Temporal Constraints Tor

coneurrent Object Synchronisation
WOOD, Warsaw 12.04.03

Viaadimmiro sassone

with Giuseppe Milicia

M
)

. Lﬁ
University of Sussex, s

What does Imherittance ado, &TEQ’F abl?

‘ class Bufer { \

void put(Object v) { ...; }
void gt () { ...; }

}

class Lock {

void 0O { ...; }
void unlock() { ...; }

}

What does Imherittance ado, &ftQT abl?

‘ class Bufer { \

void put(Object v) { ...; }
void gt () { ...; }

}

class Lock {

void 0O { ...; }
void unlock() { ...; }

}

Influence Buffer inheriting behaviour from Lock.

class LockableBumer extends Buffer, Lock{ }

< = > |

What does Imherittance ado, OJI'CQT abl?

‘ class Bufer { \

void put(Object v) { ...; }
void gt () { ...; }

}

class Lock {

void 0O { ...; }
void unlock() { ...; }

}

Influence Buffer inheriting behaviour from Lock.

class LockableBumer extends Buffer, Lock{ }

Do you expect a Buffer which is locked /unlocked via Lock?

e - |

OijCtS and coneurr ency

‘ ODbjects: A fundamental, state-of-the-art concept for engineering complex software \
systems. (Design Patterns, Refactoring,)

concurrency: A fundamental technology to meet today’s demands on software
functionalities. (Internet, Mobile and Embedded Devices, Software Agents,)

OijCtS and coneurr ency

‘ ODbjects: A fundamental, state-of-the-art concept for engineering complex software \
systems. (Design Patterns, Refactoring,)

concurrency: A fundamental technology to meet today’s demands on software
functionalities. (Internet, Mobile and Embedded Devices, Software Agents,)

A\&S, q difficult m&rr'\&gg
Synemomsat'\on of concurrent activities and INNAritance do not mix:

Inheritance Anomaly (Yonezawa [1987)

OijCtS and coneurr ency

‘ ODbjects: A fundamental, state-of-the-art concept for engineering complex software \
systems. (Design Patterns, Refactoring,)

concurrency: A fundamental technology to meet today’s demands on software
functionalities. (Internet, Mobile and Embedded Devices, Software Agents,)

A\&S, q difficult m&rr'\&gg
Synemomsat'\on of concurrent activities and INNQritance do not mix:
Inheritance Anomaly (Yonezawa [1987)

So bad to justify DANNING inheritance from OO languages! (America [1991)

< = > |

OijCtS and coneurr ency

‘ ODbjects: A fundamental, state-of-the-art concept for engineering complex software \
systems. (Design Patterns, Refactoring,)

concurrency: A fundamental technology to meet today’s demands on software
functionalities. (Internet, Mobile and Embedded Devices, Software Agents,)

Alas, a difficult mgrr'\&gg
SYNCNTONISAtion of concurrent activities and INNRTtance do not mix:
Inheritance Anomaly (Yonezawa [1987)
So bad to justify DANNING inheritance from OO languages! (America [1991])

The plan

® Explain the phenomenon via examples;
B /llustrate the driving lines of the main existing approaches;
B Design and implementation of the programming language Jeeg.

< = > |

coneurr ency and | nte"rjerence

‘ Theproblem: z:=0;(x:=ax+ 1|z :=2+2). Then, z € {1,2,3}. \

coneurr ency and | nte"rjemnce

‘ Theproblem: z:=0;(x:=ax+ 1|z :=2+2). Then, z € {1,2,3}. \

The solutions:

> OpQY&UOﬂQ\ Machanisms: Semaphor@s and Locks, ...
® Linguistic constructs. Critical Regions and Monitors, ...

® Alternative Modals. Message Passing, Rasource-Based, ...

Their relevance: In the end the problem 18 in the concurrency model

e - |

The Java Coneurr ency Model

N o

public class Bufer {
protected Object[] buf;
protected int MAX, current = O;

Buffer (int max) {
MAX = max;
buf = new Object[MAX];
}
public synchronized Object get() throws Exception {
while (current <= 0) wait();
Object ret = buf[--current];
notifyAl1(Q);
return ret;
}
public synchronized void put(Object v) throws Exception {
while (current >= MAX) wait();
buf [current++] = v;
notifyAl1(Q);

4 > |

Business and Sy'I’LCNTO’m}SOI?}OTL Code

=

I e e e e e D)

client

—

—

I

\

object

—

In SQ(\UQT\U&\ programmmg, clients can be asked to behave well. E.g., don't gat

unless you have put. (Synchronisation code and Business code.)

