

Congruences for Contextual Graph-Rewriting

Vladimiro Sassone, Paweł Sobociński
Dagstuhl, June 7, 2004

Plan of the talk

1. Deriving bisimulation congruences
2. Cospans as generalised contexts
3. Bisimulation for graph rewriting

Deriving Congruences

- Many syntactic formalisms for concurrency and mobility
- Unification efforts:
 1. Milner et al '90s-now: action calculi, bigraphs
 2. Montanari et al '90s-now: tile systems.
 3. Sewell, Leifer, Milner, Sassone and Sobociński: meta theory of process calculi

Labels in LTS

- *Slogan*: Labels should be smallest contexts which allow reaction/interaction
 - eg. simple CCS-style calculus $a.P + P' \xrightarrow{-|\bar{a}} P$
 - *Sewell (1998)*: Detailed **syntactic analysis** of simplified process calculi
 - *Leifer and Milner (2000)*: General notion of smallest context - the **relative pushout**.
 - *Sassone and Sobociński (2002)*: 2-categorical generalisation to allow handling of **structural congruences**.

Reactive Systems

- A reactive system
 - objects = typed “holes”
 - arrows = contexts
 - 2-cells = “*structural congruence*”

$$a \longrightarrow b$$

if there exists

$$\langle l, r \rangle, d \in \mathbb{D}$$

and

$$\rho : dl \Rightarrow a, \rho' : b \Rightarrow dr$$

GRPOs

- Given $\alpha: ca \Rightarrow db$

$$\langle I_5, e, f, g, \beta, \gamma, \delta \rangle$$

$$\delta b \bullet g\beta \bullet \gamma a = \alpha$$

LTS

- Nodes: $[a]: 0 \rightarrow I_1$
- Labels: $[a] \xrightarrow{[f]} [a']$

$\exists \langle l, r \rangle \in \mathcal{R} \quad \exists f \in \mathcal{C} \quad \exists d \in \mathcal{D} \quad \exists \alpha : fa \Rightarrow dl \quad \exists \alpha' : dr \Rightarrow a'$

Properties of LTS

- *Bisimulation* is a congruence
- *Trace equivalence* is a congruence
- *Failures equivalence* is a congruence

What's the point?

- Why am I telling you all this??

Cospan Bicategories

- Given \mathbf{C} , $\mathbf{Cospan}(\mathbf{C})$ has
 - Objects: those of \mathbf{C}
 - Arrows: cospans $I_1 \xrightarrow{f} C \xleftarrow{g} I_2$
 - 2-cells: cospan “homomorphisms”
 - Composition by pushout along common interfaces.
 - intuitively: category of contexts over \mathbf{C} .

Composition

- Identities: $I_1 \xrightarrow{id} I_1 \xleftarrow{id} I_1$
- Composition by pushout

$$\begin{array}{ccccc} & & C +_{I_2} D & & \\ & \nearrow i_1 & & \swarrow i_2 & \\ I_1 & \xrightarrow{f} & C & \xleftarrow{g} & I_2 \xrightarrow{f'} D \xleftarrow{g'} I_3 \end{array}$$

$$a : (C +_{I_2} D) +_{I_3} E \rightarrow C +_{I_2} (D +_{I_3} E)$$

$$e_l : (I_1 +_{I_1} C) \rightarrow C$$

satisfying coherence

$$e_r : (C +_{I_2} I_2) \rightarrow C$$

Cospans on Graphs

- What is this when \mathbf{C} is **Graphs**?

Desiderata

- For a suitable, general class of categories \mathbf{C} , $\mathbf{Cospan}(\mathbf{C})$ has redex-GRPOs.
- Would allow to derive a coinduction principle for each “category of contexts” over a suitable \mathbf{C} .

Adhesive Categories

- What is an adhesive category?

Adhesive Categories

- A category \mathbf{C} is adhesive when
 1. It has pushouts along monos
 2. It has pullbacks
 3. pushouts along monos are VK squares

Van Kampen Square

- Given a cube with back faces pullbacks:
- top face pushout iff front faces pullbacks

Graphs is Adhesive

- You didn't expect otherwise, did you??

Left-Linear Cospans

- When \mathbf{C} is adhesive $\mathbf{LLC}(\mathbf{C})$ is the bicategory
 - objects as in \mathbf{C}
 - arrows cospans $I_1 \begin{array}{c} \xrightarrow{m} \\[-1ex] \curvearrowright \end{array} C \begin{array}{c} \xleftarrow{g} \\[-1ex] \curvearrowleft \end{array} I_2$

GRPOs for cospans

- ***Theorem:*** Suppose that \mathbf{C} is an adhesive category.
- Then, $\mathbf{LLC}(\mathbf{C})$ has redex-GRPOs.

Example 1

- All morphisms mono

Example 2

- o_A and o_L not mono

Example 3

o_A not mono

GRPOs in LLC(C)

- Given redex square...

GRPOs of Cospans

- ... find minimal factorisation

Construction

$$Y = A \cup_X B$$

Graph Rewriting as Reactive System

- For every span $L \xleftarrow{l} K \xrightarrow{r} R$
let $\langle 0 \rightarrow L \xleftarrow{l} K, 0 \rightarrow R \xleftarrow{r} K \rangle \in \mathcal{R}$
- Lemma:**
 - double-pushout rewrite
 - reaction relation in reactive system

$$C \longrightarrow D \quad \text{iff} \quad C_0^0 \longrightarrow D_0^0$$

LTS for graph rewriting

- The resulting LTS has:
 - **Nodes**: graphs (up-to-iso) with output interface (possibly non-mono)
 - **Labels**: smallest graph contexts (up-to-iso) which allow reaction
- ***Theorem***: Bisimulation, trace equivalence, failures equivalence are congruences

Advantages of LTS

- Transfer of concepts from process algebra to graph rewriting
- Labelled, compositional semantics
- the class of adhesive categories covers many categories with “*graph-like*” objects

And what's this for?

- What's missing here??

Special Cases

- Rewriting with borrowed contexts [*Ehrig and Koenig (2004)*]
- LTS for graph rewriting, up-to-iso not taken into account, all interfaces mono
- **Theorem:** when restricting our approach to linear cospans we derive *the same* LTS
- **Corollary:** their congruence theorem
- Bigraphs...

The case of Bigraphs

- **Bigraphs** can be seen as **LLC(dpl-grph)**.
- It follows from the theorem that **Bigraphs** has **GRPOs**.
- Main difference with Milner's original bigraphs: input-linearity and name aliasing.
- The case of **Trigraphs** ... as above
- ...

Conclusion

- Construction of labels for an interesting class of reactive systems
- Two applications so far, more in the future?

Minimality

$$\begin{aligned}
 \tau e \bullet g' \varphi \bullet \gamma' &= \gamma \\
 \delta' \bullet g' \psi \bullet \tau^{-1} f &= \delta \\
 \psi b \bullet h \beta \bullet \varphi a &= \beta'
 \end{aligned}$$

Essential Uniqueness

$\exists! \xi : h \rightarrow h'$

$$\xi e \bullet \varphi = \varphi'$$

$$\psi \bullet \xi^{-1} f = \psi'$$

$$\tau' \bullet g' \xi = \tau$$