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Formal perspectives on software evolution:

from refinement to retrenchment

Michael Poppleton( and Lindsay Groves†
Abstract
The discipline of formal methods is concerned with the use of mathematical techniques to capture precise system specifications, and to transform these into verifiably correct programs.  As these techniques mature, formal methods researchers are now taking a broader view of software development, and considering how evolution of such specifications and programs may be formally supported.

This chapter discusses various ways in which formal methods can contribute to the evolutionary development of verifiably correct software.  This discussion centres around model-based specification notations and associated development techniques, as exemplified by VDM, Z, B and the refinement calculus.  The chapter begins by introducing the refinement calculus and outlining two ways in which program refinement can support evolutionary development.  The chapter then introduces a recent generalisation of refinement, called retrenchment. Some of the factors motivating this generalisation are shown to be relevant to the evolution problem, and a sketch of a potential retrenchment-based method for modelling evolution is drawn.  Discussion is supported by considering elements of realistic examples.

1. Introduction
Formal methods use mathematical techniques to enhance the quality and dependability of software.  System specifications are stated formally using mathematical logic, to achieve a level of precision that is not possible with traditional textual and diagrammatic techniques.  These specifications can then be validated in various ways, and transformed into more and more detailed designs in such a way that the resulting design is a provably correct implementation of the initial specification.  While most work in formal methods has focused on ab initio development of a single program from a new specification, researchers are now starting to consider how evolution of such specifications and programs may be formally supported.

This chapter discusses various ways in which formal methods can contribute to the evolutionary development of verifiably correct software.  The basic problem to be addressed can be described as follows (see figure 1):  consider an existing specification Spec which is implemented by a program Prog, and suppose the specification changes to a new specification Spec*, similar to Spec.  How can a new program Prog* be constructed, which satisfies Spec*, while exploiting the investment in the original development?  This question is central to any kind of evolutionary development, whether the new specification arises from correcting a mistake in the old one, adding new requirements once the system has been completed, adapting a program component to be reused in a different context, or developing a specification for a later release of the system.

If the only artefacts available are the existing specification and program and the new specification, there is little guidance as to how to modify the program to meet the new specification.  If some kind of design history [30] is available, showing how the existing program meets its specification, this can be used as a basis for determining how a change in the specification should be translated into changes in the implementation.  The refinement calculus provides such a design history, in the form of a derivation, showing how a specification is transformed into a provably correct implementation.  The key questions to be addressed then become how changes to a specification are described and how these changes are then propagated through the derivation of an existing program.
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Figure 1

The rest of the chapter is organised as follows.  Section 2 provides a gentle introduction to the refinement calculus, providing the technical foundation of the chapter and introducing an example used in later sections.  Section 3 discusses how program modifications can be performed in the refinement calculus by editing a derivation history.  Section 4 describes a more constructive approach in which the new specification is described by composing a description of the new/modified functionality required with the existing specification, using specification constructors similar to those of the Z schema calculus, and then propagating the change description into the existing program structure to the places where changes are required.  Section 5 discusses a recent extension of refinement, called retrenchment, and its potential contribution to a formal approach to sofware evolution.  Section 6 presents some conclusions.

2. Program Refinement

The basic idea of program refinement is to start with a specification of the desired system, and progressively transform this into a program implementing the specification, via a sequence of correctness preserving transformations.  The initial specification is expressed in a rich mathematical language, using abstract data types such as sets, bags and functions, along with powerful operations upon them, to express system requirements, as opposed to the mechanisms by which this behaviour is to be achieved – that is, what rather than how.  This freedom from implementation detail leads to nondeterminism – in every possible system context, the specification includes all behaviours that would be possible in some acceptable implementation.

Specifications and programs are both expressed in a highly expressive, wide-spectrum language, able to express both (possibly non-executable) specification constructs and (executable) program constructs.  Intermediate steps typically contain a mixture of specification and program constructs; the final program is expressed in an executable subset of the language, called code.  The sequence of transformations performed, known as a derivation, provides a design history showing how the program satisfies its specification, which can be used as a basis for determining how modifications to the specification can be realised as modifications to the program.  The refinement approach can be realised in a variety of formalisms, differing in the kind of language used to express specifications and programs, the kinds of transformation that can occur at each development step, and the correctness relation these transformations are required to preserve.

In the refinement calculus [1, 22, 23], specifications and programs (referred to collectively as programs) are expressed in a wide-spectrum language, based on Dijkstra’s guarded commands language [12, 13],
 augmented with a number of non-executable specification constructs.  The most notable of these is the specification statement, written w:[pre , post], where: the precondition, pre, describes the assumptions to be made about any state in which the statement is executed; the postcondition, post, describes the properties that are to be guaranteed in any state in which the statement terminates; and the frame, w, lists the state variables that may be changed.  Thus, w:[pre , post] can be thought of as a contract, guaranteeing to establish post, changing only variables in w, provided it is only used in situations where pre holds initially.

