Foundations of Global Computmg

A Parsonal PQYSPQQU\/Q

Viadimiro sassone

University of Sussex

> >

Foundations of Global Computmg

Resource Control

Programming Languages

Samantic Theories

Models Tor COHQUNQﬂQy

X

Global Ubiquitous Computmg:

computation over a global network of
mobile, bounded resources shared among
mobile entities which move between highly

dynamic, largely unknown, untrusted
networks.

Difmculties.

Extreme dynamic reconfigurability; lack of
coordination and trust; limited capabillities;
partial knowledge ...

ISsues.

Protection and management of resources;
privacy and confidentiality of data; ...

> >

Foundations of Global Computmg

Resource Control

Programming Languages

semantic Theories

Models Tor COﬂQUFYQﬂQy

X

Patri Nets Based Models and Caleuli

A distributed timed-arc Patri net (DTAPN) is a Petri nef
together with

L] ainterval time constraint on transitions, either diserete
or continuous;

LI aclock synenronisation equivalence X on places.

Tokens age, and transitions are enabled accordingly.
Time elapses at the same speedon pand p’ if p X p’.

Globally Asynenronous, Locally Synehronous

Global Time: X =P x P Local Time. X = Ap

A Separation Result: Reachability for safe LT nets is de-
cidable, but undecidable for safe G'T nets.

ICATPN 2001, FST&TCS 2001

> >

Foundations of Global Computmg

Resource Control

Programming Languages

semantic Theories

Models Tor COﬂQUYYQﬂQy

X

"I A categorical machinery which allows the
derivation of LTSs from reduction systems.

1 Bigimulation on such LTSs is a congruence,
provided a general condition is met.

coinduction PHT\Q'\p\Q Dagidarata:
1 Operational Corresp.. p N\ q iff p —» ¢
L] Correctness. p =~ g implies p = ¢
L1 Completeness: p = g implies p = ¢

The intuition:
a - biff €la] \, b

Eg
(Ax.—)N

a0 ML yanN/xt KM e pm

> >

Foundations of Global Computmg

I A categorical machinery which allows the
derivation of LTSs from reduction systems.

[Bisimulation on such LTSs is a congruence,
provided a general condition is met.

Resource Control

. coinduction PNﬂQ\p\Q Dasiderata.
Programming Languages

1 Operational Corresp.. p \, ¢ iff p —» ¢
L1 Correctness: p =~ g implies p = ¢g

Ll Completeness: p = g implies p ~ ¢

semantic Theories The intuition:

a2 biff €la] \, b

But. Must cnoose labels carefully not 1o mess up the bisimulation

Choose only ‘minimal' redex-enabling contexts: GRPOS.
Relative pushouts in groupoidal categories:

Models Tor COﬂQUYYQﬂQy

EXPRESS 2002, FOSSACS 2003, NJC, TCS

> >

Foundations of Global Computmg

Resource Control

Programming Languages

semantic Theories

Models Tor COﬂQUYYQﬂQy

X

Jeeg’ concurrent OO with history-sensitive access control

1 Java (no synenronized(), wait(), notity(), notityAll()) for
business code;

[Linear Time Temporal Logie for synchronisatior
code (method guards).

public class MyClass {
sync {

m : @;
}

...// Standard Java class def

J
where m is a method identifier and ¢, the guard, is an
LTL formula. When m is invoked, the thread is kept oOn
nold unless ¢. When the condition is true, all Walting

threads are QWaken. m is implicitly syncnronised.
JavaGRANDE 2002, WOODS 2003, Cone & Comp, OOPS 2004

\J

> >

Foundations of Global Computmg

Resource Control

Programming Languages

semantic Theories

Models Tor COﬂQUYTQﬂQy

X

Resources: Models, Types, Logics, Languagas

(1 Aceess Control — (Coneur 2002, ESOP 2004)

[JAccess Authorisation (FST&TCS 2002, Info&Co)

(] Secrecy for Mobile Agents

(ICALP 2003)

[Trust Management — (sEFm 2003)

[Bounds CONtrol (ASIAN 2003)

> >

Mobile Ambients

Both administrative domains and computational environments
L SUD}QQU\/Q Movements

nl[inmP|QJ|m[R]—ml[n[P|O]|IR]
m[nfoutm.P|O]|R]—n[P|O]|ml[R]

0 Boundary dissolver

open n.P|n[O] — P|O.

