A dependently typed ambient calculus

C. Lhoussaine V. Sassone

University of Sussex, UK

Global Computing 2004 (9.03.04)

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



@ Infroduction
@ The problem
@ A type based approach

© Mobility
@ Types
@ Scope crossing
@ Selected rules

© Communication
@ Per-client services
@ Tracing communication

O Conclusion

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

The Objective

In general:
Resource access control in global computing systems

Specifically:
Boundary control in mobile agent systems.

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

The Objective

In general:
Resource access control in global computing systems

Specifically:
Boundary control in mobile agent systems.

Ambient calculus
@ complete, yet small set of primitives for mobility
@ hierarchical structure
@ local communication

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

Troy Horse

Required Policy: NO Achaean inside the City walls.

TROJANS

Oayssous
inHorse.outHorse.DESTROY_TROY inTroy

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

Troy Horse

Required Policy: NO Achaean inside the City walls.

TROJANS

Horse

Odysseus

outHorse.DESTROY_TROY
inTroy

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

Troy Horse
Required Policy: NO Achaean inside the City walls.

TROJANS

Horse

Odysseus
outHorse. DESTROY_TROY

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

Troy Horse

Required Policy: NO Achaean inside the City walls.

TROJANS

Odlysseus
DESTROY_TROY

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

Troy Horse

Required Policy: NO Achaean inside the City walls.

Observe:
Scope restriction does not prevent Odysseus ending up in Troy

Odysseus TROJANS
inHorse.outHorse. DESTROY_TROY

Horse

inTroy

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

Type based approach

@ The past: Groups. Types specify allowed parents’” groups.

Odysseus : Achean[Mob{Ground, Toy, City}]
Horse : Toy[mob{Ground, City}]
Troy : Cityl[]

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

Type based approach

@ The past: Groups. Types specify allowed parents’” groups.

Odysseus : Achean[Mob{Ground, Toy, H
Horse : Toy[mob{Ground, City}]
Troy : Cityl[]

llI-typed unless Odysseus declares parent group City.

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

Type based approach

@ The past: Groups. Types specify allowed parents’” groups.

Odysseus : Achean[Mob{Ground, Toy, City}]
Horse : Toy[mob{Ground, City}]
Troy : Cityl[]

@ The present: Dependent types. A simpler, more flexible and
fine-grained approach.

Odysseus : mob[0, {Horse, Troy}]
Horse : mob[{Odysseus}, { Troy}]
Troy : mob|[{Horse, Odysseus}, 0]

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Intro The problem A type based approach

Dynamic Types

@ Via communication can express dynamic, ad-hoc,
personalised services and security policies.

X

TROJANS

inTroy

(Horse) | (x).

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

© Mobility
@ Types
@ Scope crossing
@ Selected rules

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

The Types

@ Ambient types:

a :mob[P,(]
P : set of possible parents for a
C : set of possible children for a

@ Capability types:

ina :cap[P]
P : set of ambients where ina might be exercised

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Typing Contexts and Coherence

@ Typing contexts:
= ay:mob[Py,Ci],...,0n: MOL[Pp, Cnl
@ Coherence:
a: mob[{b},0],b: mob[P,C] = aeC
a:moblf, {b}],b: mob[P,C] = ae P

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Typing Contexts and Coherence

@ Typing contexts:
= ay:mob[Py,Ci],...,0n: MOL[Pp, Cnl
@ Coherence:
a: mob[{b},0],b: mob[P,C] = aeC
a:moblf, {b}],b: mob[P,C] = ae P

@ Need accurate context updating
vTroy : mob[0, {Horse}]

Troy : mob[(, {Horse}]

Horse : mob[P,C
[P.cl ‘ Horse : mob[P U {Troy},C]

r(E:moeblP.Cl) b - mob[P, C]: the coherent updating of T wrt.
the new assignment b : mob|[P, C].

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Maftrioshka (nesfing) Horses

vTroy : mobl@, {Horse}]

Horse

Odysseus

TROJANS

outHorse.outHorse
inHorse

Horse

inTroy

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Maftrioshka (nesfing) Horses

vTroy : mobl@, {Horse}]

Horse

Odysseus

TROJANS

outHorse.outHorse
inHorse

Horse

inTroy

Horse : mob[{Horse}, {Horse, Odysseus}]
Odysseus : mob[{Horse}, 0]

Troy : mobl@, {Horse}]
Horse : mob[{Horse, Troy}, {Horse, Odysseus}]
Odysseus : mob[{Horse}, 0]

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Maftrioshka (nesfing) Horses

vTroy : mobl@, {Horse}]

Horse

Odysseus

outHorse.outHorse TROJANS

inHorse

Horse

inTroy

Horse : mob[{Horse}, {Horse, Odysseus}]
Odysseus : mob[{Horse}, 0]

Troy : mobl@, {Horse}]
Horse : mob[{Horse, Troy}, {Horse, Odysseus}]
Odysseus : mob[{Horse}, 0]

» Need to account for the potential new capabilities acquired
during Odysseus’s execution: Abstract names

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Maftrioshka (nesfing) Horses

vTroy : mobl@, {Horse}]

Horse

Odysseus

outHorse.outHorse TROJANS

inHorse

Horse

Troy : mobld, {Horse}] ey

Horse : mob[{Horse}, {Horse, Odysseus}]
Odysseus : mob[{Horse}, 0]

Troy : mobl@, {Horse}]
Actual type for Horse: Horse : mob[{Horse, Troy}, {Horse, Odysseus}]
mob[{Horse, Troy}, {Horse, Odysseus}] | Odysseus : mob[{Horse}, 0]

» Outside “vTroy,” Odysseus s ill-typed.

