A Distributed Calculus
for Role-Based Access Control

Daniele Gorla

joint work with C. Braghin and V. Sassone

17th IEEE CSFW
Pacific Grove (California — USA), June, 28th, 2004

A Distributed Calculus for Role-Based Access Control — p.1/20

L

Contents

the RBAC96model

aformal frameworkfor concurrent systems running under a RBAC
policy: an extension of the-calculus

atype systerensuring that the specified policy is respected during
computations

a bisimulationto reason on systems’ behaviours

some useful applications of the theory:

s finding the'minimal’ schemao run a given system
s refining a systeno be run under a given schema
s minimize the number of usarsa given system.

A Distributed Calculus for Role-Based Access Control — p.2/20

Access Control Models

“Techniques used to define or restrict the rights of indiat$uor application

programs to obtain data from, or place data onto, a storagece
(American National Standard, Telecom Glossary)

3 well-known models:
#® Discretionary access control
Mandatory access control
#® RoOle-based access control

A Distributed Calculus for Role-Based Access Control — p.3/20

The Basic RBAC model

USER ASSIGNMENT PERM. ASSIGNMEN
- | »

SESSIONS

A Distributed Calculus for Role-Based Access Control — p.4/20

RBAC

Role-Based Access Control is attracting increasing atteritecause:
® Itreduces complexity and cost of security administration;

permission’s management is less error-prone,

it is flexible (role’s hierarchy, separation of duty, etc.);

It is least privilegeoriented.

o o @

A Distributed Calculus for Role-Based Access Control — p.5/20

Our work

Formalize the behaviour of concurrent and distributedesystunder security
policies defined in a RBAC fashion.

This is similar to

#® the types developed in‘Dand KLA1M to implement discretionary
access control

the types developed for Boxed Ambients to implement mamgato
access control

A Distributed Calculus for Role-Based Access Control — p.6/20

The starting point: w-calculus

Concurrent processes communicatingchannels

PROCESSES: P,Q := a(z).P | w(v).P | [u=v|P | (va:R)P
| nil | P|Q | IP

A Distributed Calculus for Role-Based Access Control — p.7/20

The Syntax of our Calculus

Concurrent processes communicatingchannels

PROCESSES: P,Q := a(z).P | w(v).P | [u=v|P | (va:R)P
| nil | P|Q | !P | roleR.P | yield R.P

A Distributed Calculus for Role-Based Access Control — p.7/20

The Syntax of our Calculus

Concurrent processes communicatingchannels

PROCESSES: P,Q := a(z).P | w(v).P | [u=v|P | (va:R)P
| nil | P|Q | !P | roleR.P | yield R.P

USER SESSIONS: r{| P},

A Distributed Calculus for Role-Based Access Control — p.7/20

The Syntax of our Calculus

Concurrent processes communicatingchannels

PROCESSES: P,Q := a(z).P | w(v).P | [u=v|P | (va:R)P
| nil | P|Q | !P | roleR.P | yield R.P

SysTeEMs: A,B == 0| r{P}, | A||B | (va":R)A

A Distributed Calculus for Role-Based Access Control — p.7/20

The Syntax of our Calculus

Concurrent processes communicatingchannels

PROCESSES: P,Q := a(z).P | w(v).P | [u=v|P | (va:R)P
| nil | P|Q | !P | roleR.P | yield R.P

SysTEMs: A,B == 0| r{P}, | A|| B | (va":R)A

Channels arallocated to user® enable a distibuted implementation

A Distributed Calculus for Role-Based Access Control — p.7/20

Dynamic Semantics

It Is given in the form of aeduction relation

Communication:

s{la”(n) Pl || rialz).Qfp

A Distributed Calculus for Role-Based Access Control — p.8/20

Dynamic Semantics

It Is given in the form of aeduction relation

Communication:

sia”(n). Pl || ria(z).Qlty = siP, [| m QU] [}y

A Distributed Calculus for Role-Based Access Control — p.8/20

Dynamic Semantics

It Is given in the form of aeduction relation

Communication:

sia”(n).Plp || ra(z) Qlty = siP, [| m Q"] [}y

ROle activation:
r{lrole R.P|},

A Distributed Calculus for Role-Based Access Control — p.8/20

Dynamic Semantics

It Is given in the form of aeduction relation

Communication:

sia”(n).Plp || ra(z) Qlty = siP, [| m Q"] [}y

Role activation:
r{lrole R.P[}, — r{P[},uir)

A Distributed Calculus for Role-Based Access Control — p.8/20

Dynamic Semantics

It Is given in the form of aeduction relation

Communication:

sia”(n).Plp || ra(z) Qlty = siP, [| m Q"] [}y

Role activation:
r{lrole R.P[}, — r{P[},u(r)

Role deactivation:

r{lyield R.P|},

A Distributed Calculus for Role-Based Access Control — p.8/20

Dynamic Semantics

It Is given in the form of aeduction relation

Communication:

sia”(n).Plp || ra(z) Qlty = siP, [| m Q"] [}y

Role activation:
r{lrole R.P[}, — r{P[},u(r)

Role deactivation:

rilyield R.P|}, — 7{P[},—(r)

A Distributed Calculus for Role-Based Access Control — p.8/20

RBAC schema

#® Permissions areapabllitiesthat enable process actions. Thus,
P {R", R’ R'} ger is the set of permissions.