(] Process interaction

nl (M).P|(x).Q I — nl P|Qlx:= M}],

> >

Group Types for Mobility

Aim: Resource Access Control
I Detect and prevent unwanted access to resources.
"I Focus on static approaches based on enforcing type disciplines.

> >

Group Types for Mobility

Aim: Resource Access Control
I Detect and prevent unwanted access to resources.
"I Focus on static approaches based on enforcing type disciplines.

Groups. Sets of processes with common access rights.
Constraints like k£ : CanEnter(n) are modelled as:

n belongs to group G

k may cross the border of ambients of group G.

For instance, the system:
klinn|/[[outk]] | n[_-]
is Well-typed under assumptions of the form:

k :amb[K, cross(N)]
[- amb[L, cross(K)] n : amb[N,...]

> >

Indirect Border CFOSS\Y\g

Trojan Horses: The system
Odysseus[in Horse.out Horse. Destroy | | Horse[inTroy] | Troy[Trojans]
is well-typed under assumptions:

Odysseus : amb[Achaean, ¢ross(Toy)]
Horse : amb[Toy, cross(City)]
Troy : amb[City, _]

> >

Indirect Border CFOSS\ﬂg

Trojan Horses: The system
Odysseus[in Horse.out Horse. Destroy | | Horse[inTroy] | Troy[Trojans]
is well-typed under assumptions:

Odysseus : amb[Achaean, ¢ross(Toy)]
Horse : amb[Toy, cross(City)]
Troy : amb[City, _]

Howaever, the system may evolve to

Troy[Trojans | Horse[_] | Odysseus[Destroy]]

where Odysseus got inside Troy's Wall$ taking by surprise the Trojans.

> >

Types

Groups: GH,...

Sats of groups. 2, .7, ...

Ambients WPQSZ

A = amb[G, M]
Process WpQSZ

IT == proc[G, M]

C&p&b'\\'\w WPQSZ
K == p[G M]

MoDIlITy Types:
M = mob[HA]

7/ The universal set of groups

amb of group G, with mobility type M

Process that can be enclosed in an ambient of group
may arive To ambients whose groups are in M

Q&p&b'\\'\w that can appear in an ampient of group G,
may drive it 1o ampients whose groups are in M

mobility Specs. where processes are allowed T0 reside

G,

> >

Accaess Control PTOPQYUQS

MOD'\\'\W pYOpQYUQSZ
WD F n[inm.P| Q]| m[R]:II, then

' m:amb[M,_] and I + n:amb[_, mob[A]]

with M € .

I T F m[r[outm.P| O] |R]:1I then
' m:amb[M, mob[Z,]] and T' + n : amb[N, mob[.Z,]]

withM e &, and &, C &,.

> >

Daetecting Odysseus' intentions

Now, in order to assign a type to
Odysseus[1n Horse.out Horse. Destroy] | Horse[inTroy] | Troy[Trojans]
we need assumptions of the form:

Odysseus : amb[Achaean, mob[{Ground, Toy, City}]]
Horse : amb[Toy, mob[{Ground, City}]]

Troy : amb[City, _]

representing that Odysseus is an Achaean intentioned to move into a City!

> >

DQIQQUﬂg O(WSSQUS' INTRNTIONS

Now, in order to assign a type to
Odysseus[1n Horse.out Horse. Destroy] | Horse[inTroy] | Troy[Trojans]
we need assumptions of the form:

Odysseus : amb[Achaean, mob[{Ground, Toy, City}]]
Horse : amb[Toy, mob[{Ground, City}]]

Troy : amb[City, _]

representing that Odysseus is an Achaean intentioned to move into a City!
On the other hand, under assumptions of the form

Odysseus : amb[Achaean, mob[{Ground, Toy}]]

the Trojans should not fear any attack from Odysseus.

