
� ≪ ≫ �

Foundations of Global Computing

A Personal Perspective

Vladimiro Sassone

University of Sussex

Swansea 4.03.04 – pp.1/28

� ≪ ≫ �

Foundations of Global Computing

Resource Control

Programming Languages

Semantic Theories

Models for Concurrency

Global Ubiquitous Computing:

computation over a global network of

mobile, bounded resources shared among

mobile entities which move between highly

dynamic, largely unknown, untrusted

networks.

Difficulties:

Extreme dynamic reconfigurability; lack of

coordination and trust; limited capabilities;

partial knowledge . . .

Issues:

Protection and management of resources;

privacy and confidentiality of data; . . .

Swansea 4.03.04 – pp.2/28

� ≪ ≫ �

Foundations of Global Computing

Resource Control

Programming Languages

Semantic Theories

Models for Concurrency

Petri Nets Based Models and Calculi

A distributed timed-arc Petri net (DTAPN) is a Petri net

together with

➤ a interval time constraint on transitions, either discrete
or continuous;

➤ a clock synchronisation equivalence Σ on places.

Tokens age, and transitions are enabled accordingly.

Time elapses at the same speed on p and p′ if p Σ p′.

Globally Asynchronous, Locally Synchronous

Global Time: Σ = P × P Local Time: Σ = ∆P

A Separation Result: Reachability for safe LT nets is de-

cidable, but undecidable for safe GT nets.

ICATPN 2001, FST&TCS 2001

Swansea 4.03.04 – pp.2/28

� ≪ ≫ �

Foundations of Global Computing

Resource Control

Programming Languages

Semantic Theories

Models for Concurrency

➤ A categorical machinery which allows the

derivation of LTSs from reduction systems.

➤ Bisimulation on such LTSs is a congruence,

provided a general condition is met.

Coinduction Principle Desiderata:

➤ Operational Corresp.: p↘ q iff p
τ
I q

➤ Correctness: p ≈ q implies p � q

➤ Completeness: p � q implies p ≈ q

The intuition:
a

C
I b iff C [a]↘ b

Eg:

a
−|ā
I 0 M

(λx.−)N
I M{N/x} KM

−N
I M

Swansea 4.03.04 – pp.2/28

� ≪ ≫ �

Foundations of Global Computing

Resource Control

Programming Languages

Semantic Theories

Models for Concurrency

➤ A categorical machinery which allows the

derivation of LTSs from reduction systems.

➤ Bisimulation on such LTSs is a congruence,

provided a general condition is met.

Coinduction Principle Desiderata:

➤ Operational Corresp.: p↘ q iff p
τ
I q

➤ Correctness: p ≈ q implies p � q

➤ Completeness: p � q implies p ≈ q

The intuition:
a

C
I b iff C [a]↘ b

But: Must choose labels carefully not to mess up the bisimulation

Choose only ‘minimal’ redex-enabling contexts: GRPOs.
Relative pushouts in groupoidal categories:

EXPRESS 2002, FOSSACS 2003, NJC, TCS

Swansea 4.03.04 – pp.2/28

� ≪ ≫ �

Foundations of Global Computing

Resource Control

Programming Languages

Semantic Theories

Models for Concurrency

Jeeg: concurrent OO with history-sensitive access control

➤ Java (no synchronized(), wait(), notify(), notifyAll()) for

business code;

➤ Linear Time Temporal Logic for synchronisation
code (method guards).

public class MyClass {
sync {

m : φ;

....

}

...// Standard Java class def

}

where m is a method identifier and φ, the guard, is an

LTL formula. When m is invoked, the thread is kept on
hold unless φ. When the condition is true, all waiting
threads are awaken. m is implicitly synchronised.

JavaGRANDE 2002, WOODS 2003, Conc & Comp, OOPS 2004

Swansea 4.03.04 – pp.2/28

� ≪ ≫ �

Foundations of Global Computing

Resource Control

Programming Languages

Semantic Theories

Models for Concurrency

Resources: Models, Types, Logics, Languages

➤ Access Control (Concur 2002, ESOP 2004)

➤ Access Authorisation (FST&TCS 2002, Info&Co)

➤ Secrecy for Mobile Agents (ICALP 2003)

➤ Trust Management (SEFM 2003)

➤ Bounds Control (ASIAN 2003)

Swansea 4.03.04 – pp.2/28

� ≪

�

≫ �

Mobile Ambients
Both administrative domains and computational environments

➤ Subjective movements

n[in m.P | Q] | m[R] −→ m[n[P | Q] | R]

m[n[out m.P | Q] | R] −→ n[P | Q] | m[R]

➤ Boundary dissolver

open n.P | n[Q] −→ P | Q.

➤ Process interaction

n[〈M〉.P | (x).Q] −→ n[P | Q{x := M}],

Swansea 4.03.04 – pp.3/28

� ≪

�

≫ �

Group Types for Mobility
Aim: Resource Access Control

➤ Detect and prevent unwanted access to resources.

➤ Focus on static approaches based on enforcing type disciplines.

Groups: Sets of processes with common access rights.

Constraints like k : CanEnter(n) are modelled as:

n belongs to group G

k may cross the border of ambients of group G.

For instance, the system:

k[in n | l[out k]] | n[]

is well-typed under assumptions of the form:

k : amb[K, cross(N)]

l : amb[L, cross(K)] n : amb[N, . . .]

Swansea 4.03.04 – pp.4/28

� ≪

�

≫ �

Group Types for Mobility
Aim: Resource Access Control

➤ Detect and prevent unwanted access to resources.

➤ Focus on static approaches based on enforcing type disciplines.

Groups: Sets of processes with common access rights.

Constraints like k : CanEnter(n) are modelled as:

n belongs to group G

k may cross the border of ambients of group G.

For instance, the system:

k[in n | l[out k]] | n[]

is well-typed under assumptions of the form:

k : amb[K, cross(N)]

l : amb[L, cross(K)] n : amb[N, . . .]