A Distributed Calculus for Role-Based Access Control — p.9/20

RBAC schema

#® Permissions areapabllitiesthat enable process actions. Thus,
P {R", R’ R'} ger is the set of permissions.

In our framework, théekBAC schemis a pair of finite relations« ; »),
such that

u Cgn (NyUC) X R ? Cqy R X 2

A Distributed Calculus for Role-Based Access Control — p.9/20

An Example

A banking scenario:

9
9

¥

two users, the clientand the banis
cashiers are modelled as channgls. ., ¢, of users
the rOles available ar€lient andcashier.

r{role client.enqueue®(r).dequeue(z).z(req). - - - .z(req;).z(stop).yield clientl}, ||

s{ /(v free)('enqueuve(x).free(y).dequeuve®(y) | II7_, free®(ci) |
I, leij(x).([x = withdrw_req] <handle withdraw request > |
[x = dep_req] <handle deposit request> | ... |

[z = stop]free®(cj)))}

A Distributed Calculus for Role-Based Access Control — p.10/20

Static Semantics - Types

#® The syntax of types:

Types T .= UT ‘ C
User Types Ul == play: Ri(Ty),...,a, : R,(T},)]
Channel Types C == R(T)

A Distributed Calculus for Role-Based Access Control — p.11/20

Static Semantics - Types

#® The syntax of types:

Types T .= UT ‘ C
User Types Ul == play: Ri(Ty),...,a, : R,(T},)]
Channel Types C == R(T)

o [';phk” P states thaf respectd’ and? when itis run in a session of
with rolesp activated

A Distributed Calculus for Role-Based Access Control — p.11/20

Static Semantics - Types

The syntax of types:
Types T = UT | C
User Types UT' == pla: Ri(Ty),...,a, : R,(T},)]
Channel Types C == R(T)

I': p 7 P states thaP respectd’ ande when it is run in a session of
with rolesp activated

A typing environment is a mapping from user names and varsatul
user types that respects the assignments in

A Distributed Calculus for Role-Based Access Control — p.11/20

Static Semantics - The Type System

An example: performing input actions.

(T-InpPUT)
F'Fa:R(T) Reelp) T,o—T;pF’P
I:p bk a(x). P

A Distributed Calculus for Role-Based Access Control — p.12/20

Static Semantics - The Type System

An example: performing input actions.

(T-InPUT)
F'Fa:R(T) Reelp) T,o—T;pF’P
I:p bk a(x). P

Type Safety: Let A be a well-typed system fdr:; #). Then, whenever
A= (vamR)(A" | r{b(z).Pl|},), it holds that

® eitherd™: S € a”: R andS’ € 2(p),

® orb" ¢ a"andS? € »(p), where{S} = u (b")

A Distributed Calculus for Role-Based Access Control — p.12/20

The Example Again

#® The banking scenario again:
» now each avalilable operation is modelled as a differentrélan
(wdrw = withdraw, opn = open account;c = credit card requept
s the communication among different channels requiresreiffe
roles
s P IS such that(rich_client, cc'), (rich,rich client!)} C ».

A Distributed Calculus for Role-Based Access Control — p.13/20

The Example Again

#® The banking scenario again:

» now each avalilable operation is modelled as a differentrélan
(wdrw = withdraw, opn = open account;c = credit card requept

s the communication among different channels requiresreiffe
roles
s P IS such that(rich_client, cc'), (rich,rich client!)} C ».

7 r{lrole client.enqueue®(r).dequeue(z).z(creditcard_req).cc®(signature).z(stop) |} fuser}

A Distributed Calculus for Role-Based Access Control — p.13/20

The Example Again

#® The banking scenario again:

» now each avalilable operation is modelled as a differentrélan
(wdrw = withdraw, opn = open account;c = credit card requept

s the communication among different channels requiresreiffe
roles
s P IS such that(rich_client, cc'), (rich,rich client!)} C ».

