A Role for Theory in UbiNet

UDINeT Workshop: London 26.09.03

Viadimiro sassone

nNIH<<Z

University of Sussex,

SUSSEX




Batwean T\\QOW and Practice

CClaim 17 Cryptography is all that there is to Computer Security;

=>1 >

SUSSEX




Batween T\\QOW and Practice

CClaim 17 Cryptography is all that there is to Computer Security;

LI wrong: Eg, 802.11 WEP key can be guessed looking at enough messages.

< K

=>1 >

SUSSEX




Batween T\\QOW and Practice

CClaim 17 Cryptography is all that there is to Computer Security;

LI wrong: Eg, 802.11 WEP key can be guessed looking at enough messages.

(1 Claim 20 UbiComp is about developing (the right) middleware.

< K

=>1 >

SUSSEX




Batween T\\QOW and Practice

< K

CClaim 17 Cryptography is all that there is to Computer Security;

LI wrong: Eg, 802.11 WEP key can be guessed looking at enough messages.

(1 Claim 20 UbiComp is about developing (the right) middleware.

1 Wrong: Notions and issues are “horizontal” (data, resources, ... );

people/applications/data will move across “global computers.”

=>1 >

SUSSEX




Batween T\\QOW and Practice

CClaim 17 Cryptography is all that there is to Computer Security;

LI wrong: Eg, 802.11 WEP key can be guessed looking at enough messages.

(1 Claim 20 UbiComp is about developing (the right) middleware.

1 Wrong: Notions and issues are “horizontal” (data, resources, ... );
people/applications/data will move across “global computers.”

-1 Claim 3% So, in conclusion, Theory is all you need . ..

SUSSEX

< K =>1 >




< K

SUSSEX

Batween T\\QOW and Practice

Claim 1. Cryptography is all that there is to Computer Security;

Wrong: Eg, 802.11 WEP key can be guessed looking at enough messages.

Claim 2. UbiComp is about developing (the right) middleware.

Wrong: Notions and issues are “horizontal” (data, resources, ... );
people/applications/data will move across “global computers.”

Claim 3. So, in conclusion, Theory is all you need . ..

Wrong too, I'm afraid. Eg SSL 3.0 has be proved correct by

(computer-aided) model checking. Alas, real attacks have been found in
practice.

=>1 >



Batween T\\QOW and Practice

< K

Claim 1. Cryptography is all that there is to Computer Security;

Wrong: Eg, 802.11 WEP key can be guessed looking at enough messages.

Claim 2. UbiComp is about developing (the right) middleware.

Wrong: Notions and issues are “horizontal” (data, resources, ... );
people/applications/data will move across “global computers.”

Claim 3. So, in conclusion, Theory is all you need . ..

Wrong too, I'm afraid. Eg SSL 3.0 has be proved correct by

(computer-aided) model checking. Alas, real attacks have been found in
practice.

The gap between Theory and Practice matters in Practice
(afthough 1t may not in Theory)

=>1 >

SUSSEX




TT\QOWZ SUCeess Stories

Past
] Types and language safety in programming;

Static program analysis and model checking;

[]
| Abstraction and modularisation mechanisms:
[]

Ok, but is Theory going to be relevant for UbiComp ??

< K

=>1 >

SUSSEX




T\\Q()Yy'. SUCeess Stories

Past
] Types and language safety in programming;
] Static program analysis and model checking;
] Abstraction and modularisation mechanisms;
...

Current (still partial)

I Memory safe languages:

1 Curing legacy code (CCured); Tricking users into safe langs (Cyclone);
I Verification-driven protocol design (Fair Exchange, Private Authentication, ... );
] Secrecy and Information Confinement;
] Proof carrying code; Typed assembly languages;
...
Ok, but is Theory going to be relevant for UbiComp ??

< K =>1 >

SUSSEX



Type Systems in Programming Languages

Why Types?

1 Types are (statically-verified) invariants which characterise values and (the
result of) computations.

1 Progress & Safety. Well typed code has some good property Prop (which
usually implies they can progress).

1 Subjection reduction: Well typedness is preserved by program steps.

1 Conseduence: Prop is invariant for good programs (eg they are never stuck
nor crash on illegal ops).

(] NOtQ:Static means that types are removed at runtime, and have no runtime overheads.

< K =>1 >

SUSSEX




Types for Resource Usage

E\QmQﬂtmy coneurrent Scenario
P ::=ch(x).P | ch{v).P|...

A nave ping server:
forever ping(r).r()

What can & type system do here?

=>1 >




Types for Resource Usage

Elementary Concurrent Seenario
P ::=ch(x).P | ch(v).P|...
A nave ping server:

forever ping(r).r()

What can & type system do here?

1st: Prevent errors of the kind ping(3), leading to 3().
Values classified in channels and numbers

T ::=void | int | chan|T]]
Type for ping: ping : chan|chan|void]|.

From here, the idea of usage control comes easily:

ping(7).(r()|r()) : Duplicate answers:

ping(7).(r()|r(z)P) : Intercept messages.
< K

=>1 >

SUSSEX




Types for Resource Usage

E\QmQ\'\tmy coneurrent Scenario
P ::=ch(x).P | ch(v).P|...