Swansea 4.03.04 – pp.4/28

� ≪ ≫ �

Indirect Border Crossing
Trojan Horses: The system

Odysseus[in Horse.out Horse.Destroy] | Horse[inTroy] | Troy[Trojans]

is well-typed under assumptions:

Odysseus : amb[Achaean, cross(Toy)]

Horse : amb[Toy, cross(City)]

Troy : amb[City,]

However, the system may evolve to

Troy[Trojans | Horse[] | Odysseus[Destroy]]

where Odysseus got inside Troy’s Walls taking by surprise the Trojans.

Swansea 4.03.04 – pp.5/28

� ≪ ≫ �

Indirect Border Crossing
Trojan Horses: The system

Odysseus[in Horse.out Horse.Destroy] | Horse[inTroy] | Troy[Trojans]

is well-typed under assumptions:

Odysseus : amb[Achaean, cross(Toy)]

Horse : amb[Toy, cross(City)]

Troy : amb[City,]

However, the system may evolve to

Troy[Trojans | Horse[] | Odysseus[Destroy]]

where Odysseus got inside Troy’s Walls taking by surprise the Trojans.

Swansea 4.03.04 – pp.5/28

� ≪ ≫ �

Types
Groups: G, H, . . .

Sets of groups: P ,S , . . . U The universal set of groups

Ambients types:
A ::= amb[G,M] amb of group G,with mobility type M

Process types:
Π ::= proc[G,M] process that can be enclosed in an ambient of group G,

may drive to ambients whose groups are in M

Capability types:
K ::= cap[G,M] capability that can appear in an ambient of group G,

may drive it to ambients whose groups are in M

Mobility types:
M ::= mob[P] mobility specs: where processes are allowed to reside

Swansea 4.03.04 – pp.6/28

� ≪ ≫ �

Access Control Properties

Mobility properties:

➤ If Γ ` n[inm.P | Q] | m[R] : Π, then

Γ ` m : amb[M,] and Γ ` n : amb[,mob[P]]

with M ∈P .

➤ If Γ ` m[n[outm.P | Q] | R] : Π, then

Γ ` m : amb[M,mob[Pm]] and Γ ` n : amb[N,mob[Pn]]

with M ∈Pn and Pm ⊆Pn.

Swansea 4.03.04 – pp.7/28

� ≪ ≫ �

Detecting Odysseus’ intentions
Now, in order to assign a type to

Odysseus[in Horse.out Horse.Destroy] | Horse[inTroy] | Troy[Trojans]

we need assumptions of the form:

Odysseus : amb[Achaean,mob[{Ground, Toy, City}]]

Horse : amb[Toy,mob[{Ground, City}]]

Troy : amb[City,]

representing that Odysseus is an Achaean intentioned to move into a City!

On the other hand, under assumptions of the form

Odysseus : amb[Achaean,mob[{Ground, Toy}]]

the Trojans should not fear any attack from Odysseus.

Swansea 4.03.04 – pp.8/28

� ≪ ≫ �

Detecting Odysseus’ intentions
Now, in order to assign a type to

Odysseus[in Horse.out Horse.Destroy] | Horse[inTroy] | Troy[Trojans]

we need assumptions of the form:

Odysseus : amb[Achaean,mob[{Ground, Toy, City}]]

Horse : amb[Toy,mob[{Ground, City}]]

Troy : amb[City,]

representing that Odysseus is an Achaean intentioned to move into a City!

On the other hand, under assumptions of the form

Odysseus : amb[Achaean,mob[{Ground, Toy}]]

the Trojans should not fear any attack from Odysseus.

Swansea 4.03.04 – pp.8/28

� ≪

�

≫ �

Dependent Types for Access Control
Dependent Mobility Types: (P and C are sets of names, not groups.)

A ::= amb[hasFathers(P), hasChildren(C)]

Dependent types allow personalised services and dynamic access control.

HorseServer , !(x)(ν Horse : amb[, hasChildren{x}])Horse[outTroy.inTroy.0]

➤ Names have several possible types, depending on the actual
communications occurred.

➤ The set of names exchanged over a channel must be tracked. Luckily, The

set of possible types for a name has a maximum and a minimum element.

Swansea 4.03.04 – pp.9/28

� ≪

�

≫ �

Dependent Types for Access Control
Dependent Mobility Types: (P and C are sets of names, not groups.)

A ::= amb[hasFathers(P), hasChildren(C)]

Dependent types allow personalised services and dynamic access control.

HorseServer , !(x)(ν Horse : amb[, hasChildren{x}])Horse[outTroy.inTroy.0]

➤ Names have several possible types, depending on the actual
communications occurred.

➤ The set of names exchanged over a channel must be tracked. Luckily, The

set of possible types for a name has a maximum and a minimum element.

Swansea 4.03.04 – pp.9/28

� ≪

�

≫ �

Dependent Types for Access Control
Dependent Mobility Types: (P and C are sets of names, not groups.)

A ::= amb[hasFathers(P), hasChildren(C)]

Dependent types allow personalised services and dynamic access control.

HorseServer , !(x)(ν Horse : amb[, hasChildren{x}])Horse[outTroy.inTroy.0]

➤ Names have several possible types, depending on the actual
communications occurred.

➤ The set of names exchanged over a channel must be tracked. Luckily, The

set of possible types for a name has a maximum and a minimum element.

Swansea 4.03.04 – pp.9/28

� ≪

�

≫ �

Secrecy in Mobile Ambients
Names ≈ Cryptokeys: Carrying messages inside private ambients preserves

message integrity and privacy. Or, does it?

(νn)(a[n[out a.in b.〈M〉]] | b[open n.(x)P])

It actually offers no guarantees for software agents, as n must be revealed along

the move, and servers may peek inside.

How to provide stronger protection?