> >

Dependent Types for Access Control

Dependent MobIlity Types: (& and & are sets of names, not groups.)

A = amb[hasFathers(£?), hasChildren(%)]

> >

Dependent Types for Access Control

Dependent MobIlity Types: (& and & are sets of names, not groups.)

A = amb[hasFathers(£?), hasChildren(%)]

Dependent types allow personalised services and dynamic access control.

Horseserver = !(x)(v Horse : amb[_, hasChildren{x}])Horse[out Troy.inTroy.0]

> >

DQPQHGQM TprS for Accegs Control

Dependent MobIlity Types: (& and & are sets of names, not groups.)

A = amb[hasFathers(£?), hasChildren(%¢)]

Dependent types allow personalised services and dynamic access control.

Horseserver = !(x)(v Horse : amb[_, hasChildren{x}])Horse[out Troy.inTroy.0]

1 Names have several possible types, depending on the a¢Tual
communications occurred.

] The set of names exchanged over a channel must be tracked. Luckily, The
set of possible types for a name has a Maximum and a Minimum element.

> >

sacrecy in Mobile Ambients

Names ~ Cryptokeys: Carrying messages inside private ambients preserves
message integrity and privacy. Or, does it?

(vn)(a[n[out a.in b.{M)]]| b[open n.(x)P])

> >

SQQTQQy In Mobile Ambients

Names ~ Cryptokeys: Carrying messages inside private ambients preserves
message integrity and privacy. Or, does it?

(vn)(a[n[out a.in b.{M)]]| b[open n.(x)P])

It actually offers no guarantees for software agents, as n must be revealed along

the move, and servers may peek inside.

How to provide stronger protection?

> >

SQQTQQy In Mobile Ambients

Names ~ Cryptokeys: Carrying messages inside private ambients preserves
message integrity and privacy. Or, does it?

(vn)(a[n[out a.in b.{M)]]| b[open n.(x)P])
It actually offers no guarantees for software agents, as n must be revealed along

the move, and servers may peek inside.

How to provide stronger protection?

A new Crypto-primitive. subjective access control using co-capabilities + data
encryption to preserve secrecy of data while agents move autonomously

led under k
n[SeaIkP|Q] - anlQ}k‘/SQQQ under

\erpto—K@y

EfTects:
I DIOCKS message exchanges and @NCrypis their contents;

1 the sealed ambient cannot communicate, but it may move.

X > >

Sealed Ambients

I The mechanism to resume to a fully operational state is associated to
movements and co-capabilities containing keys

nfinm.P| QM |m{in (x}y.R|R'} — m{n[P|Q1[R(x:=n} R}

> >

Sealed Ambients

I The mechanism to resume to a fully operational state is associated to
movements and co-capabilities containing keys

nlinriz-PlQlklifift{ﬁ{x}k.RlR’} — m{n[P| Q1| R{x = n} R’}
| | 1

> >

Sealed Ambients

I The mechanism to resume to a fully operational state is associated to
movements and co-capabilities containing keys

n{inriz.mQ}kwia{ﬁ{x}k.mw} — m{n[P| Q1| R{x = n} R’}
| | 1

Example:

(vk)a[n[seal k.out a.in b.A(MY'11|b[in {x}r.(»)*.P]

> >

Sealed Ambients

I The mechanism to resume to a fully operational state is associated to
movements and co-capabilities containing keys

n{inriz.mQ}kwia{ﬁ{x}k.mw} — m{n[P| Q1| R{x = n} R’}
| | 1

Example:

(vk)a[n[seal k.out a.in b.A(MY'11|b[in {x}r.(»)*.P]

—s (vk)a[n{out a.in b.{MY }, 11 b[in {x}r.(y)".P]

