
A Distributed Calculus
for Role-Based Access Control

Daniele Gorla

joint work with C. Braghin and V. Sassone

17th IEEE CSFW

Pacific Grove (California – USA), June, 28th, 2004

A Distributed Calculus for Role-Based Access Control – p.1/20

Contents

theRBAC96model
a formal frameworkfor concurrent systems running under a RBAC
policy: an extension of theπ-calculus

a type systemensuring that the specified policy is respected during
computations

abisimulationto reason on systems’ behaviours

some useful applications of the theory:
finding the‘minimal’ schemato run a given system
refining a systemto be run under a given schema
minimize the number of usersin a given system.

A Distributed Calculus for Role-Based Access Control – p.2/20

Access Control Models

“Techniques used to define or restrict the rights of individuals or application
programs to obtain data from, or place data onto, a storage device"
(American National Standard, Telecom Glossary)

3 well-known models:
Discretionary access control

Mandatory access control

Rôle-based access control

A Distributed Calculus for Role-Based Access Control – p.3/20

The Basic RBAC model

USERS ROLES PERMISSIONS

SESSIONS

USER ASSIGNMENT PERM. ASSIGNMENT

A Distributed Calculus for Role-Based Access Control – p.4/20

RBAC

Role-Based Access Control is attracting increasing attention because:

it reduces complexity and cost of security administration;

permission’s management is less error-prone;

it is flexible (rôle’s hierarchy, separation of duty, etc.);

it is least privilege-oriented.

A Distributed Calculus for Role-Based Access Control – p.5/20

Our work

Formalize the behaviour of concurrent and distributed systems under security
policies defined in a RBAC fashion.

This is similar to
the types developed in Dπ andKlaim to implement discretionary
access control
the types developed for Boxed Ambients to implement mandatory
access control

A Distributed Calculus for Role-Based Access Control – p.6/20

The starting point: π-calculus

Concurrent processes communicating onchannels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

A Distributed Calculus for Role-Based Access Control – p.7/20

The Syntax of our Calculus

Concurrent processes communicating onchannels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

∣∣ role R.P
∣∣ yield R.P

A Distributed Calculus for Role-Based Access Control – p.7/20

The Syntax of our Calculus

Concurrent processes communicating onchannels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

∣∣ role R.P
∣∣ yield R.P

User Sessions: r{|P |}ρ

A Distributed Calculus for Role-Based Access Control – p.7/20

The Syntax of our Calculus

Concurrent processes communicating onchannels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

∣∣ role R.P
∣∣ yield R.P

Systems: A,B ::= 0
∣∣ r{|P |}ρ

∣∣ A ‖ B
∣∣ (νar :R)A

A Distributed Calculus for Role-Based Access Control – p.7/20

The Syntax of our Calculus

Concurrent processes communicating onchannels.

Processes: P,Q ::= a(x).P
∣∣ u〈v〉.P

∣∣ [u = v]P
∣∣ (νa :R)P∣∣ nil

∣∣ P |Q
∣∣ !P

∣∣ role R.P
∣∣ yield R.P

Systems: A,B ::= 0
∣∣ r{|P |}ρ

∣∣ A ‖ B
∣∣ (νar :R)A

Channels areallocated to usersto enable a distibuted implementation

A Distributed Calculus for Role-Based Access Control – p.7/20

Dynamic Semantics

It is given in the form of areduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′

A Distributed Calculus for Role-Based Access Control – p.8/20

Dynamic Semantics

It is given in the form of areduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

A Distributed Calculus for Role-Based Access Control – p.8/20

Dynamic Semantics

It is given in the form of areduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

Rôle activation:

r{|role R.P |}ρ

A Distributed Calculus for Role-Based Access Control – p.8/20

Dynamic Semantics

It is given in the form of areduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

Rôle activation:

r{|role R.P |}ρ 7−→ r{|P |}ρ∪{R}

A Distributed Calculus for Role-Based Access Control – p.8/20

Dynamic Semantics

It is given in the form of areduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

Rôle activation:

r{|role R.P |}ρ 7−→ r{|P |}ρ∪{R}

Rôle deactivation:

r{|yield R.P |}ρ

A Distributed Calculus for Role-Based Access Control – p.8/20

Dynamic Semantics

It is given in the form of areduction relation

Communication:

s{|ar〈n〉.P |}ρ ‖ r{|a(x).Q|}ρ′ 7−→ s{|P |}ρ ‖ r{|Q[n/x] |}ρ′

Rôle activation:

r{|role R.P |}ρ 7−→ r{|P |}ρ∪{R}

Rôle deactivation:

r{|yield R.P |}ρ 7−→ r{|P |}ρ−{R}

A Distributed Calculus for Role-Based Access Control – p.8/20

RBAC schema

Permissions arecapabilitiesthat enable process actions. Thus,

A
△
= {R↑, R?, R!}R∈R is the set of permissions.