A new crypto-primitive: subjective access control using co-capabilities + data

encryption to preserve secrecy of data while agents move autonomously

n[seal k.P | Q] −→ n{| P | Q |}k
sealed under k

crypto-key

Effects:

➤ blocks message exchanges and encrypts their contents;

➤ the sealed ambient cannot communicate, but it may move.

Swansea 4.03.04 – pp.10/28

� ≪

�

≫ �

Secrecy in Mobile Ambients
Names ≈ Cryptokeys: Carrying messages inside private ambients preserves

message integrity and privacy. Or, does it?

(νn)(a[n[out a.in b.〈M〉]] | b[open n.(x)P])

It actually offers no guarantees for software agents, as n must be revealed along

the move, and servers may peek inside.

How to provide stronger protection?

A new crypto-primitive: subjective access control using co-capabilities + data

encryption to preserve secrecy of data while agents move autonomously

n[seal k.P | Q] −→ n{| P | Q |}k
sealed under k

crypto-key

Effects:

➤ blocks message exchanges and encrypts their contents;

➤ the sealed ambient cannot communicate, but it may move.

Swansea 4.03.04 – pp.10/28

� ≪

�

≫ �

Secrecy in Mobile Ambients
Names ≈ Cryptokeys: Carrying messages inside private ambients preserves

message integrity and privacy. Or, does it?

(νn)(a[n[out a.in b.〈M〉]] | b[open n.(x)P])

It actually offers no guarantees for software agents, as n must be revealed along

the move, and servers may peek inside.

How to provide stronger protection?

A new crypto-primitive: subjective access control using co-capabilities + data

encryption to preserve secrecy of data while agents move autonomously

n[seal k.P | Q] −→ n{| P | Q |}k
sealed under k

crypto-key

Effects:

➤ blocks message exchanges and encrypts their contents;

➤ the sealed ambient cannot communicate, but it may move.

Swansea 4.03.04 – pp.10/28

� ≪ ≫ �

Sealed Ambients
➤ The mechanism to resume to a fully operational state is associated to

movements and co-capabilities containing keys

n{| in m.P | Q |}k | m{ in {x}k.R | R
′ } −→ m{ n[P | Q] | R{x := n} | R′ }

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

−→ (νk)a[] | n{| in b.〈M〉ˆ̂ |}k | b[in {x}k.(y)x.P]

−→ (νk)a[] | b[n[〈M〉ˆ̂] | (y)n.P{x := n}]

Swansea 4.03.04 – pp.11/28

� ≪ ≫ �

Sealed Ambients
➤ The mechanism to resume to a fully operational state is associated to

movements and co-capabilities containing keys

n{| in m.P | Q |}k | m{ in {x}k.R | R
′ } −→ m{ n[P | Q] | R{x := n} | R′ }

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

−→ (νk)a[] | n{| in b.〈M〉ˆ̂ |}k | b[in {x}k.(y)x.P]

−→ (νk)a[] | b[n[〈M〉ˆ̂] | (y)n.P{x := n}]

Swansea 4.03.04 – pp.11/28

� ≪ ≫ �

Sealed Ambients
➤ The mechanism to resume to a fully operational state is associated to

movements and co-capabilities containing keys

n{| in m.P | Q |}k | m{ in {x}k.R | R
′ } −→ m{ n[P | Q] | R{x := n} | R′ }

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

−→ (νk)a[] | n{| in b.〈M〉ˆ̂ |}k | b[in {x}k.(y)x.P]

−→ (νk)a[] | b[n[〈M〉ˆ̂] | (y)n.P{x := n}]

Swansea 4.03.04 – pp.11/28

� ≪ ≫ �

Sealed Ambients
➤ The mechanism to resume to a fully operational state is associated to

movements and co-capabilities containing keys

n{| in m.P | Q |}k | m{ in {x}k.R | R
′ } −→ m{ n[P | Q] | R{x := n} | R′ }

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

−→ (νk)a[] | n{| in b.〈M〉ˆ̂ |}k | b[in {x}k.(y)x.P]

−→ (νk)a[] | b[n[〈M〉ˆ̂] | (y)n.P{x := n}]

Swansea 4.03.04 – pp.11/28

� ≪ ≫ �

Sealed Ambients
➤ The mechanism to resume to a fully operational state is associated to

movements and co-capabilities containing keys

n{| in m.P | Q |}k | m{ in {x}k.R | R
′ } −→ m{ n[P | Q] | R{x := n} | R′ }

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

−→ (νk)a[] | n{| in b.〈M〉ˆ̂ |}k | b[in {x}k.(y)x.P]

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

−→ (νk)a[] | n{| in b.〈M〉ˆ̂ |}k | b[in {x}k.(y)x.P]

−→ (νk)a[] | b[n[〈M〉ˆ̂] | (y)n.P{x := n}]

Swansea 4.03.04 – pp.11/28

� ≪ ≫ �

Sealed Ambients
➤ The mechanism to resume to a fully operational state is associated to

movements and co-capabilities containing keys

n{| in m.P | Q |}k | m{ in {x}k.R | R
′ } −→ m{ n[P | Q] | R{x := n} | R′ }

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

−→ (νk)a[] | n{| in b.〈M〉ˆ̂ |}k | b[in {x}k.(y)x.P]

−→ (νk)a[] | b[n[〈M〉ˆ̂] | (y)n.P{x := n}]

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

−→ (νk)a[] | n{| in b.〈M〉ˆ̂ |}k | b[in {x}k.(y)x.P]

−→ (νk)a[] | b[n[〈M〉ˆ̂] | (y)n.P{x := n}]

Swansea 4.03.04 – pp.11/28

� ≪ ≫ �

Sealed Ambients
➤ The mechanism to resume to a fully operational state is associated to

movements and co-capabilities containing keys

n{| in m.P | Q |}k | m{ in {x}k.R | R
′ } −→ m{ n[P | Q] | R{x := n} | R′ }

Example:

(νk)a[n[seal k.out a.in b.〈M〉ˆ̂]] | b[in {x}k.(y)x.P]

−→ (νk)a[n{| out a.in b.〈M〉ˆ̂ |}k] | b[in {x}k.(y)x.P]

−→ (νk)a[] | n{| in b.〈M〉ˆ̂ |}k | b[in {x}k.(y)x.P]

−→ (νk)a[] | b[n[〈M〉ˆ̂] | (y)n.P{x := n}]

Swansea 4.03.04 – pp.11/28

� ≪

�

≫ �

Secrecy and Adversaries
Intuitively:

A process preserves the secrecy of a piece of data M if it does not publish M, or
anything that would permit the computation of M.