> >

Sealed Ambients

I The mechanism to resume to a fully operational state is associated to
movements and co-capabilities containing keys

n{inriz.mQ}kwia{ﬁ{x}k.mw} — m{n[P| Q1| R{x = n} R’}
| | 1

Example:

(vk)a[n[seal k.out a.in b.A(MY'11|b[in {x}r.(»)*.P]
—s (vk)a[n{out a.in b.{MY }, 11 b[in {x}r.(y)".P]

—s (vk)al 1| n{in b.AMY }; | bl in {x};.(v)".P]

> >

Sealed Ambients

I The mechanism to resume to a fully operational state is associated to
movements and co-capabilities containing keys

n{inriz.mQ}kwia{ﬁ{x}k.mw} — m{n[P| Q1| R{x = n} R’}
| | 1

Example:

(vk)a[n[seal k.out a.in b. (MY 11| b[in {x}.()".P]
—s (vk)a[n{out a.in b.{MY }, 11 b[in {x}r.(y)".P]
— (vkyal 1| n{in bAMY b | bLin {x}.(y)*.P]

— (vkyal 11 bLal{MY 1] ()" .Plx := n}]

> >

Sealed Ambients

I The mechanism to resume to a fully operational state is associated to
movements and co-capabilities containing keys

n{inriz.mQ}kwia{ﬁ{x}k.mw} — m{n[P| Q1| R{x = n} R’}
| | 1

Example:

(vk)a[n[seal k.out a.in b. (MY 11| b[in {x}.()".P]
—s (vk)a[n{out a.in b.{MY }, 11 b[in {x}r.(y)".P]
— (vkyal 1| ndin bAMY } | bLin {x}.(y)".P]

— (vkyal 11 bLal (MY 1] () Plx = n}]

> >

SQQTQQy and Adversaries

Intuitively:

A Process Preserves the secrecy of & piece of data M it it does not pUb\\Sh M, or
anything that would permit the computation of M.

> >

SQQFQQy and Adversaries

Intuitively:

A Process preserves the secreey of & piece of data M it it does not pUb\\ST\ M, or
anything that would permit the computation of M.

S-Adversary. A context A(—) which initially knows names and capabilities in .

Revealing Names: P may reveal nto S if there exists an S -adversary A(-) and a
name ¢ € S such that:

A(P) = C(c[{(n)'| Q1) (cfree)

SQQFQQV and Adversaries

Intuitively:
A process preserves the secrecy of a piece of data M if 1t does not publish M, or
anything that would permit the computation of M.

S-Adversary. A context A(—) which initially knows names and capabilities in .

RQ\/Q&\'\ng Names. P may reveal n to S if there exists an S-adversary A(-) and a
name ¢ € S such that:

A(P) = C(c[{(n)'| Q1) (cfree)

Typing System: Secrecy is captured by a type system + which may classify
processes as Untrusted I' - P : Un, and data as pPubliC a : Public if it can be
exchanged with untrusted process.

Seerecy Theorem: Waell-typed processes do not reveal their seerets publicly. Formally, if

['+P:Unand I ¥ s: Public, then P preserves the secrecy of s from all public
channels, i.e. from {a | + a : Public}. (Payload s won't be entrusted 1o a public a.)

X > >

4]

Batwean T\\QOW and Practice

That's all g0od, but . ..

> >

Batwean TY\QOW and Practice

That's all good, but ...

...One cannot type the Internet

The gap DeTween U\Q()Yy and practice matters in practice.

All this only works as long as you trust the certified types, or are willing to
typecheck migrating code yourself (Dytecode verification, PCC,...), ...

> >

Batween TY\QOW and Practice

That's all good, but ...

...One cannot type the Internet

The gap DeTween U\Q()Yy and practice matters in practice.

All this only works as long as you trust the certified types, or are willing to
typecheck migrating code yourself (Dytecode verification, PCC,...), ...

£ Varineation (relates to type checking/inference)
1 Cartificates (groups as certified roles)

(1 TTust: In UbiComp, SeCUTity must work be coupled with Trust management.