A Distributed Calculus for Role-Based Access Control – p.9/20

RBAC schema

Permissions arecapabilitiesthat enable process actions. Thus,

A
△
= {R↑, R?, R!}R∈R is the set of permissions.

In our framework, theRBAC schemais a pair of finite relations(U ; P),
such that

U ⊆fin (Nu ∪ C) × R P ⊆fin R × A

A Distributed Calculus for Role-Based Access Control – p.9/20

An Example

A banking scenario:

two users, the clientr and the banks
cashiers are modelled as channelsc1, . . . , cn of users

the rôles available areclient andcashier.

r{|role client.enqueues〈r〉.dequeue(z).z〈req1〉. · · · .z〈reqk〉.z〈stop〉.yield client|}ρ ‖

s{|(ν free)(!enqueue(x).free(y).dequeuex〈y〉 | Πn
i=1

frees〈cs
i 〉 |

Πn
i=1

!ci(x).([x = withdrw_req] <handle withdraw request> |

[x = dep_req] <handle deposit request> | . . . |

[x = stop]frees〈cs
i 〉))|}ρ′

A Distributed Calculus for Role-Based Access Control – p.10/20

Static Semantics - Types

The syntax of types:

Types T ::= UT | C
User Types UT ::= ρ[a1 : R1(T1), . . . , an : Rn(Tn)]
Channel Types C ::= R(T)

A Distributed Calculus for Role-Based Access Control – p.11/20

Static Semantics - Types

The syntax of types:

Types T ::= UT | C
User Types UT ::= ρ[a1 : R1(T1), . . . , an : Rn(Tn)]
Channel Types C ::= R(T)

Γ; ρ ⊢Pr P states thatP respectsΓ andP when it is run in a session ofr
with rôlesρ activated

A Distributed Calculus for Role-Based Access Control – p.11/20

Static Semantics - Types

The syntax of types:

Types T ::= UT | C
User Types UT ::= ρ[a1 : R1(T1), . . . , an : Rn(Tn)]
Channel Types C ::= R(T)

Γ; ρ ⊢Pr P states thatP respectsΓ andP when it is run in a session ofr
with rôlesρ activated

A typing environment is a mapping from user names and variables to
user types that respects the assignments inU

A Distributed Calculus for Role-Based Access Control – p.11/20

Static Semantics - The Type System

An example: performing input actions.

(T-Input)
Γ ⊢ a : R(T) R?∈ P (ρ) Γ, x 7→ T ; ρ ⊢Pr P

Γ; ρ ⊢Pr a(x).P

A Distributed Calculus for Role-Based Access Control – p.12/20

Static Semantics - The Type System

An example: performing input actions.

(T-Input)
Γ ⊢ a : R(T) R?∈ P (ρ) Γ, x 7→ T ; ρ ⊢Pr P

Γ; ρ ⊢Pr a(x).P

Type Safety: Let A be a well-typed system for(U ; P). Then, whenever

A ≡ (ν ãr:R)(A′ ‖ r{|b(x).P |}ρ), it holds that

either br:S ∈ ãr:R andS? ∈ P (ρ),

or br 6∈ ãr andS? ∈ P (ρ), where{S} = U (br)

A Distributed Calculus for Role-Based Access Control – p.12/20

The Example Again

The banking scenario again:
now each available operation is modelled as a different channel
(wdrw = withdraw,opn = open account,cc = credit card request)
the communication among different channels requires different
rôles
P is such that{(rich_client, cc!) , (rich, rich_client↑)} ⊆ P .

A Distributed Calculus for Role-Based Access Control – p.13/20

The Example Again

The banking scenario again:
now each available operation is modelled as a different channel
(wdrw = withdraw,opn = open account,cc = credit card request)
the communication among different channels requires different
rôles
P is such that{(rich_client, cc!) , (rich, rich_client↑)} ⊆ P .

6⊢ r{|role client.enqueues〈r〉.dequeue(z).z〈creditcard_req〉.ccs〈signature〉.z〈stop〉|}{user}

A Distributed Calculus for Role-Based Access Control – p.13/20

The Example Again

The banking scenario again:
now each available operation is modelled as a different channel
(wdrw = withdraw,opn = open account,cc = credit card request)
the communication among different channels requires different
rôles
P is such that{(rich_client, cc!) , (rich, rich_client↑)} ⊆ P .

6⊢ r{|role client.enqueues〈r〉.dequeue(z).z〈creditcard_req〉.ccs〈signature〉.z〈stop〉|}{user}

⊢ r{|role rich_client.enqueues〈r〉.dequeue(z).z〈creditcard_req〉.ccs〈signature〉.z〈stop〉|}{rich}

A Distributed Calculus for Role-Based Access Control – p.13/20

LTS Semantics

The labels of the LTS are derived from those of theπ-calculus:

µ ::= τ | arn | arn : R | arn | arn : R

the LTS relatesconfigurations, i.e. pairs(U ; P) ⊲ A made up of a
RBAC schema(U ; P) and a systemA.