S-Adversary: A context A(−) which initially knows names and capabilities in S .

Revealing Names: P may reveal n to S if there exists an S -adversary A(−) and a

name c ∈ S such that:

A(P) =⇒ C(c[〈n〉ˆ̂ | Q]) (c free)

Typing System: Secrecy is captured by a type system ` which may classify

processes as untrusted Γ ` P : Un, and data as public a : Public if it can be

exchanged with untrusted process.

Secrecy Theorem: Well-typed processes do not reveal their secrets publicly. Formally, if

Γ ` P : Un and Γ 0 s : Public, then P preserves the secrecy of s from all public

channels, i.e. from {a | Γ ` a : Public}. (Payload s won’t be entrusted to a public a.)

Swansea 4.03.04 – pp.12/28

� ≪

�

≫ �

Secrecy and Adversaries
Intuitively:

A process preserves the secrecy of a piece of data M if it does not publish M, or
anything that would permit the computation of M.

S-Adversary: A context A(−) which initially knows names and capabilities in S .

Revealing Names: P may reveal n to S if there exists an S -adversary A(−) and a

name c ∈ S such that:

A(P) =⇒ C(c[〈n〉ˆ̂ | Q]) (c free)

Typing System: Secrecy is captured by a type system ` which may classify

processes as untrusted Γ ` P : Un, and data as public a : Public if it can be

exchanged with untrusted process.

Secrecy Theorem: Well-typed processes do not reveal their secrets publicly. Formally, if

Γ ` P : Un and Γ 0 s : Public, then P preserves the secrecy of s from all public

channels, i.e. from {a | Γ ` a : Public}. (Payload s won’t be entrusted to a public a.)

Swansea 4.03.04 – pp.12/28

� ≪

�

≫ �

Secrecy and Adversaries
Intuitively:

A process preserves the secrecy of a piece of data M if it does not publish M, or
anything that would permit the computation of M.

S-Adversary: A context A(−) which initially knows names and capabilities in S .

Revealing Names: P may reveal n to S if there exists an S -adversary A(−) and a

name c ∈ S such that:

A(P) =⇒ C(c[〈n〉ˆ̂ | Q]) (c free)

Typing System: Secrecy is captured by a type system ` which may classify

processes as untrusted Γ ` P : Un, and data as public a : Public if it can be

exchanged with untrusted process.

Secrecy Theorem: Well-typed processes do not reveal their secrets publicly. Formally, if

Γ ` P : Un and Γ 0 s : Public, then P preserves the secrecy of s from all public

channels, i.e. from {a | Γ ` a : Public}. (Payload s won’t be entrusted to a public a.)

Swansea 4.03.04 – pp.12/28

� ≪ ≫ �

Between Theory and Practice
That’s all good, but . . .

. . . one cannot type the Internet

The gap between theory and practice matters in practice.

All this only works as long as you trust the certified types, or are willing to

typecheck migrating code yourself (bytecode verification, PCC,. . .), . . .

➤ Verification (relates to type checking/inference)

➤ Certificates (groups as certified roles)

➤ Trust: In UbiComp, security must work be coupled with trust management.

Which is hard, because of delegation and dynamic policies

Swansea 4.03.04 – pp.13/28

� ≪ ≫ �

Between Theory and Practice
That’s all good, but . . .

. . . one cannot type the Internet

The gap between theory and practice matters in practice.

All this only works as long as you trust the certified types, or are willing to

typecheck migrating code yourself (bytecode verification, PCC,. . .), . . .

➤ Verification (relates to type checking/inference)

➤ Certificates (groups as certified roles)

➤ Trust: In UbiComp, security must work be coupled with trust management.

Which is hard, because of delegation and dynamic policies

Swansea 4.03.04 – pp.13/28

� ≪ ≫ �

Between Theory and Practice
That’s all good, but . . .

. . . one cannot type the Internet

The gap between theory and practice matters in practice.

All this only works as long as you trust the certified types, or are willing to

typecheck migrating code yourself (bytecode verification, PCC,. . .), . . .

➤ Verification (relates to type checking/inference)

➤ Certificates (groups as certified roles)

➤ Trust: In UbiComp, security must work be coupled with trust management.

Which is hard, because of delegation and dynamic policies

Swansea 4.03.04 – pp.13/28

� ≪ ≫ �

Trust Management
Focus on Trust Evolution and Delegation in Dynamic Networks

a{ A }π

Focus on Trust Evolution and Delegation in Dynamic Networks

a{ A }πprincipal P

agent/behaviour

trust policy: expressions on lattice (D,≤)

Trust Based Services:

a{ b.`〈v〉 . A } | b{ `(x) .ΣtBt }π −→ a{ A } | b{ Bπ(a){x := v} }π

Trust Evolution:
a{ ζ . A | B }π −→ a{ A | B }ζ(π)

Policies and Expressions:

π ::= ppq delegation τ ::= t ∈ D value/var

λx : P.τ abstraction π(p) policy value

op(π1, . . . , πn) lattice op e 7→ τ;τ choice

p ::= a ∈ P, x : P principal/vars e ::= τ cmp τ , p eq p comparisons

e bop e boolean op

Swansea 4.03.04 – pp.14/28

� ≪ ≫ �

Trust Management
Focus on Trust Evolution and Delegation in Dynamic Networks

a{ A }πprincipal P

agent/behaviour

trust policy: expressions on lattice (D,≤)