Which is hard, because of delegation and dynamic policies

Trust Management

Focus on Trust Evolution and Delegation in Dynamic Networks

al A },

> >

Trust Management

Focus on Trust Evolution and Delegation in Dynamic Networks

principal % ~a{ A Jre_ trust poliey: expressions on lattice (D, <)

agent /behaviour

> >

Trust Management

Focus on Trust Evolution and Delegation in Dynamic Networks

principal % ~a{ A Jre_ trust poliey: expressions on lattice (D, <)

agent /behaviour

Trust Based Services:
at b.tqv) A} | DUU(x) . 2By} —> al A} | DL Bryix := v})y

Trust Evolution:
a{l . A|BY, — al Al B}y

> >

Trust Management

Focus on Trust Evolution and Delegation in Dynamic Networks

principal % ~a{ A Jre_ trust poliey: expressions on lattice (D, <)

agent /behaviour

Trust Based Services:
at b.tqv) A} | DUU(x) . 2By} —> al A} | DL Bryix := v})y

Trust Evolution:
a{l . A|BY, — al Al B}y

Policies and EXPYQSS\OT\S'.

= Tp? delegation Ti= teD value fvar
Ax :P.T abstraction n(p) poliey value
op(rmy,...,m,) lattice Op e T.T choica
pi= aeP, x:P principal /vars e:= TCNPT,pedp COMPArsons
e Dop e Doolean op

X > >

understanding Delegation

Example:

a .

p = trusted;
g "b(q);
2z "pl(2);

b :

p = Tal(p);
g > untrusted;

z Tal(2);

> >

understanding Delegation

Example:

a .

p B trusted; b : p P '-a-'(p);
g "b(q); g > untrusted;
z "pl(2); zb Tal(z);

Delegation, Tormally. Global trust as a fixpoint.

7:(P—->P—>D)— (P —>D) Local Poliey
= P->P—->D)—->FP->P—>D) Collected Policies
Glopal Trust: fix(Z) : P — P — D. But, is this good enough?

> >

understanding Delegation

Example:
a: p > trusted; b: p Talp);
g "b(q); g > untrusted;
2 "p(2); 2 a'(z);
Delegation, Tormally. Global trust as a fixpoint.
7. P—->P—->D) — (P —D) Local Policy

= P—->P—>D) — P —>P—>D)

Global Trust.

Collected Policies

fix(Z) : P —> P — D. But, is this good enough?

p : trusted

g :untrusted z: 777

Cannot confuse dON'T Trust with Aon't KNOw: the value of " p7(z) could become

available later.

Need to account for uncertain knowledge of "p(z) € D.

> >

Trust Structures

(/}<Z:), where \/ s C -continous

Trust lattice approximation ¢po

Thm. (D, <,C) yields an adequate semantics [—]] : Policies — Env — (P — P — D).

The trust structure is derived canonically from (D, <). The fixpoint is computed with
respect to LC.

[7ps....70p 1o = fixc(Am.Ap.(7wy Dom)

ONngoing Work:
I Approximate the fixpoint in the presence of partial information.
I Use Kripke style semantics to capture trust evolution in time.
| Static Safety guarantees: processes do not undermine their Site policies.

Dimensions, Capacities, Mobility

Central Notion: Resource Usage

Focus: Capacity Bounds Awareness.

"I Bounded Capacity Ambients
.1 Fine control of capacity.
I Space as a linear co-capability.

a[lnb PIOTIbOl=IR] =|blal PIOTIR]

mO\/Q capability /
shate co-capanility

Compumt'\on takes Space, dynam'\ea\\y, and we'd like To model it.