Business and SyﬂCTLTO’m}S(LmOTL Code

I

\

I W e W e)
T e e e e e)
I We W W e
I Ve W W W W W
I W e W e)

object

A

P

In SQQUQY\U&\ programmmg, clients can be asked to behave well. E.g., don't gat
unless you have put.

In CONCUITRNCY, the resource MUST contain SYNCNronisation code. This results
essentially in methods NOT DRINE avallable at certain moments in time.

Business and SyTLCHTO’m}S(LmOTL Code

>

2 Ve VNI NN — — UL € [VUGN NN

e VNN NN e VWG NN I N N NN\

2 Va VoW UL\ e VNN / I Ve VU

0 P VU U\ \ I V2oV UV I Va UV
client > client

In SQQUQM'\&\ programm‘mg, clients can be asked to behave well. E.g., don't get
unless you have put.

In CONCUITRNCY, the resource MUST contain SYNCNronisation code. This results
essentially in methods NOT DRINE avallable at certain moments in time.

Concurrent object oriented programs in common programming languages consist of
business code inextricably INTRMWOVEN with synchronisation code.

< = : =

The Imheritance ATLOTTL(lLy

‘ Inheritance Anomaly: Adding a new method MOrally unrelated, forces the \

redefinition of all other methods of a class.

The Imheritance Anomaty

‘ Inheritance Anomaly: Adding a new method MOrally unrelated, forces the \

redefinition of all other methods of a class.

class Bufier {

void put(Object el) {
if ("buffer not full") ...
¥
Object get() {
if ("buffer not empty") ...
¥
¥

The Imheritance ATLOTTLQLy

‘ Inheritance Anomaly: Adding a new method MOTAlly unrelated, forces the \

redefinition of all other methods of a class.

class Bufier {

void put(Object el) {
if ("buffer not full") ...

}

Object gt () {
if ("buffer not empty") ...

}
}

Add a method Treeza,

Chances are that the synchronisation code in Bufer must be totally rewritten for that.

All approaches to the anomaly so far consist of diSeNtangling business and
synchronisation code. None is very successful.

e - |

Partitioning of States

‘ State Partition: Introduce an explicit partition of the object’s state, and explicit \
enapling conditions for methods.

Example. In the case of Buffer, choose empty, partial, full and the declarations:

pul: requires not Tull
gal: requires not QMPLy

P (N’C@WOTL’LTLQ OI States

‘ State Partition: Introduce an explicit partition of the object’s state, and explicit \
enapling conditions for methods.

Example. In the case of Buffer, choose empty, partial, full and the declarations:

pul: requires not Tull
gal: requires not QMPLy

Then
Object get() {

if ("buffer is now empty") become eMply;
else become partial;
return res;

}

e - |

Partition OI STates

‘ This solves the problem only very partially.

Partition OI STates

‘ This solves the problem only very partially.

Need to distinguish those states where there is exactly one element: single.

Consider adding get2 which retrieves TWO elements
at once. Then, the partition empty and full is not
enough anymore.

Partition OT STates

‘ This solves the problem only very partially.

Consider adding get2 which retrieves TWO elements
at once. Then, the partition empty and full is not
enough anymore.

Need to distinguish those states where there is exactly one element: single.

Correspondingly, refine it to be:
gel2: requires not eMpLy or single

Object get() {
if ("buffer is mow empty") become emMply;
else if ("buffer is singleton") become SiNgle;
else become partial;
return res;

H1STOT y—Sensmveness of ACCth&OLQ States

‘ When methods’ enabling depends on the NISTOTY of objects, we have a form of the \
anomaly so-called NISTOry-sensitive.

For instance, a method withdraw available only after a method authenticate has been
completed.

H1STOT y—Sensmveness of ACCQ”ptOX)LQ States

‘ When methods’ enabling depends on the NISTOTY of objects, we have a form of the \
anomaly so-called NISTOry-sensitive.