7/ r{lrole client.enqueue®(r).dequeue(z).z(creditcard_req).cc®(signature).z{stop)|} fuser}
= r{lrolerich_client.enqueue®(r).dequeue(z).z(creditcard_req).cc®(signature).z(stop) |} fricn}

A Distributed Calculus for Role-Based Access Control — p.13/20

LTS Semantics

® The labels of the LTS are derived from those of thealculus:
w == 71 | an | an:R | an | an:R

the LTS relategonfigurationsi.e. pairs(u;#) > A made up of a
RBAC schemd«; #) and a system.

® Example:

(LTS-F-InpPUT)
u(a”) = {R} R € 2(p) n & dom(a)

(u;2) > r{a(z).P, =% (uw {n: S}k e) o r{ P[]},

A Distributed Calculus for Role-Based Access Control — p.14/20

Bisimulation Equivalence

#® \We can define a standard bisimulation over the LTS
#® (Bisimulation)ltis a binary symmetric relatio§ between
configurations such that, {iD, E) € S andD - D', there exists a

configurationE’ such that® NG o and(D’, E') € S. Bisimilarity, ~,
IS the largest bisimulation.

the bisimulation is adequate with respect to a standardinet® (typed)
barbed congruence.

A Distributed Calculus for Role-Based Access Control — p.15/20

Some Algebraic Laws

if an action is not enabled, then the process cannot evolve:
r{la.Pl},~ 0 if #(p) does not enable

A Distributed Calculus for Role-Based Access Control — p.16/20

Some Algebraic Laws

if an action is not enabled, then the process cannot evolve:
r{la.Pl},~ 0 if #(p) does not enable

Differently from some distributed calculi, a terminatedsen does not
affect the evolution of the system:

r{nill}, = 0

A Distributed Calculus for Role-Based Access Control — p.16/20

Some Algebraic Laws

If an action is not enabled, then the process cannot evolve:
r{la.Pl},~ 0 if #(p) does not enable

Differently from some distributed calculi, a terminategsen does not
affect the evolution of the system:

r{|nil}}, =~ 0

the user performing an output action is irrelevant; the calgvant
aspect is the set of permissions activated when perforrnma@dtion:

r{b°(n).nill}, = t{b°(n).nill},

A Distributed Calculus for Role-Based Access Control — p.16/20

Finding the “Minimal” Schema

#® Goal tolook for a ‘minimal’ schema to execute a given systém
while mantaining its behaviour w.r.tz; »)

#» Algorithm:

»

fix a metrics(number of roles in the schema, permissions
associated to each role, etc.)

define the set

CONF 4, ={(u';2¢') > A: (u’;2")is a RBAC schempof
configurations ford

partition CONF 4, w.r.t. ~ and consider the equivalence class
containing(wu;?) > A

choose the minimal schema according to the chosen metrics

A Distributed Calculus for Role-Based Access Control — p.17/20

°

| J

Refining Systems

Goat to add role activations/deactivations within a systemuichsa
way that the resulting system can be executed under a givemsc

(u;2)
we want a role to be active only when needed

the refining procedure replaces any input/output prefoccurring in
session{ - - - [}, with the sequence of prefixesle R.a.yield R

whereR is formed by roles assigned toactivable when having
activatedp and enabling the execution of

the refining procedure adapts the type system

Improvement: we can give an algorithm to minimize the nundfer
these actions added

A Distributed Calculus for Role-Based Access Control — p.18/20

Relocating Activities

#® Goal to transfer a process from one user to another without achgng
the overall system behaviour, in order to minimize the nunabesers
In a system

® |tis possible to infer axiomatically judgments of the form:
(u;2) > P, = (u;2) > s{Pl},

This judgment says that the procd3€an be executed byands
without affecting the overall system behaviour.

® Thus, the session{| P}, can be removed. If no other session-a$ left
In the system, thenis a useless user and is erased.

A Distributed Calculus for Role-Based Access Control — p.19/20

Conclusion

#® We have defined Bormal frameworkfor reasoning about concurrent
systems running under an RBAC schema,

#® a number of papers deal with the specification and verifinadfo
RBAC schema,;

#» Future Works
s extend the framework to deal with more complex RBAC models;
s prove that bisimilarity is complete for barbed congruence;

http://www.dsi.uniromal.it/“gorla/publications.htm

A Distributed Calculus for Role-Based Access Control — p.20/20

	Contents
	Access Control Models
	The Basic RBAC model
	RBAC
	Our work
	onlySlide *{1}{The starting point: $pi $-calculus}�romSlide *{2}{The Syntax of our Calculus}
	Dynamic Semantics
	RBAC schema
	An Example
	Static Semantics - Types
	Static Semantics - The Type System
	The Example Again
	LTS Semantics
	Bisimulation Equivalence
	Some Algebraic Laws
	Finding the ``Minimal'' Schema
	Refining Systems
	Relocating Activities
	Conclusion