> >

A Calculus of Bounded CAPQQ'\UQSZ Movement

Fundamentals: Sp&QQ conscious Movement

alinb . Pl O 1|bl=IR]T N =|blalP|Q]IR]
= |blaloutb.PIOQ1|IR] N alPlO]|Dl=]|R]

A Calculus of Bounded CAPQQ'\UQSZ Movement

Fundamentals: Sp&QQ conscious Movement

alinb . Pl O 1|bl=IR]T N =|blalP|Q]IR]
= |blaloutb.PIOQ1|IR] N alPlO]|Dl=]|R]

Examp\gz Travelling needs but consumes no space.

al inb.inc.outc.outh.0] | bl = | c[=11
NN\ = | D[=] c[al outc.outhb.0]]]

NNal 0] ol =]l =11

A Calculus of Bounded C&p&Q'\UQSZ o17Q8

Fundamentals: Sp&QQ conscious Movement
1 But the Si7Q of travellers matters!

k times k times

-\ N

d[inb.P1 Q1| b[=]...1=1R1 N =I|...|1=|b[d[P|Q]1IR]

=...1=lbldToutb.P|Q1IR] N aTPIQIIbl=]...|=IR]

N

k times k times

A Calculus of Bounded C&p&Q'\UQSZ o17Q8

Fundamentals: Sp&QQ conscious Movement
1 But the Si7Q of travellers matters!

k times k times

-\ N

d[inb.P1 Q1| b[=]...1=1R1 N =I|...|1=|b[d[P|Q]1IR]

=...1=lbldToutb.P|Q1IR] N aTPIQIIbl=]...|=IR]

N

k times k times

What is the a*? A type annotation measuring the size of P.

k times

Notation. We use =* as a shorthand for = | ... | =.

A Caleulus of Bounded Capacities: Spawning,

Fundamentals: SpQQQ conscious Process Activation

S I N

A Caleulus of Bounded Capacities: Spawning,

Fundamentals: SpQQQ conscious Process Activation

k k
passive procass:——> Pl="" N P

Waeighs 0
P weighs k

A Caleulus of Bounded Capacities: Spawning,

Fundamentals: SPQQQ conscious Process Activation

k k
passive proegssz——>'> Pl = NP
Waeighs 0
P weighs k

Example: Replication: 1°£ 1k
P N PP

Types ensure only O—WQ'\ngd processes are replicable: One must use spawning,
so that replication needs space proportional to the process’ weight.

A Calculus of Bounded CQPAQ'\UQSZ Transter

Fundamentals: SpQQQ AQQU'\S'\UOR and Release

put’a.P|=|d[get’.Q|R] N Pld"'[Q]|=|R]
d ' put.P|=|S 110" [geta.Q|R] N\ d[PISTIPT[Q|=|R]

A Calculus of Bounded C&p&Q'\UQSZ Transter

Fundamentals: Sp&QQ AQqU'\S'\UOﬂ and Release

put’a.P|=|d[get’.Q|R] N Pld"'[Q]|=|R]
d ' put.P|=|S 110" [geta.Q|R] N\ d[PISTIPT[Q|=|R]

Example: A Memory Module

256 M B

memMod = MeM|[wm | 'put | !getfree]

malloe = m[!get mem.free[out m.getm.put]| !put]

A Calculus of Bounded C&p&Q'\UQSZ Transter

Fundamentals: Sp&QQ AQQU'\S'\UOR and Release

put’a.P|=|d[get’.Q|R] N Pld"'[Q]|=|R]
d ' put.P|=|S 110" [geta.Q|R] N\ d[PISTIPT[Q|=|R]

Example: A Memory Module

256 M B

memMod = MeM|[wm | 'put | !getfree]

malloe = m[!get mem.free[out m.getm.put]| !put]

memMod | malloe \y M8 mem[!put | !gettrea J | m[<Z0MB |]\ POME

mem[!put | !gettree]| maloce | ree®®MB[| put 1 M8 memMod | malloe | ...

A System of Capacity Types

Capacity Types. ¢,... are pairs of nats [, N], with n < N.

Efect Types &,.. . are pairs of nats (d, i), representing decs and incs.
Exchange Types: y ::= St | Amd(c, x) | Cap(&E, x)

Process and Ambient and C&p&b'\\'\w TprS:

a : Amb{(e, x) a has no less than ¢,, and no more than ¢y, spaces
P : Prock, &, x) P weighs k and produces the effect & on ambients
C : Cap({&, x) C transforms processes adding & to their effects

> >

A System of Capacity Types

Capacity Types. ¢,... are pairs of nats [, N], with n < N.