For example, a very simple resource manager can be specified as a module in which the required operations are defined as procedures whose bodies are given as specification statements, as follows:

module ResourceManager


var free: set nat;


procedure Alloc(result r: nat) is


r, free:[ free ≠ ∅ , r ( free0 ( free = free0  {r} ];


procedure Free(value r: nat) is


free:[ r ( free , free = free0 ∪ {r} ];


initially free = 1 .. MAX
end

In this example, free is a set of natural numbers, representing available resources, which is initialised to 1 .. MAX, for some positive integer constant MAX.  The variable free is local to the module, and persists throughout the entire program execution.  There are two operations: Alloc allocates a resource from free, provided at least one is available; and Free returns a resource to free, provided it is not in free already.  In the postconditions of the specification statements, free0 refers to the value of free in the state in which the statement is executed, which is the same as free in the precondition.

Note that the specification does not say what Alloc should do if there is no resource available, or what Free should do if asked to release a resource that is already in free.  Giving free ≠ ∅ as the precondition for Alloc, explicitly says that the specifier doesn’t care what happens for initial states where this does not hold; and similarly for r ( free in Free.  Any client program using this module should ensure that it does not call these operations in states where their preconditions do not hold.  Also note that the specification of Alloc is non-deterministic, since it does not say which resource should be allocated when more than one is available.

A specification, such as that given above, is transformed into an executable program via a sequence of transformations, each preserving the correctness of the previous version.  These transformations typically either alter the data structures used, e.g. replacing abstract data types such as sets by more concrete ones such as arrays, records and pointers (data refinement), or specify details of how the required behaviour is to be obtained, by introducing or modifying algorithmic structure (operation refinement), while still conforming to the contract embodied in the initial specification.

In the above example, the first step towards an implementation might be to replace the abstract set variable free by a more concrete data structure, say, an array of Booleans:

module ResourceManager1


var b: array [1 .. MAX] of Boolean;


procedure Alloc(result r: nat) is


r, b:[ true ( b[1 .. MAX] , r ( 1 .. MAX ( b0[r] = true ( b = b0 [r := false] ];


procedure Free(value r: nat) is


b:[ b[r] = false , b = b0 [r := true] ];


initially ((i: 1 .. MAX ( b[i] = true)

end

This data refinement step is valid because the effect of the resulting program is indistinguishable from that of the original.  This is justified formally in terms of an abstraction relationship showing how the abstract variable (free) is related to the concrete one (b) — in this case, free = {i: 1 .. MAX | b[i] = true}, i.e. free is the set of indices at which b is true.

The next step is to implement the bodies of the procedures. Free is easy to implement — its body can be replaced by the assignment statement b[r] := true, since this has exactly the effect required by the postcondition b = b0 [r := true].  Implementing Alloc is more complicated, requiring a loop to search for an index at which b is true.  This can be done by initialising r to 1 and looking at successive positions in b until a true value is found, and then setting that element to false and returning its position.  The required code can be derived from the specification of Alloc in six steps, as follows:

(i) The initial specification is split into two statements, one to find a free resource r, and one to record that r has been allocated.  (Sequence)

r, b:[ true ( b[1 .. MAX] , r ( 1 .. MAX ( b0[r] = true ( b = b0 [r := false] ]
becomes

P ::
r:[ true ( b[1 .. MAX] , r ( 1 .. MAX ( b[r] = true ] ;

Q ::
b:[ r ( 1 .. MAX ( b[r] = true , r ( 1 .. MAX ( b0[r] = true ( b = b0 [r := false] ]
(ii) Anticipating that a loop will be required, specification P is further split into statements that will end up being a loop and its initialisation.  The intermediate assertion, r ( 1 .. MAX ( true ( b[r .. MAX], is the intended loop invariant indicating that (since true hasn’t been found yet) the promised true value must be between r and MAX.  (Sequence)

P ::
r:[ true ( b[1 .. MAX] , r ( 1 .. MAX ( b[r] = true ]
becomes

R ::
r:[ true ( b[1 .. MAX] , r ( 1 .. MAX ( true ( b[r .. MAX] ] ;

S ::
r:[ r ( 1 .. MAX ( true ( b[r .. MAX] , r ( 1 .. MAX ( b[r] = true ]
(iii) Specification R can be implemented by setting r to 1, since MAX is positive and the precondition ensures that true ( b[1 .. MAX] holds.  (Assignment) 

R ::
r:[ true ( b[1 .. MAX] , r ( 1 .. MAX ( true ( b[k .. MAX] ]
becomes

r := 1

(iv) Specification S requires a loop to search for a suitable value of r.  The loop invariant has already been chosen to be r ( 1 .. MAX ( true ( b[r .. MAX].  The guard is b[r] = false, ensuring that the postcondition holds when the loop terminates.  The variant, used to ensure that the loop terminates, is MAX - r.  (Repetition)

