...

void lock() { ...; }
void unlock() { ...; }

}

Trying to influence the enabling conditions of a class, by inheritance.

class LockableBuffer extends Buffer, Lock{ }

Of course, this does no much towards having a
lockable buffer, in any language I know of.

Question: Is the Inheritance Anomaly nonsense or a genuine problem?
If you look at it from the OO standpoint, it is genuine.

JEEG – pp.13/33
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JEEG

Jeeg tackles the (History-Sensitive) Inheritance Anomaly. It is:

an aspect-oriented superimposition of two separate languages

Java (no synchronized(), wait(), notify(), and notifyAll() for business code);
Linear Time Temporal Logic for synchronisation code (method guards).

public class MyClass {
sync {

m : φ;

....

}
...// Standard Java class definition

}

m is a method id and φ, the guard, is a formula in a given constraint language.
When m is invoked, the thread is kept on hold unless φ. When the condition is

true, all waiting threads are awaken. m is implicitly synchronized.

If φ is a boolean expression, this is just a declarative version of Java concurrency.

JEEG – pp.14/33
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The logic

Logic: a trade-off between expressiveness and efficiency: its formulae must be
verified at every method invocation!

Linear temporal logic (past tense)

φ ::= AP | !φ | φ || φ | Previous φ | φ Since φ

AP are pure boolean expressions with no:

side-effects,
references to objects.

method invocations,
and it only refers to private/protected fields of the class it belongs to.

Derived connectives:

φ && ψ ,!(!φ ||!ψ); Sometime φ , true Since φ; Always φ , !Sometime !φ.

This yield a rather expressive language CL, yet easy to implement.
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An Object’s History

A generic computation π from o’s perspective.

h0

0 · · ·h
0

j0
o.m1h

1

0 · · ·h
1

j1
o.m2h

2

0 · · ·h
2

j2
. . .

Here only the part of hkjk
containing the values of private/protected, non-reference

variables of o, say σk, can affect evaluation. Therefore, we take

Ho(π) ≡ σ0

m1→ σ1

m2→ σ2

m3→ σ3 . . .

We think of Ho(π) as

Ho ≡ σ0σ1σ2σ3 . . .

where σi binds the special identifier event to (a value representing method) mi.

n
  = 0

inc
 ()


n
  = 1

dec
 ()


n
  = 2
n
  = 1

inc
 ()
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Concurrent Objects’ Histories

n
  = 2
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Interpretation of Formulae on Object Histories

Let Σ denote Ho(π). For all indexes k in Σ, we define Σk |= φ, that is φ holds at
time k, by structural induction on φ as follows.

Σk |= p iff σk |= p (p is true at σk)

Σk |= !φ iff not Σk |= φ

Σk |= φ || ψ iff Σk |= φ or Σk |= ψ

Σk |= Previous φ iff k > 0 and Σk−1 |= φ

Σk |= φ Since ψ iff Σj |= ψ for some j ≤ k,

and Σi |= φ for all j < i ≤ k

Finally, we convene that Σ |= φ iff Σ0 |= φ.

JEEG – pp.18/33
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Buffer in JEEG

public class Buffer {

sync {

put : current < MAX;

get : current > 0;

}

protected Object[] buf;

protected int MAX, current = 0;

Buffer(int max) {

MAX = max; buf = new Object[MAX];

}

public Object get() throws Exception {

Object ret = buf[--current];

return ret;

}

public void put(Object v) throws Exception {

buf[current++] = v;

}

}
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History Buffer in JEEG

public class HistoryBuffer extends Buffer {

sync {

gget: Previous (event != get) && current > 0;

}

public HistoryBuffer(int max) {

super(max);

}

public Object gget() throws Exception {

Object ret = buf[--current];

return ret;

}

}
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Lockable Buffer in JEEG

public interface Lock {

public void lock();

public void unlock();

}

public class LockBuf extends Buffer implements Lock {

sync {

get : super.getConstr && !Previous (event == lock);

put : super.putConstr && !Previous (event == lock);

lock : !Previous (event == lock);

unlock : true;

}

public LockBuf(int max) { super(max); }

public void lock() { }

public void unlock() { }

}
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Expressiveness of JEEG

It is generally hard to formalise to what extent the anomaly is removed.
Nicely, Jeeg allows for a “quantitative” analysis.