Efect Types &,.. . are pairs of nats (d, i), representing decs and incs.
Exchange Types: y ::= St | Amd(c, x) | Cap(&E, x)

Process and Ambient and C&p&b'\\'\w TprS:

a : Amb{(e, x) a has no less than ¢,, and no more than ¢y, spaces
P : Prock, &, x) P weighs k and produces the effect & on ambients
C : Cap({&, x) C transforms processes adding & to their effects

Thm: Subject Reduction: Wall-typed processes preserve space.
IfI' - P:Prock,E, y)yand PNy O thenI' + Q : Procck, &', y) for some & < &.

> >

Future Work

[What? Third-Party Resources: Models, Languages and Techniques

[Resource-Aware Computation: resource bounds negotiation & enforcement
[Resource Usage: caleuli & logics Tor quantitative analysis

[Resource Safety: languagaes for security & trust policies; general resource logies
[Raesource Trust: nistory-based: theory and infrastructures

X > >

Future Work

[What? Third-Party Resources: Models, Languages and Techniques

[Resource-Aware Computation: resource bounds negotiation & enforcement
[Resource Usage: caleuli & logics Tor quantitative analysis

[Resource Safety: languagaes for security & trust policies; general resource logies
[Raesource Trust: nistory-based: theory and infrastructures

1 HOW: Integrated approach: Behavioural, Execution, Abstract Modals.

Future Work

[What? Third-Party Resources: Models, Languages and Techniques

[Resource-Aware Computation: resource bounds negotiation & enforcement
[Resource Usage: caleuli & logics Tor quantitative analysis

[Resource Safety: languagaes for security & trust policies; general resource logies
[Raesource Trust: nistory-based: theory and infrastructures

1 HOW: Integrated approach: Behavioural, Execution, Abstract Modals.

1 Wh0: Communities involved:
L] EU FET Global Computing
L] UKCRC Great Challenges: Science for Global Ubiquitous Computing
[] EPSRC UK aeScience & UK UbiNat

Contexts as Labals

The intuition:
a2 biff €la] \, b

For instance:
—|a (Ax.—)N -N
a "% (M N AN x) KM —L » M

Yep, but not quite:
L] Too many labels not desirable:

(] Useless combinatorial axplosion: Ax.xx —=~ » MMN

(] Messes up the bisimulation (00 coarse). | Z» D|r] for all rules [\ r.

> >

Contexts as Labals

The intuition:
a2 biff €la] \, b

For instance:
—|a (Ax.—)N -N
a "% (M N AN x) KM —L » M

Yep, but not quite:
L] Too many labels not desirable:

(] Useless combinatorial axplosion: Ax.xx —=~ » MMN

(] Messes up the bisimulation (00 coarse). | Z» D|r] for all rules [\ r.

Choose Oﬂ\y ‘minimal’ YQGQX—QY\QD\\H% CoNtexts

L1 Case &ﬂ&\yS\S of hasic situations: Sewell. Abstract &ppFOQQT\Z Leifer-Miiner

allalla

> >

A Categorical Approach

Lawvere theory on =

"I the natural numbers for objects
I amorphism ¢: m — n, for t a n-tuple of m-holed terms.
I Composition is substitution of terms into holes.

E.G. for X the signature for arithmetics:
I term (—; X x) + — is an arrow 2 — 1 (two holes yielding one term)

1 (3,2 xy)is an arrow 0 — 2 (a pair of terms with no holes).

I Their composition is the term (3 X x) + (2 X y), an arrow of type 0 — 1.

> >

A Categorical Approach

Lawvere theory on =

"I the natural numbers for objects
I amorphism ¢: m — n, for t a n-tuple of m-holed terms.
I Composition is substitution of terms into holes.

A generalisation from term rewriting systems to categories.
"I A category C with distinguished object 0.