For instance, a method withdraw available only after a method authenticate has been
completed.

To exemplify, we want to add to Buffer a method

goet enabled only if the last method invoked of
Buffer was other than get.

History BujfTer

—

public class HistoryBufier extends Buffer {
boolean afterGet = false;
public HistoryBufer(int max) super(max);
public synchronized Object gget() throws Exception {

while (current <= 0 || afterGet) wait();
Object ret = buf[--current]; afterGet = false;
notifyAll1();

return ret;

¥

public synchronized Object gel() throws Exception {
while (current <= 0) wait();
Object ret = buf[--current]; afterGet = true;
notifyAll();
return ret;

¥

public synchronized void put(Object v) throws Exception {
while (current>=MAX) wait();

buf [current++] = v; afterGet = false;

notifyAll();
‘ }

h

History BujTer, again

‘ public class HistoryBufier extends Buffer {
boolean afterGet = false;
public HistoryButer (int max) { super(max); }

public synchronized Object gget() throws Exception {
while (current <= 0 || afterGet) wait();
afterGet = false;
return super.get();

¥

public synchronized Object gel() throws Exception {
Object o = super.get();
afterGet = true;
return o;

¥

public synchronized void put(Object v) throws Exception {
super.put (v) ;
afterGet = false;

}

< «

Modification of Acceptable States

‘ Anomaly when MIX-1N Clas8es are used to add behaviour to object via multiple \
inheritance.

class Lock {

void lock(O) { ...; }
void unlock() { ...; }

}

Trying to influence the enabling conditions of a class, by inheritance.

class LockableBuffer extends Buffer, Lock{ }

Modification of Acceptable States

‘ Anomaly when MIX-1N Clas8es are used to add behaviour to object via multiple \
inheritance.

class Lock {

void lock(O) { ...; }
void unlock() { ...; }

}

Trying to influence the enabling conditions of a class, by inheritance.

class LockableBuffer extends Buffer, Lock{ }

Of course, this does no much towards having a
lockable buffer, in any language | know of.

QUESTION: Is the Inheritance Anomaly NONSRNSE or a geNUING problem?
If you look at it from the OO standpoint, it is genuine.

< = > |

JEEG

‘ Jeeg tackles the (History-Sensitive) Inheritance Anomaly. It is: \

® an agpect-oriented superimposition of two separate languages
» Java (no synenronized(), wait(), notity(), and notityAll() for business code);
o Linear Time Temporal Logie for synehronisation code (method guards).

JEEG

‘ Jeeg tackles the (History-Sensitive) Inheritance Anomaly. It is: \

® an agpect-oriented superimposition of two separate languages
» Java (no synchronized(), wait(), notity(), and notifyAll() for business code);
o Linear Time Temporal Logic for synchronisation code (method guards).

public class MyClass {

sync {
m : Q;

}

...// Standard Java class definition

}

m is a method id and ¢, the gUard, is a formula in a given CONSIraINT language.
When m is invoked, the thread is kKepT ON NOId unless ¢. When the condition is
true, all WAITING threads are AWAKeN. m is implicitly Syncnronized.

e - |

JEEG

‘ Jeeg tackles the (History-Sensitive) Inheritance Anomaly. It is: \

® an agpect-oriented superimposition of two separate languages
» Java (no synchronized(), wait(), notity(), and notifyAll() for business code);
o Linear Time Temporal Logic for synchronisation code (method guards).

public class MyClass {
sync {
m : Q;

}

...// Standard Java class definition

}

m is a method id and ¢, the gUard, is a formula in a given CONSIraINT language.
When m is invoked, the thread is kKepT ON NOId unless ¢. When the condition is
true, all WAITING threads are AWAKeN. m is implicitly Syncnronized.

If ¢ is a boolean expression, this is just a AQCIArative version of Java concurrency.

The logic

‘ L()g'\Q: a trade-off between QXPTQSS'\\/QY\QSS and o,me‘\@ney: its formulae must be \

verified at every method invocation!

The logic

‘ L()g'\Q: a trade-off between QXPTQSS'\\/QY\QSS and QTﬂQ\QY\Qy: its formulae must be \

verified at every method invocation!