Trust Based Services:

a{ b.`〈v〉 . A } | b{ `(x) .ΣtBt }π −→ a{ A } | b{ Bπ(a){x := v} }π

Trust Evolution:
a{ ζ . A | B }π −→ a{ A | B }ζ(π)

Policies and Expressions:

π ::= ppq delegation τ ::= t ∈ D value/var

λx : P.τ abstraction π(p) policy value

op(π1, . . . , πn) lattice op e 7→ τ;τ choice

p ::= a ∈ P, x : P principal/vars e ::= τ cmp τ , p eq p comparisons

e bop e boolean op

Swansea 4.03.04 – pp.14/28

� ≪ ≫ �

Trust Management
Focus on Trust Evolution and Delegation in Dynamic Networks

a{ A }πprincipal P

agent/behaviour

trust policy: expressions on lattice (D,≤)

Trust Based Services:

a{ b.`〈v〉 . A } | b{ `(x) .ΣtBt }π −→ a{ A } | b{ Bπ(a){x := v} }π

Trust Evolution:
a{ ζ . A | B }π −→ a{ A | B }ζ(π)

Policies and Expressions:

π ::= ppq delegation τ ::= t ∈ D value/var

λx : P.τ abstraction π(p) policy value

op(π1, . . . , πn) lattice op e 7→ τ;τ choice

p ::= a ∈ P, x : P principal/vars e ::= τ cmp τ , p eq p comparisons

e bop e boolean op

Swansea 4.03.04 – pp.14/28

� ≪ ≫ �

Trust Management
Focus on Trust Evolution and Delegation in Dynamic Networks

a{ A }πprincipal P

agent/behaviour

trust policy: expressions on lattice (D,≤)

Trust Based Services:

a{ b.`〈v〉 . A } | b{ `(x) .ΣtBt }π −→ a{ A } | b{ Bπ(a){x := v} }π

Trust Evolution:
a{ ζ . A | B }π −→ a{ A | B }ζ(π)

Policies and Expressions:

π ::= ppq delegation τ ::= t ∈ D value/var

λx : P.τ abstraction π(p) policy value

op(π1, . . . , πn) lattice op e 7→ τ;τ choice

p ::= a ∈ P, x : P principal/vars e ::= τ cmp τ , p eq p comparisons

e bop e boolean op

Swansea 4.03.04 – pp.14/28

� ≪ ≫ �

Understanding Delegation
Example:

a : p 7→ trusted; b : p 7→ paq(p);

q 7→ pbq(q); q 7→ untrusted;

z 7→ ppq(z); z 7→ paq(z);

Delegation, formally: Global trust as a fixpoint.

π : (P → P → D)→ (P → D) Local Policy

Ξ : (P → P → D)→ (P → P → D) Collected Policies

Global Trust: fix(Ξ) : P → P → D. But, is this good enough?

p : trusted q : untrusted z : ???

Cannot confuse don’t trust with don’t know: the value of ppq(z) could become

available later.

Need to account for uncertain knowledge of ppq(z) ∈ D.

Swansea 4.03.04 – pp.15/28

� ≪ ≫ �

Understanding Delegation
Example:

a : p 7→ trusted; b : p 7→ paq(p);

q 7→ pbq(q); q 7→ untrusted;

z 7→ ppq(z); z 7→ paq(z);

Delegation, formally: Global trust as a fixpoint.

π : (P → P → D)→ (P → D) Local Policy

Ξ : (P → P → D)→ (P → P → D) Collected Policies

Global Trust: fix(Ξ) : P → P → D. But, is this good enough?

p : trusted q : untrusted z : ???

Cannot confuse don’t trust with don’t know: the value of ppq(z) could become

available later.

Need to account for uncertain knowledge of ppq(z) ∈ D.

Swansea 4.03.04 – pp.15/28

� ≪ ≫ �

Understanding Delegation
Example:

a : p 7→ trusted; b : p 7→ paq(p);

q 7→ pbq(q); q 7→ untrusted;

z 7→ ppq(z); z 7→ paq(z);

Delegation, formally: Global trust as a fixpoint.

π : (P → P → D)→ (P → D) Local Policy

Ξ : (P → P → D)→ (P → P → D) Collected Policies

Global Trust: fix(Ξ) : P → P → D. But, is this good enough?

p : trusted q : untrusted z : ???

Cannot confuse don’t trust with don’t know: the value of ppq(z) could become

available later.

Need to account for uncertain knowledge of ppq(z) ∈ D.

Swansea 4.03.04 – pp.15/28

� ≪

�

≫ �

Trust Structures
(D,≤,v), where

∨

is v -continous

trust lattice approximation cpo

Thm. (D,≤,v) yields an adequate semantics [[−]] : Policies→ Env→ (P → P → D).

The trust structure is derived canonically from (D,≤). The fixpoint is computed with

respect to v.

[[πp1
, . . . , πpn

]]σ = fixv(λm.λp.([πp])σm)

Ongoing work:

➤ Approximate the fixpoint in the presence of partial information.

➤ Use Kripke style semantics to capture trust evolution in time.

➤ Static safety guarantees: processes do not undermine their site policies.

Swansea 4.03.04 – pp.16/28

� ≪ ≫ �

Dimensions, Capacities, Mobility
Central Notion: Resource Usage

Focus: Capacity Bounds Awareness.

➤ Bounded Capacity Ambients

➤ Fine control of capacity.

➤ Space as a linear co-capability.

a[in b . P | Q] | b[| R] ↘ | b[a[P | Q] | R]

move capability

space co-capability

Computation takes space, dynamically, and we’d like to model it.