A nave ping server:
forever ping(r).r()

What can a type system do here?
Let's enrich types with “usage prescriptions”

T ::=...chan[T"] U =70 'm [Tm!n
If ping can be assigned
ping : chan| chan|void?p!y]]

clients are safe.

< K

=>1 >

SUSSEX




Types for Resource Usage

E\QmQﬂtmy coneurrent Scenario
P ::=ch(x).P | ch(v).P|...

A nave ping server:
forever ping(r).r()

What can a type system do here?
Let's enrich types with “usage prescriptions”

T ::=...chan[T"] U =70 'm [Tm!n
If ping can be assigned
ping : chan| chan|void?p!y]]

clients are safe.

An impressive portfolio of applications: deadlock freeness, race conditions, data secrecy,

. has been developed.

< K

=>1 >

SUSSEX




Locations and Border X\Y\g

Global Ubiqul tOUS OYStems in first approximation consist of:

I A collection of independent distributed sites offering SQY\/'\QQS/YQSOUYQQS to
migrating agents.

1 Resources. All sort of things a agent may long for (CPU time, space,
printers, ...).

[] Ag@ﬂtSl mobile processes of general nature.

< K =>1 >

SUSSEX




Locations and Border X\T\g

More pYQQ'\SQ\y

1 Locations are sites containing processes: /[P]
1 Agents travel between locations /[goto k. P | Q] | k[R] — ¢|Q] | k[P | R]

< K

LOCAatioNns or SITQS, and DOTAQr Crossi Ng are the basic elements:

=>1 >

SUSSEX




Locations and Border X\Y\g

More pYQQ'\SQ\y LOCAatioNns or SITQS, and DOTAQr Crossi Ng are the basic elements:

1 Locations are sites containing processes: /| P]

1 Agents travel between locations /[goto k. P | Q] | k[R] — ¢|Q] | k[P | R]

Types to control TR50UrCe ACCRSS is a current research topic.
I Which resource are available at a given location?

I How do we make sure the are used accordingly?

< K

=>1 >

SUSSEX




TVPQS for ACCQess control

A small Samp\@ of the aXISting theories

] Type systems with 10CaTI0ONS guarantees that the following makes sense.
goto /. "use res” . P

It also allows a S@lQCTIVe (per-users) usage of resources

I Location types
(:1loc|%#, S, D

can specify which locations we are prepare to reCeiVe and (iSPateh process
from and to.

"I Type systems also support Time [space qUantitive bound analysis. In
particular, a system of capacity types guarantees that if

¢ : cap[n, N]

at any time the space allocated inside ¢ will be n <z < N.

< K =>1 >

SUSSEX




The Gap, again. . .

Yas, but you cannot type the Internet.

All this works as long as you trust the certified types or are willing to typecheck

migrating code yourself (Dytecode verification, PCC,...)

In UbiComp, SQCUTILY must work be coupled with TTUSt.

This is hard, because of delegalion and dynamic policies

< K

=>1 >

SUSSEX




U ﬂdQFS\Z&ﬂd\ﬂg UD'\QU'\IOUS DQ\Qg&UOﬂ

a: p+—trusted; b: prTal(p);
q—"b7(q); q +— untrusted;
2 Tp(2); 2= Tal(z);




U ﬂdQFS\Z&ﬂd\ﬂg UD'\QU'\IOUS DQ\Qg&UOﬂ

a: p+—trusted; b: prTal(p);
q—"b7(q); q +— untrusted;
2 Tp(2); 2= Tal(z);

Delegation, Tormally: Global trust as a fixpoint.

7:(P—-P—D)— (P— D) Local Policy
=(P—-P—D)—(P—P—D) Collected Policies

Global Trust. fix(Z): P — P — D.

< K




U ndgrsmnd'mg UD'\QU'\IOUS DQ\Qg&UOﬂ

a: p+— trusted; b: prTal(p);
q—"b7(q); q +— untrusted;
2 Tp(2); 2= Tal(z);

Delegation, Tormally: Global trust as a fixpoint.

7:(P—-P—D)— (P— D) Local Policy
=(P—-P—D)—(P—P—D) Collected Policies

Global Trust. fix(Z): P — P — D.

p : trusted g : untrusted 277

The Integration of sSecurity and Trust opens an important and wide line of

research involving: g\gonthms trust Ui Q\/Q\UEXL'\OH/&ppYOX'\mElUOﬂ, middleware, models and

semantics and &ﬂ&\yS'\S IQQT\NqUQS, Ce

< K

=>1 >

SUSSEX



conclugion

] "TNROTY has a past record being relevant in pratice.
I It appears to be currently pursuing issues very pertinent to UDICOMD.
- UDICOMD provide real, important challenges.

So, the ground is set for strong cooperation. We should not separate theory from
practice at such an early stage of development of such an important application.

< K =>1 >

SUSSEX



	Between Theory and Practice
	Theory: Success Stories
	Type Systems in Programming Languages
	Types for Resource Usage
	Locations and Border Xing
	Types for Access control
	The Gap, againldots 
	Understanding Ubiquitous Delegation
	Conclusion