Example:

(LTS-F-Input)
U (ar) = {R} R? ∈ P (ρ) n 6∈ dom(U)

(U ; P) ⊲ r{|a(x).P |}ρ
arn:S
−−−−→ (U ⊎ {n : S}; P) ⊲ r{|P [n/x] |}ρ

A Distributed Calculus for Role-Based Access Control – p.14/20

Bisimulation Equivalence

We can define a standard bisimulation over the LTS
(Bisimulation)It is a binary symmetric relationS between

configurations such that, if(D,E) ∈ S andD
µ

−→ D′, there exists a

configurationE ′ such thatE
µ̂

=⇒ E ′ and(D′, E ′) ∈ S. Bisimilarity, ≈,
is the largest bisimulation.

the bisimulation is adequate with respect to a standardly defined (typed)
barbed congruence.

A Distributed Calculus for Role-Based Access Control – p.15/20

Some Algebraic Laws

if an action is not enabled, then the process cannot evolve:

r{|α.P |}ρ ≈ 0 if P (ρ) does not enableα

A Distributed Calculus for Role-Based Access Control – p.16/20

Some Algebraic Laws

if an action is not enabled, then the process cannot evolve:

r{|α.P |}ρ ≈ 0 if P (ρ) does not enableα

Differently from some distributed calculi, a terminated session does not
affect the evolution of the system:

r{|nil|}ρ ≈ 0

A Distributed Calculus for Role-Based Access Control – p.16/20

Some Algebraic Laws

if an action is not enabled, then the process cannot evolve:

r{|α.P |}ρ ≈ 0 if P (ρ) does not enableα

Differently from some distributed calculi, a terminated session does not
affect the evolution of the system:

r{|nil|}ρ ≈ 0

the user performing an output action is irrelevant; the onlyrelevant
aspect is the set of permissions activated when performing the action:

r{|bs〈n〉.nil|}ρ ≈ t{|bs〈n〉.nil|}ρ

A Distributed Calculus for Role-Based Access Control – p.16/20

Finding the “Minimal” Schema

Goal: to look for a ‘minimal’ schema to execute a given systemA
while mantaining its behaviour w.r.t.(U ; P)

Algorithm:
fix a metrics(number of rôles in the schema, permissions
associated to each rôle, etc.)
define the set
CONFA = {(U ′; P ′) ⊲ A : (U ′; P ′) is a RBAC schema} of
configurations forA
partitionCONFA w.r.t.≈ and consider the equivalence class
containing(U ; P) ⊲ A

choose the minimal schema according to the chosen metrics

A Distributed Calculus for Role-Based Access Control – p.17/20

Refining Systems

Goal: to add rôle activations/deactivations within a system in such a
way that the resulting system can be executed under a given schema
(U ; P)

we want a rôle to be active only when needed

the refining procedure replaces any input/output prefixα occurring in
sessionr{| · · · |}ρ with the sequence of prefixesrole ~R.α.yield ~R

where~R is formed by rôles assigned tor, activable when having
activatedρ and enabling the execution ofα

the refining procedure adapts the type system

Improvement: we can give an algorithm to minimize the numberof
these actions added

A Distributed Calculus for Role-Based Access Control – p.18/20

Relocating Activities

Goal: to transfer a process from one user to another without changing
the overall system behaviour, in order to minimize the number of users
in a system

it is possible to infer axiomatically judgments of the form:

(U ; P) ⊲ r{|P |}ρ ≈ (U ; P) ⊲ s{|P |}ρ

This judgment says that the processP can be executed byr ands
without affecting the overall system behaviour.

Thus, the sessionr{|P |}ρ can be removed. If no other session ofr is left
in the system, thenr is a useless user and is erased.

A Distributed Calculus for Role-Based Access Control – p.19/20

Conclusion

We have defined aformal frameworkfor reasoning about concurrent
systems running under an RBAC schema;

a number of papers deal with the specification and verification of
RBAC schema;
Future Works:

extend the framework to deal with more complex RBAC models;
prove that bisimilarity is complete for barbed congruence;

http://www.dsi.uniroma1.it/~gorla/publications.htm

A Distributed Calculus for Role-Based Access Control – p.20/20

	Contents
	Access Control Models
	The Basic RBAC model
	RBAC
	Our work
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	Dynamic Semantics
	RBAC schema
	An Example
	Static Semantics - Types
	Static Semantics - The Type System
	The Example Again
	LTS Semantics
	Bisimulation Equivalence
	Some Algebraic Laws
	Finding the ``Minimal'' Schema
	Refining Systems
	Relocating Activities
	Conclusion