Swansea 4.03.04 – pp.17/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Movement
Fundamentals: Space Conscious Movement

a[in b . P | Q] | b[| R] ↘ | b[a[P | Q] | R]

| b[a[out b . P | Q] | R] ↘ a[P | Q] | b[| R]

Example: Travelling needs but consumes no space.

a[in b . in c . out c . out b . 0] | b[| c[]]

↘↘ | b[| c[a[out c . out b . 0]]]

↘↘ a[0] | b[| c[]]

Swansea 4.03.04 – pp.18/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Movement
Fundamentals: Space Conscious Movement

a[in b . P | Q] | b[| R] ↘ | b[a[P | Q] | R]

| b[a[out b . P | Q] | R] ↘ a[P | Q] | b[| R]

Example: Travelling needs but consumes no space.

a[in b . in c . out c . out b . 0] | b[| c[]]

↘↘ | b[| c[a[out c . out b . 0]]]

↘↘ a[0] | b[| c[]]

Swansea 4.03.04 – pp.18/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Sizes
Fundamentals: Space Conscious Movement

➤ But the size of travellers matters!

ak[in b . P | Q] | b[

k times
︷ ︸︸ ︷

| . . . | | R] ↘

k times
︷ ︸︸ ︷

| . . . | | b[ak[P | Q] | R]

| . . . |
︸ ︷︷ ︸

k times

| b[ak[out b . P | Q] | R] ↘ ak[P | Q] | b[| . . . |
︸ ︷︷ ︸

k times

| R]

What is the ak? A type annotation measuring the size of P.

Notation. We use k as a shorthand for

k times
︷ ︸︸ ︷

| . . . | .

Swansea 4.03.04 – pp.19/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Sizes
Fundamentals: Space Conscious Movement

➤ But the size of travellers matters!

ak[in b . P | Q] | b[

k times
︷ ︸︸ ︷

| . . . | | R] ↘

k times
︷ ︸︸ ︷

| . . . | | b[ak[P | Q] | R]

| . . . |
︸ ︷︷ ︸

k times

| b[ak[out b . P | Q] | R] ↘ ak[P | Q] | b[| . . . |
︸ ︷︷ ︸

k times

| R]

What is the ak? A type annotation measuring the size of P.

Notation. We use k as a shorthand for

k times
︷ ︸︸ ︷

| . . . | .

Swansea 4.03.04 – pp.19/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Spawning
Fundamentals: Space Conscious Process Activation

.
kP | k ↘ P

Fundamentals: Space Conscious Process Activation

.
kP | k ↘ Ppassive process:

weighs 0
P weighs k

Example: Replication: !k
, !.k

!.kP | k ↘ !.kP | P

Types ensure only 0-weighted processes are replicable: One must use spawning,

so that replication needs space proportional to the process’ weight.

Swansea 4.03.04 – pp.20/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Spawning
Fundamentals: Space Conscious Process Activation

.
kP | k ↘ Ppassive process:

weighs 0
P weighs k

Example: Replication: !k
, !.k

!.kP | k ↘ !.kP | P

Types ensure only 0-weighted processes are replicable: One must use spawning,

so that replication needs space proportional to the process’ weight.

Swansea 4.03.04 – pp.20/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Spawning
Fundamentals: Space Conscious Process Activation

.
kP | k ↘ Ppassive process:

weighs 0
P weighs k

Example: Replication: !k
, !.k

!.kP | k ↘ !.kP | P

Types ensure only 0-weighted processes are replicable: One must use spawning,

so that replication needs space proportional to the process’ weight.

Swansea 4.03.04 – pp.20/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Transfer
Fundamentals: Space Acquisition and Release

putˇ̌ a . P | | ak[getˆ̂ .Q | R] ↘ P | ak+1[Q | | R]

ak+1[put . P | | S] | bh[get a .Q | R] ↘ ak[P | S] | bh+1[Q | | R]

Example: A Memory Module

memMod , mem[256MB | !put | !get free]

malloc , m[!getmem . free[outm . getm . put] | !put]

memMod | malloc↘256MB mem[!put | !get free] | m[256MB | . . .]↘2×256MB

mem[!put | !get free] | malloc | free256MB[| put]↘256MB memMod | malloc | . . .

Swansea 4.03.04 – pp.21/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Transfer
Fundamentals: Space Acquisition and Release

putˇ̌ a . P | | ak[getˆ̂ .Q | R] ↘ P | ak+1[Q | | R]

ak+1[put . P | | S] | bh[get a .Q | R] ↘ ak[P | S] | bh+1[Q | | R]

Example: A Memory Module

memMod , mem[256MB | !put | !get free]

malloc , m[!getmem . free[outm . getm . put] | !put]

memMod | malloc↘256MB mem[!put | !get free] | m[256MB | . . .]↘2×256MB

mem[!put | !get free] | malloc | free256MB[| put]↘256MB memMod | malloc | . . .

Swansea 4.03.04 – pp.21/28

� ≪ ≫ �

A Calculus of Bounded Capacities: Transfer
Fundamentals: Space Acquisition and Release

putˇ̌ a . P | | ak[getˆ̂ .Q | R] ↘ P | ak+1[Q | | R]

ak+1[put . P | | S] | bh[get a .Q | R] ↘ ak[P | S] | bh+1[Q | | R]

Example: A Memory Module

memMod , mem[256MB | !put | !get free]

malloc , m[!getmem . free[outm . getm . put] | !put]

memMod | malloc↘256MB mem[!put | !get free] | m[256MB | . . .]↘2×256MB

mem[!put | !get free] | malloc | free256MB[| put]↘256MB memMod | malloc | . . .

Swansea 4.03.04 – pp.21/28

� ≪

�

≫ �

A System of Capacity Types
Capacity Types: φ, . . . are pairs of nats [n,N], with n ≤ N.

Effect Types E, . . . are pairs of nats (d, i), representing decs and incs.

Exchange Types: χ ::= Shh | Amb〈σ, χ〉 | Cap〈E, χ〉

Process and Ambient and Capability Types:

a : Amb〈φ, χ〉 a has no less than φm and no more than φM spaces

P : Proc〈k,E, χ〉 P weighs k and produces the effect E on ambients

C : Cap〈E, χ〉 C transforms processes adding E to their effects

Thm: Subject Reduction: Well-typed processes preserve space.