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Abstract Contexts

Abstract Context:
©,= ==aj : Mob[P;,C1],...,an : MOD[Pn,Cp]
Typing judgements:
r+®a:mob[pP,Cc]  THg=P
I : “concrete” typing context
© : local abstract context

= : external abstract context
a : current location

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Actual ambient type

mobl[P, (] = (I; ©,Z)[b]
r-S= b : mob[P,(]

{Horse} L 0:Troy:mobl0, {Horse}] Horse : mob | L1758 Trov}

..., Horse : mob {Horse, Odysseus} {Horse, Odysseus}

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Typing in capability

r=® a:mob[pP,c] P CC
M+ ina: cap[P’]

..., Troy : mobl[@, {Horse}] F? inTroy : cap[{Horse}]

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Typing out capability

= a:mob[P,C],q;: mob[P;,C] P CP
I +® outa: capl{a,...,an}]

... pTroy:mob[d, {Horse}] Horse : mob[{Horse, Troy}, {Horse, Odysseus}]
... pTroy:mobl[d, {Horse}] Oglysseus : mob[{Horse}, 0]

<. # Troy:mob(, {Horse}l outHorse : cap[{ Odysseus}]

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Scope restriction

F(@moblP.Cl g ; mob[P, C] F=° P
[ EEmoPIPC=9 (g - mob[P, )P

Horse : mob[{Horse, Troy}, { Horse, Odysseus}]
Odysseus : mob[Horse, ()] FO0 (...
Troy : mobl, { Horse}]

Horse : mob[{Horse}, {Horse, Odysseus}]
Odysseus : mob[Horse, 0]

p-Troy:mob[0, {Horse}:0 (3, Troy : mobl[, {Horse}])(- - -)

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Mobility Types Scope crossing Selected rules

Parallel composition

[H9=6 p [H0:50 Q
[+9:9:=p|Q

r F@;Troy:mob[w,{/-/orse}] Horse[~ . ] r FTroy:mOb[(D,{HOfse}];(B (VTroy)(~ . )

r FTroy:mOb[@A,{HOfse}];@ HOfse[' . ] | (l/Tny)(' .. )

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Communication Per-client services Tracing communication

© Communication
@ Per-client services
@ Tracing communication

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Communication Per-client services Tracing communication

The Effect of Communication: Dynamic Types

X

TROJANS

inTroy

(Elephant) | (Horse) | (x).

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Communication Per-client services Tracing communication

The Effect of Communication: Dynamic Types

X
TROJANS
(Elephant) | (Horse) | (x).
e |
Horse : moblf, 0] ey
Elephant : mobl[f, 0]
: mob[0, {x}]

Horse : mobl[f, §]
Elephant : mobl[, 0]

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Communication Per-client services Tracing communication

Elephant
TROJANS : mob|@, {Elephant}]
(Horse) | Horse : mobl[®, 0]
AR | oo mobl{ 10
inTroy
Horse
TROJANS : mobl[@, {Horse}]
(Elephant) | Horse : mob[{  },0]

Elephant : mob(@, #]

inTroy

» Orthogonal policies depending on possible communications:
need to track of all possible types

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Communication Per-client services Tracing communication

New types

@ Ambient types
a: amb[mob[P,C],coml[&, L]]

& :set of ambient names where a might be
communicated

L : set of ambient names that might be communicated
inside a

@ Variable types
X :var[B]
B : set of ambient names that might be bound to x

@ Multiple types

Horse - { amb(mobly, 9], com[{top, B}],

amb[mobl[{Troy}, ], com[{top, B}]]

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Conclusion

Conclusion

@ Name dependent typing:

e simple and infuitive types against *nasty” typing rules;

o still relatively easy, yet more flexible and expressive than
groups;

@ sensible application: access control for personalised,
dynamic services.

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Conclusion

@ Name dependent typing:

e simple and infuitive types against *nasty” typing rules;

o still relatively easy, yet more flexible and expressive than
groups;

@ sensible application: access control for personalised,
dynamic services.

@ Central technical notion: abstract names and contexts.
Keep track of capabilities “acquirable” dynamically by
“crossing” names’ scopes.

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



Conclusion

@ Name dependent typing:

e simple and infuitive types against *nasty” typing rules;

o still relatively easy, yet more flexible and expressive than
groups;

@ sensible application: access control for personalised,
dynamic services.

@ Central technical notion: abstract names and contexts.
Keep track of capabilities “acquirable” dynamically by
“crossing” names’ scopes.

@ Related work in the literature:

@ MIKADO's dynamic types for DPI (Hennessy ot al.).

e Yoshida's existential dependent types for DrI.

e DART’s dependent types for the Ambient Calculus
(Amtoft and Walis).

C. Lhoussaine, V. Sassone A dependently typed ambient calculus



	Introduction
	The problem
	A type based approach

	Mobility
	Types
	Scope crossing
	Selected rules

	Communication
	Per-client services
	Tracing communication

	Conclusion