Linear temporal logic (past tense)

¢::=AP |!¢ | ¢ |l ¢ | Previous ¢ | ¢ Since ¢

AP are pure boolean expressions with no:

® side-effects,
$» refarences 1o OD}QQIS.

H maethod invocations,
$® and it only refers to pr'\\/am/prot@emd fields of the class it belongs to.

Derived connectives:

¢ &k =!1(1¢ 111p); Sometime ¢ = true Since ¢; Always ¢ = !Sometime !¢.

< = > |

The logic

‘ L()g'\Q: a trade-off between QXPTQSS'\\/QY\QSS and o,me‘\@ney: its formulae must be \

verified at every method invocation!

Linear temporal logic (past tense)

¢::=AP |!¢ | ¢ |l ¢ | Previous ¢ | ¢ Since ¢

AP are pure boolean expressions with no:

® side-effects,
$» refarences 1o ()D}QQIS.

H maethod invocations,
$® and it only refers to pr'\\/am/prot@emd fields of the class it belongs to.

Darived connectives:
¢ &k =!1(1¢ 111p); Sometime ¢ = true Since ¢; Always ¢ = !Sometime !¢.

This yield a rather expressive language CL, yet easy to implement.
‘ > | \

An Object’s HIStoTy

‘ A generic computation 7 from o's perspective.

hg---hj omihg---h; omohg---h5, ...

Jo J1

AN Object’'s HIStoTy

‘ A generic computation 7 from o's perspective. \

0 0 1 1 2 2

Here only the part of h"fk containing the values of private/protected, non-reference
variables of o, say o}, can affect evaluation. Therefore, we take

m m m
HO(W)EO'()—l>0'1—>20'2—>30'3...

AN Object’'s HIStoTy

‘ A generic computation 7 from o's perspective. \

0 0 1 1 2 2

Here only the part of h"fk containing the values of private/protected, non-reference
variables of o, say o}, can affect evaluation. Therefore, we take

™m ™m ™m
Ho(m) =09 — 01 — 02 — 03...

We think of H, () as
HO = 00010203 ...

where o; binds the special identifier event to (a value representing method) m;.

e - |

coneurrent Obj oCTsS' H1StoT1es

mte"rp"r‘etomon Of Formulae on OijCt H1STOT1eS

‘ Let > denote H, (7). For all indexes k in 3, we define ;. = ¢, that is ¢ holds at \
time k, by structural induction on ¢ as follows.

Yk Ep iff o Ep (p is true at oy)
Sk Elg iff not I = 6
el o |l ¢ iff i b= éor Xy =
Y = Previous ¢ iff k>0and Xy 1 F ¢

Yk = ¢ Since ¢p iff 3, =4 for some j < k,

and >; = ¢ forall j <i<k

Finally, we convene that ¥ = ¢ iff X = ¢.

. - |

Bujfer in J

‘ public class Buffer {

sync {
put : current < MAX;
get @ current > O;

}

protected Object[] buf;
protected int MAX, current = O;

Buffer (int max) {
MAX = max; buf = new Object[MAX];

public Object got() throws Exception {
Object ret = buf[--current];

return ret;

public void put(Object v) throws Exception {

buf [current++] = v;

}

4 « .

History BufTer in J

‘ public class HistoryBufier extends Buffer {

sync {
goel: Previous (event != gM) && current > O;

public HistoryBuffer (int max) {

super (max) ;

public Object gget() throws Exception {
Object ret = buf[--current];

return ret;

Lockable Bujrer in J

‘ public interface Lotk {

public void lock() ;
public void unlock() ;

t
public class LOCKBUl extends Buffer implements Lock {
sync {
gat : super.getConstr && !Previous (event == 10CK);
put : super.putConstr && !Previous (event == 10¢K);
lock : !Previous (event == 100k);

unlock : true;

public LoCkBUf(int max) { super(max); }
public void lock() { }
public void unlock() { }

< « .

‘ It is generally hard to formalise to what extent the anomaly is removed.

l

ECIZ”pTQSS’L’UQTLQSS of J

Nicely, Jeeg allows for a "Uantitative” analysis.

G

—

ECIZPTQSS?}’UQTLQSS of J G

‘ It is generally hard to formalise to what extent the anomaly is removed. \
Nicely, Jeeg allows for a "Uantitative” analysis.