If Γ ` P : Proc〈k,E, χ〉 and P↘ Q then Γ ` Q : Proc〈k,E′, χ〉 for some E′ l E.

Swansea 4.03.04 – pp.22/28

� ≪

�

≫ �

A System of Capacity Types
Capacity Types: φ, . . . are pairs of nats [n,N], with n ≤ N.

Effect Types E, . . . are pairs of nats (d, i), representing decs and incs.

Exchange Types: χ ::= Shh | Amb〈σ, χ〉 | Cap〈E, χ〉

Process and Ambient and Capability Types:

a : Amb〈φ, χ〉 a has no less than φm and no more than φM spaces

P : Proc〈k,E, χ〉 P weighs k and produces the effect E on ambients

C : Cap〈E, χ〉 C transforms processes adding E to their effects

Thm: Subject Reduction: Well-typed processes preserve space.

If Γ ` P : Proc〈k,E, χ〉 and P↘ Q then Γ ` Q : Proc〈k,E′, χ〉 for some E′ l E.

Swansea 4.03.04 – pp.22/28

� ≪ ≫ �

Future Work
➤ What: Third-Party Resources: Models, Languages and Techniques

➤ Resource-Aware Computation: resource bounds negotiation & enforcement

➤ Resource Usage: calculi & logics for quantitative analysis

➤ Resource Safety: languages for security & trust policies; general resource logics

➤ Resource Trust: history-based: theory and infrastructures

➤ How: Integrated approach: Behavioural, Execution, Abstract Models.

➤ Who: Communities involved:

➤ EU FET Global Computing
➤ UKCRC Great Challenges: Science for Global Ubiquitous Computing
➤ EPSRC UK eScience & UK UbiNet

Swansea 4.03.04 – pp.23/28

� ≪ ≫ �

Future Work
➤ What: Third-Party Resources: Models, Languages and Techniques

➤ Resource-Aware Computation: resource bounds negotiation & enforcement

➤ Resource Usage: calculi & logics for quantitative analysis

➤ Resource Safety: languages for security & trust policies; general resource logics

➤ Resource Trust: history-based: theory and infrastructures

➤ How: Integrated approach: Behavioural, Execution, Abstract Models.

➤ Who: Communities involved:

➤ EU FET Global Computing
➤ UKCRC Great Challenges: Science for Global Ubiquitous Computing
➤ EPSRC UK eScience & UK UbiNet

Swansea 4.03.04 – pp.23/28

� ≪ ≫ �

Future Work
➤ What: Third-Party Resources: Models, Languages and Techniques

➤ Resource-Aware Computation: resource bounds negotiation & enforcement

➤ Resource Usage: calculi & logics for quantitative analysis

➤ Resource Safety: languages for security & trust policies; general resource logics

➤ Resource Trust: history-based: theory and infrastructures

➤ How: Integrated approach: Behavioural, Execution, Abstract Models.

➤ Who: Communities involved:

➤ EU FET Global Computing
➤ UKCRC Great Challenges: Science for Global Ubiquitous Computing
➤ EPSRC UK eScience & UK UbiNet

Swansea 4.03.04 – pp.23/28

� ≪ ≫ �

Contexts as Labels
The intuition:

a
C
I b iff C [a]↘ b

For instance:

a
−|ā
I 0 M

(λx.−)N
I M{N/x} KM

−N
I M

Yep, but not quite:

➤ Too many labels not desirable:

➤ Useless combinatorial explosion: λx.xx
−MN

I MMN

➤ Messes up the bisimulation (too coarse): l
D
I D[r] for all rules l↘ r.

Choose only ‘minimal’ redex-enabling contexts

➤ Case analysis of basic situations: Sewell. Abstract approach: Leifer-Milner

a | ā | a

Swansea 4.03.04 – pp.24/28

� ≪ ≫ �

Contexts as Labels
The intuition:

a
C
I b iff C [a]↘ b

For instance:

a
−|ā
I 0 M

(λx.−)N
I M{N/x} KM

−N
I M

Yep, but not quite:

➤ Too many labels not desirable:

➤ Useless combinatorial explosion: λx.xx
−MN

I MMN

➤ Messes up the bisimulation (too coarse): l
D
I D[r] for all rules l↘ r.

Choose only ‘minimal’ redex-enabling contexts

➤ Case analysis of basic situations: Sewell. Abstract approach: Leifer-Milner

a | ā | a

Swansea 4.03.04 – pp.24/28

� ≪ ≫ �

A Categorical Approach
Lawvere theory on Σ

➤ the natural numbers for objects

➤ a morphism t : m→ n, for t a n-tuple of m-holed terms.

➤ Composition is substitution of terms into holes.

E.G. for Σ the signature for arithmetics:

➤ term (−1 × x) + −2 is an arrow 2→ 1 (two holes yielding one term)

➤ 〈3, 2 × y〉 is an arrow 0→ 2 (a pair of terms with no holes).

➤ Their composition is the term (3 × x) + (2 × y), an arrow of type 0→ 1.

A generalisation from term rewriting systems to categories.

➤ A category C with distinguished object 0.

➤ A set of reaction rules R ⊆
⋃

C∈C C(0,C) × C(0,C).

➤ A set D of arrows of C called the reactive contexts.
Assume that d0 . d1 ∈ D implies d0 and d1 ∈ D.

The reaction relation is defined as

a I b iff a = d . l, b = d . r, d ∈ D and 〈l, r〉 ∈ R.

O

l

r

C0
d

C1

Swansea 4.03.04 – pp.25/28

� ≪ ≫ �

A Categorical Approach
Lawvere theory on Σ

➤ the natural numbers for objects

➤ a morphism t : m→ n, for t a n-tuple of m-holed terms.