Expressiveness of LTL: A set of state sequences X is the set of all Σs that satisfy a

given φ if and only if X is a star-free regular language. (Zuck [1986])

Star-free Regular Languages:

re ::= ε | a | re · re | re+ re | ¬r (| re∗)

State for : p ∈ AC ⊂ AP; Sequence of states: P ∈ A∗C . (Σ |= P iff

Σk |= Pk)

Theorem (Characterizing CL). For φ a formula on C, X = {Σ | Σ |= φ} iff
there exists re on AC such that Σ ∈ X iff Σ |= P for some P ∈ re.

Special case: Only atomic propositions of the kind event == m.

Then CL would capture precisely those sequences of events which are star-free regular
languages (i.e., enforce synchonisation policies so expressible).
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Expressiveness of JEEG

It is generally hard to formalise to what extent the anomaly is removed.
Nicely, Jeeg allows for a “quantitative” analysis.

Expressiveness of LTL: A set of state sequences X is the set of all Σs that satisfy a

given φ if and only if X is a star-free regular language. (Zuck [1986])

Star-free Regular Languages:

re ::= ε | a | re · re | re+ re | ¬r (| re∗)

State for : p ∈ AC ⊂ AP; Sequence of states: P ∈ A∗C . (Σ |= P iff Σk |= Pk)

Theorem (Characterizing CL). For φ a formula on C, X = {Σ | Σ |= φ} iff
there exists re on AC such that Σ ∈ X iff Σ |= P for some P ∈ re.

Special case: Only atomic propositions of the kind event == m.

Then CL would capture precisely those sequences of events which are star-free regular
languages (i.e., enforce synchonisation policies so expressible).

JEEG – pp.22/33



¿ ≪ ≫ À

Expressiveness of JEEG

It is generally hard to formalise to what extent the anomaly is removed.
Nicely, Jeeg allows for a “quantitative” analysis.

Expressiveness of LTL: A set of state sequences X is the set of all Σs that satisfy a

given φ if and only if X is a star-free regular language. (Zuck [1986])

Star-free Regular Languages:

re ::= ε | a | re · re | re+ re | ¬r (| re∗)

State for

�

: p ∈ AC ⊂ AP; Sequence of states: P ∈ A∗C . (Σ |= P iff Σk |= Pk)

Theorem (Characterizing CL). For φ a formula on C, X = {Σ | Σ |= φ} iff
there exists re on AC such that Σ ∈ X iff Σ |= P for some P ∈ re.

Special case: Only atomic propositions of the kind event == m.

Then CL would capture precisely those sequences of events which are star-free regular
languages (i.e., enforce synchonisation policies so expressible).

JEEG – pp.22/33



¿ ≪ ≫ À

Expressiveness of JEEG

It is generally hard to formalise to what extent the anomaly is removed.
Nicely, Jeeg allows for a “quantitative” analysis.

Expressiveness of LTL: A set of state sequences X is the set of all Σs that satisfy a

given φ if and only if X is a star-free regular language. (Zuck [1986])

Star-free Regular Languages:

re ::= ε | a | re · re | re+ re | ¬r (| re∗)

State for

�

: p ∈ AC ⊂ AP; Sequence of states: P ∈ A∗C . (Σ |= P iff Σk |= Pk)

Theorem (Characterizing CL). For φ a formula on C, X = {Σ | Σ |= φ} iff
there exists re on AC such that Σ ∈ X iff Σ |= P for some P ∈ re.

Special case: Only atomic propositions of the kind event == m.

Then CL would capture precisely those sequences of events which are star-free regular
languages (i.e., enforce synchonisation policies so expressible).

JEEG – pp.22/33



¿ ≪ ≫ À

Examples

HistoryBuffer: the temporal constraint

Previous event != get

can be expressed by the following star-free regular expressions.