EXpressiveness of LTL: A set of state sequences X is the set of all Xs that satisfy a
given ¢ if and only if X is a star-free regular language. (Zuck [1986))

Star-free Regular Languages:

rec:=¢clal|lre-re|re4+rel|—-r (| rex)

ECIZPTQSS?}’UQTLQSS of J G

‘ It is generally hard to formalise to what extent the anomaly is removed. \
Nicely, Jeeg allows for a "Uantitative” analysis.

EXpressiveness of LTL: A set of state sequences X is the set of all ¥s that satisfy a
given ¢ if and only if X is a star-free regular language. (Zuck [1986))

Star-frae Regular Languages:
rec:=¢clal|lre-re|re4+rel|—-r (| rex)

State for C: p € Ac C AP; Sequence of states: P e A%, (2 = Piff Iy, = Py)

Theorem (CHARACTERIZING CL). For ¢ a formulaon C, X = {X | X | ¢} I
there exists re on Ac such that ¥ € X iff X = P for some P € re.

< = > |

ECIZ”pTQSS?}’UQ’nQSS Of J G
‘ It is generally hard to formalise to what extent the anomaly is removed. \
Nicely, Jeeg allows for a "Uantitative” analysis.

EXpressiveness of LTL: A set of state sequences X is the set of all ¥s that satisfy a
given ¢ if and only if X is a star-free regular language. (Zuck [1986))

Star-frae Regular Languages:
rec:=¢clal|lre-re|re4+rel|—-r (| rex)

State for C: p € Ac C AP; Sequence of states: P e A%, (2 = Piff Iy, = Py)

Theorem (CHARACTERIZING CL). For ¢ a formulaon C, X = {X | X | ¢} I
there exists re on Ac such that ¥ € X iff X = P for some P € re.

Special case: Only atomic propositions of the kind event ==

Then CL would capture precisely those sequences of events which are star-free regular
languages (i.e., enforce synchonisation policies so expressible).

< = > |

Examples

‘ HistoryBufer: the temporal constraint

Previous event != g@t

can be expressed by the following star-free regular expressions.

—(A* - get) where A* £ ¢ 4 —e.

The temporal constraint

. AN .
Sometime m = true Since m.

corresponds to
A* m- A",

< «

Limitations of LTL: No Counting

‘ public class SharedResource { \

sync {
request: true;
release: true;

}
public void request() { ... }
public void release() { ... }

}

Define a class SQIZablaRasource which allows exclusive access to the shared resource:
An additional method @XClUSIVRRQQUQST must be provided.

Clearly, this leads to identify a pattern of events such as:

M ::= € | request M release | MM |

It is well known that this language is NOT TegUIAr. Methods request and release will
have to be redefined. The ANOMAlY surfaces again here.

e - |

Runtime Evaluation of CL ECIZ”pTQSS@OTLS

‘ Glven o finite trace 3 and o LTL formula ¢, does > = ¢ ? \

Traditionally: build a Buchi automata to ‘model-check’ sequences. Dealing with
past tense operators gives us an advantage: an ‘ONlinNQ’ algorithm.

Runtime |

—

Evaluation Of CL |

Glven o finite trace 3 and o LTL formula ¢, does > = ¢ ?

Traditionally: build a Buchi automata to ‘model-check’ sequences. Dealing with
past tense operators gives us an advantage: an ‘ONlinNQ’ algorithm.

® Build the syntax tree of the formula;

ECIZ”[)TQSS?}OTLS

® Associate variables before and now to every node, initially set to false;

—

® \Visit the tree depth-first and simultaneously assign ¢.before := ¢.now and
¢.now as follows.

previous | now := ¢q.before

since now := ¢1.now or (before and ¢g.now)
or NOW := @(.NOW Ofr (@1.nowW

not now := not ¢y.now

AP now := eval(¢)

< «

®0

before, now
b0

DATOre, NOW

petore, NOW

¢1

petore, Now

Po

petore, now

> |

AN |

Erample

‘ EXample: Let us consider the evaluation of the temporal formula

Previous

now = fase
before = false

X ==

now = fase
before = false

Previous(x == 1)
Previous Previous
now = false now = true
before = false before = false
X == X ==
now = true now = false
before = false before = true
Inc()
x=1 X =2

—

Previous

now = false
before = true

X ==

now = true
before = false

The SyTLCf’LTO"MS(IE?}OTL M anager

‘ Formulae must be evaluated after every method execution. This is done by a \
synchronization manager via Method Call Interception. It

® takes control at method call and checks (not evaluates) the constraint for the
method.