➤ Composition is substitution of terms into holes.

A generalisation from term rewriting systems to categories.

➤ A category C with distinguished object 0.

➤ A set of reaction rules R ⊆
⋃

C∈C C(0,C) × C(0,C).

➤ A set D of arrows of C called the reactive contexts.
Assume that d0 . d1 ∈ D implies d0 and d1 ∈ D.

The reaction relation is defined as

a I b iff a = d . l, b = d . r, d ∈ D and 〈l, r〉 ∈ R.

O

l

r

C0
d

C1

Swansea 4.03.04 – pp.25/28

� ≪ ≫ �

(G)RPOs
Suppose that C is a (bi)category and consider a redex square

•

•

c

•

d

•

a l

•

•

c

c •

p

m

•

c′′ d′′

p′

•

d

d

•

a l

➤ a relative pushout (RPO) is a tuple 〈c, d, p〉 which satisfies the universal

property that:

➤ for any other such 〈c′, d′, p′〉 there exists a unique mediating morphism m.

Swansea 4.03.04 – pp.26/28

� ≪ ≫ �

(G)RPOs
Suppose that C is a (bi)category and consider a redex square

•

•

c

c •

p

•

d

d

•

a l

➤ a relative pushout (RPO) is a tuple 〈c, d, p〉 which satisfies the universal

property that:

•

•

c

c •

p

m

•

c′′ d′′

p′

•

d

d

•

a l

➤ a relative pushout (RPO) is a tuple 〈c, d, p〉 which satisfies the universal

property that:

➤ for any other such 〈c′, d′, p′〉 there exists a unique mediating morphism m.

Swansea 4.03.04 – pp.26/28

� ≪ ≫ �

(G)RPOs
Suppose that C is a (bi)category and consider a redex square

•

•

c

c •

p

m

•

c′′ d′′

p′

•

d

d

•

a l

➤ a relative pushout (RPO) is a tuple 〈c, d, p〉 which satisfies the universal

property that:

➤ for any other such 〈c′, d′, p′〉 there exists a unique mediating morphism m.

Swansea 4.03.04 – pp.26/28

� ≪ ≫ �

Deriving LTS
The LTS derived from the reactive system has:

➤ Nodes: a : O→ N

➤ Transitions: a
f
I dr iff for 〈l, r〉 ∈ R and d ∈ D, 〈 f , d, id〉 is a relative

pushout of the square

•

•

f

•

d

•

a l

➤ Thm. If all redex squares like the above have (G)RPOs then the

bisimulation on the derived LTS is a congruence.

[Leifer-Milner 00, Sassone-Sobocinski 02]

Swansea 4.03.04 – pp.27/28

� ≪ ≫ �

Deriving LTS
The LTS derived from the reactive system has:

➤ Nodes: a : O→ N

➤ Transitions: a
f
I dr iff for 〈l, r〉 ∈ R and d ∈ D, 〈 f , d, id〉 is a relative

pushout of the square

•

•

f

•

d

•

a l

➤ Thm. If all redex squares like the above have (G)RPOs then the

bisimulation on the derived LTS is a congruence.

[Leifer-Milner 00, Sassone-Sobocinski 02]

Swansea 4.03.04 – pp.27/28

� ≪

�

≫ �

Applying (G)RPOs
➤ Milner (2001) worked out RPOs for a graphical formalism called bigraphs.

➤ Sassone and Sobocinski (2002) introduced GRPOs to handle calculi with

non-trivial structural congruences.

➤ Jensen and Milner (2003) derived (essentially) the usual π labelled bisimulation

on asynchronous π using RPOs.

➤ Sassone and Sobocinski (2003) worked out an easy encoding of Milner’s

pre-category approach into the G-world.

➤ Jensen and Milner (2004) found (G)RPOs for ambient-calculus and for weak
bisimulations.

➤ Sassone and Sobocinski (2004) derived GRPOs for generic graph structures
and graph rewrite systems.

So far, the price of the initial 2-categorical investment seems worth paying. . .

Future Work

➤ Extend to more complicated process calculi with complex structural

congruences (e.g. replication); Apply to specific graph rewriting systems.

Swansea 4.03.04 – pp.28/28

� ≪

�

≫ �

Applying (G)RPOs
➤ Milner (2001) worked out RPOs for a graphical formalism called bigraphs.

➤ Sassone and Sobocinski (2002) introduced GRPOs to handle calculi with

non-trivial structural congruences.

➤ Jensen and Milner (2003) derived (essentially) the usual π labelled bisimulation

on asynchronous π using RPOs.

➤ Sassone and Sobocinski (2003) worked out an easy encoding of Milner’s

pre-category approach into the G-world.

➤ Jensen and Milner (2004) found (G)RPOs for ambient-calculus and for weak
bisimulations.

➤ Sassone and Sobocinski (2004) derived GRPOs for generic graph structures
and graph rewrite systems.

So far, the price of the initial 2-categorical investment seems worth paying. . .

Future Work

➤ Extend to more complicated process calculi with complex structural

congruences (e.g. replication); Apply to specific graph rewriting systems.

Swansea 4.03.04 – pp.28/28

	Foundations of Global Computing
	Mobile Ambients
	Group Types for Mobility
	Indirect Border Crossing
	Types
	Access Control Properties
	Detecting Odysseus' intentions
	Dependent Types for Access Control
	Secrecy in Mobile Ambients
	Sealed Ambients
	Secrecy and Adversaries
	Between Theory and Practice
	Trust Management
	Understanding Delegation
	Trust Structures
	Dimensions, Capacities, Mobility
	A Calculus of Bounded Capacities: Movement
	A Calculus of Bounded Capacities: Sizes
	A Calculus of Bounded Capacities: Spawning
	A Calculus of Bounded Capacities: Transfer
	A System of Capacity Types
	Future Work
	Contexts as Labels
	A Categorical Approach
	(G)RPOs
	Deriving LTS
	Applying (G)RPOs