(1 A set of reaction rules R € Jeee C(0, C) x C(0, C).

1 A setD of arrows of C called the reactive contexts.
Assume that d; .d, € D implies dy and d; € D.

The reaction relation is defined as

a—» b ifft a=d.l,b=d.r,deDand{/,r)eR.

[
0 3C—=¢

X r

> >

(G)RPOS

Suppose that C is a (bi)category and consider a redex square
/ \
\ /

> >

(G)RPOS

Suppose that C is a (bi)category and consider a redex square

C
p\

d
C S e ¢ d .
[

<

L] arelative pushout (RPO) is a tuple {c, d, p) which satisfies the universal
property that:

> >

(G)RPOS

Suppose that C is a (bi)category and consider a redex square

[]
[
~

[
A
(AN

[

\

3

L] arelative pushout (RPO) is a tuple {c, d, p) which satisfies the universal
property that:

I for any other such (c¢’,d’, p’) there oxists a uniqgue mediating morphism m.

Deriving LTS

The LTS derived from the reactive system has:
1 NodeS a: 0 —= N

O Transitions: a —L» dr iff for (I,rye Rand d € D, {f,d,id) is a relative

pushout of the square
SN

> >

Deriving LTS

The LTS derived from the reactive system has:
1 NodeS a: 0 —= N

O Transitions: a —L» dr iff for (I,rye Rand d € D, {f,d,id) is a relative

pushout of the square
SN

L Thm. If all redex squares like the above have (G)RPOS then the

bisimulation on the derived LTS is a COnNgruence.
[Laifer-Milner 00, Sassone-Sobocinski 02]

> >

Applying (G)RPOS

Milner (2001) worked out RPOS for a graphical formalism called DIgrapnhs.

Sassone and Sobocinski (2002) introduced GRPOS to handle calculi with
non-trivial structural congruences.

Jensen and Milner (2003) derived (essentially) the usual 7 labelled bisimulation
on asynchronous 7 using RPOS.

Sassone and Sobocinski (2003) worked out an easy encoding of Milner’s
pre-category approach into the G-world.

Jensen and Milner (2004) found (G)RPOS for ambient-calculus and for Weak
bisimulations.

Sassone and Sobocinski (2004) derived GRPOS for generic graph structures
and graph rawrite syst@ms.

> >

Applying (G)RPOS
Milner (2001) worked out RPOS for a graphical formalism called DIgrapnhs.

Sassone and sobocinski (2002) introduced GRPOS to handle calculi with
non-trivial structural congruences.

1 Jensen and Milner (2003) derived (essentially) the usual 7 labelled bisimulation
on asynchronous 7 using RPOS.

1 Sassone and Sobocinski (2003) worked out an easy encoding of Milner’s
pre-category approach into the G-world.

[Jensen and Milner (2004) found (G)RPOS for ambient-calculus and for Weak
bisimulations.

[Sassone and Sobocinski (2004) derived GRPOS for generic graph structures
and graph rawrite syst@ms.

So far, the price of the initial 2-categorical investment seems WOr'th paying. ..

Future Work

I Extend to more complicated Process calculi with complex structural

congruences (e.g. replication); Apply to specific raph rewriting systems.
X K > >
4]

	Foundations of Global Computing
	Mobile Ambients
	Group Types for Mobility
	Indirect Border Crossing
	Types
	Access Control Properties
	Detecting Odysseus' intentions
	Dependent Types for Access Control
	Secrecy in Mobile Ambients
	Sealed Ambients
	Secrecy and Adversaries
	Between Theory and Practice
	Trust Management
	Understanding Delegation
	Trust Structures
	Dimensions, Capacities, Mobility
	A Calculus of Bounded Capacities: Movement
	A Calculus of Bounded Capacities: Sizes
	A Calculus of Bounded Capacities: Spawning
	A Calculus of Bounded Capacities: Transfer
	A System of Capacity Types
	Future Work
	Contexts as Labels
	A Categorical Approach
	(G)RPOs
	Deriving LTS
	Applying (G)RPOs