® [f it holds, control goes to the method code; otherwise the synchronization
manager performs a wait(), putting the object to sleep.

® After the method execution, control shifts back to the manager, which now
re-evaluates the synchronization constraints.

® After updating the formulae logic value, the manager issues a notifyAll()
statement. Blocked methods may then attempt to proceed again.

To have access to private/protacted fields, the synchronization manager an Inner ¢lass
of the object it manages.

e - |

Benchmarks: O bj ect Creation

N o

180

160 /
140
120 & —e— Machine 3

E —— Machine 2
—~ 100 :
= - - -X- - - Machine 4
2 80 -
£ / Machine 1
60 /

40 /./0" .

NP e - - -3 _i./.
20 /!‘J_
K AN AN A
0 ¥ \ ‘]
0 50 100 150 200

Constraint Size

Ob}@@t creation triggers the creation of data structures T0r formulas
‘ > | \

Time in ms

< «

160

140

120

100

80

60

Benchmarks: Method Call

100 150 200

Constraint Size

Mathod calls trgear the evaluation of formulas

—

—&— Machine 1
—@— Machine 2

Machine 3
—»— Machine 4

> |

Benchmarks: Details of Method Call

N o

Machine 2 Machine 3

1200
1000
800

600

Timein ms

Time in ms

400

200

64 <
32 16 g 4 1 N
Threads 1

Formulae avaluation trgears mutual exclusion pYO'LOQO\S

‘<< K |=>> >>\

JEEG - pp.30/33

N

Time in ms

140
120
100
80
60
40
20

Benchmarks. C oOMmMpaArison

—

Machine 1

Machine 3

Java

e

50 100 150 200 250
Threads

Howevaer, SyﬂQT\FONS&UOﬂ Must be p@rforméd also in Java!

> |

Por Tormance Evaluation

Igstmg shows that: j

® Under |0W-1080 (below 70 threads) even complex synchronization constraints
yield little performance overhead.

® L Ow-end machines face worse scalability problems due object locking: The
slower the evaluation algorithm, the longer a large number of threads are

Kept waiting.

o

°

conclusion

—

Synchronization constraints written in LTL and specified in a aspect-oriented,
declarative manner.

CL is helpful in treating the inheritance anomaly.
Characterisation of CL in terms of regular languages

EMciently implementable (available at http://www.brics.dk/ milicia/Jeeg).

http://www.brics.dk/~milicia/Jeeg

conclusion

| Joog o

® Synchronization constraints written in LTL and specified in a aspect-oriented,
declarative manner.

® CL is helpful in treating the inheritance anomaly.

Characterisation of CL in terms of regular languages

°

& Emeiently implementable (available at nttp://www.brics.dk/ milicia/Jeeg).

Future Work:

® Quantified linear temporal logic (QLTL) or monadic second order logic
(MSOL), ‘second order’ variations of LTL of greater expressiveness.

® optimizing the LTL evaluation procedure by using ad-hoc static-analysis
techniques.

< = > |

http://www.brics.dk/~milicia/Jeeg

	What does Inheritance do, after all?
	Objects and Concurrency
	Concurrency and Interference
	The Java Concurrency Model
	Business and Synchronisation Code
	The Inheritance Anomaly
	Partitioning of States
	Partition of States
	History-Sensitiveness of Acceptable States
	History Buffer
	History Buffer, again
	Modification of Acceptable States
	JEEG
	The logic
	An Object's History
	Concurrent Objects' Histories
	Interpretation of Formulae on Object Histories
	Buffer in JEEG
	History Buffer in JEEG
	Lockable Buffer in JEEG
	Expressiveness of JEEG
	Examples
	Limitations of LTL: No Counting
	Runtime Evaluation of CL Expressions
	An Example
	The Synchronisation Manager
	Benchmarks: Object Creation
	Benchmarks: Method Call
	Benchmarks: Details of Method Call
	Benchmarks: Comparison
	Performance Evaluation
	Conclusion