¬(A∗ · get) where A∗ , ε+ ¬ε.

The temporal constraint

Sometime m , true Since m.

corresponds to

A∗ · m ·A∗.
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Limitations of LTL: No Counting

public class SharedResource {

sync {

request: true;

release: true;

}

public void request() { ... }

public void release() { ... }

...

}

Define a class SeizableResource which allows exclusive access to the shared resource:
An additional method exclusiveRequest must be provided.

Clearly, this leads to identify a pattern of events such as:

M ::= ε | request M release | MM | ...

It is well known that this language is not regular. Methods request and release will
have to be redefined. The anomaly surfaces again here.
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Runtime Evaluation of CL Expressions

Given a finite trace Σ and a LTL formula φ, does Σ |= φ ?

Traditionally: build a Buchi automata to ‘model-check’ sequences. Dealing with
past tense operators gives us an advantage: an ‘online’ algorithm.

Build the syntax tree of the formula;

Associate variables before and now to every node, initially set to false;

Visit the tree depth-first and simultaneously assign φ.before := φ.now and
φ.now as follows.

previous now := φ0.before

since now := φ1.now or (before and φ0.now)

or now := φ0.now or φ1.now

not now := not φ0.now

AP now := eval(φ)

(/).*-+,

φ1::
::

::
:

φ0 ¥¥
¥¥
¥¥
¥

before, now

(/).*-+,

φ0

before, now

(/).*-+,

φ0

before, now

(/).*-+,
before, now

(/).*-+,
before, now
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An Example

Example: Let us consider the evaluation of the temporal formula

Previous(x == 1)

x
  = 0
 x
  = 1

inc
 ()
 inc
 ()


Previous

now = false

before = false


x == 1

now = false

before = false


Previous


now = false

before = false


x == 1


now = true

before = false


Previous


now = true

before = false


x == 1


now = false

before = true


x
  = 2

dec
 ()


x
  = 1


Previous


now = false

before = true


x == 1


now = true

before = false
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The Synchronisation Manager

Formulae must be evaluated after every method execution. This is done by a

synchronization manager via Method Call Interception. It

takes control at method call and checks (not evaluates) the constraint for the
method.

If it holds, control goes to the method code; otherwise the synchronization
manager performs a wait(), putting the object to sleep.

After the method execution, control shifts back to the manager, which now
re-evaluates the synchronization constraints.

After updating the formulae logic value, the manager issues a notifyAll()

statement. Blocked methods may then attempt to proceed again.

To have access to private/protected fields, the synchronization manager an inner class
of the object it manages.
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Benchmarks: Object Creation

0


20


40


60


80


100


120


140


160


180


0
 50
 100
 150
 200


Constraint Size


T
im

e 
in

 m
s


Machine 3


Machine 2


Machine 4


Machine 1


Object creation triggers the creation of data structures for formulas
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Benchmarks: Method Call
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Method calls trigger the evaluation of formulas

JEEG – pp.29/33



¿ ≪ ≫ À

Benchmarks: Details of Method Call
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Formulae evaluation triggers mutual exclusion protocols
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Benchmarks: Comparison
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However, synchronisation must be performed also in Java!
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Performance Evaluation

Testing shows that:

Under low-load (below 70 threads) even complex synchronization constraints
yield little performance overhead.

Low-end machines face worse scalability problems due object locking: The
slower the evaluation algorithm, the longer a large number of threads are
kept waiting.
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Conclusion

Jeeg

Synchronization constraints written in LTL and specified in a aspect-oriented,
declarative manner.

CL is helpful in treating the inheritance anomaly.

Characterisation of CL in terms of regular languages

Efficiently implementable (available at http://www.brics.dk/~milicia/Jeeg).

Future Work:
Quantified linear temporal logic (QLTL) or monadic second order logic
(MSOL), ‘second order’ variations of LTL of greater expressiveness.

optimizing the LTL evaluation procedure by using ad-hoc static-analysis
techniques.
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