S ::
r:[ r ( 1 .. MAX ( true ( b[r .. MAX]] , r ( 1 .. MAX ( b[r] = true ]
becomes

while b[r] = false do
T ::
r:[ r ( 1 .. MAX ( true ( b[r .. MAX] ( b[r] = false ,


  r ( 1 .. MAX ( true ( b[r .. MAX] ( r > r0 ]
od
(v) Specification T can be implemented by incrementing r by one, which ensures that progress is made towards termination (decreasing the variant) and preserves the loop invariant since r ( 1 .. MAX ( true ( b[r .. MAX] ( b[r] = false implies r+1 ( 1 .. MAX ( true ( b[r+1 .. MAX].  (Assignment)

T ::
r:[ r ( 1 .. MAX ( true ( b[r .. MAX] ( b[r] = false ,

  r ( 1 .. MAX ( true ( b[r .. MAX] ( r > r0 ]
becomes

r := r+1

(vi) Finally, specification Q can be implemented by setting b[r] to false.  (Assignment)

Q ::
b:[ r ( 1 .. MAX ( b[r] = true , r ( 1 .. MAX ( b0[r] = true ( b = b0 [r := false] ]
becomes

b[r] := false
At this stage, the complete module is:

module ResourceManager1


var b: array [1 .. MAX] of Boolean;


procedure Alloc(result r: nat) is



r := 1;



while b[r] = false do r := r+1 od;



b[r] := false;


procedure Free(value r: nat) is


b[r] := true;


initially ((i: 1 .. MAX ( b[i] = true)

end

The initialisation can be implemented in a similar fashion to Alloc, resulting in a loop that sets all the elements of b to true.  The final implementation can then be mechanically coded in an appropriate programming language.

Each step in a successful derivation can be formally justified by appealing to a collection of refinement laws embodying commonly used transformations.  Most of these laws support top-down design, by replacing a specification statement by one of the basic programming constructs of the wide-spectrum language.  For example:

· Assignment: w:[pre , post] can be replaced by an assignment x := e, provided that x ( e and the condition obtained by replacing x by e in post holds whenever pre holds.

· Sequence: w:[pre , post] can be replaced by the sequential composition w:[pre , mid] ; w:[mid , post], for any intermediate assertion mid not containing w0.

· Conditional: w:[pre , post] can be replaced by the if statement if g then w:[pre ( g , post] else w:[pre ( ¬g , post] fi, for any guard g.

· Repetition: w:[pre , post] can be replaced by the loop while g do w:[inv ( g , inv ( f < f0] od, for any guard g, loop invariant inv and natural valued variant function f, such that pre implies inv and inv ( ¬g implies post.  The loop invariant and guard are chosen to ensure that the loop will establish the required postcondition; the variant function must reduce on each iteration, but cannot become negative, which ensures that the loop terminates.

· Local variable: w:[pre , post] can be replaced by the block |[ var x ● w:[pre , post] ]|, where x does not occur in w, pre or post.
These laws give rise to proof obligations that must be proved to justify the development steps in which they are used.  For example, the third step in the above derivation, introducing the assignment r := 1, is valid because true ( b[1 .. MAX] implies 1 ( 1 .. MAX ( true ( b[1 .. MAX].  The latter condition is obtained by substituting 1 for r in the postcondition r ( 1 .. MAX ( true ( b[k .. MAX], and holds because MAX is assumed to be positive.

More generally, program S can be replaced by program T if any client expecting S cannot tell that T has been used instead.  This relationship is formalised by saying that “T refines S”, or “S is refined by T”, written S ⊑ T., if T establishes any postcondition that S establishes.  Refining one specification statement, w:[pre , post], by another, w’:[pre’ , post’], leads to three proof obligations: w’ ( w, pre ( pre’ and (w ( pre0 ( post’ ( post.  The last two are similar to the proof obligations for operation refinement in Z [28], and show that a refinement may alter a statement so that it terminates for more initial states (weakening the precondition) or is more deterministic (strengthening the postcondition).  Refinement laws, like those listed above, are proved in terms of the semantics of the wide-spectrum language, which is defined in terms of Dijkstra’s weakest preconditions [12, 13, 14].

A derivation is thus a sequence of specifications, S0, S1, …, Sn, where S0 is the initial specification, Sn is the resulting program, and for i = 1, …, n, Si is refined by Si-1.  Since refinement is transitive (i.e. if S ⊑ T and T ⊑ U, then S ⊑ U), the result of a sequence of refinement steps is a correct implementation of the initial specification.

The formal definition of refinement suggests that each step should transform the whole program, which would be a very tedious process and make verifying each step inordinately difficult.  Fortunately, as illustrated in the above example, a much simpler approach can be used.  Instead of transforming the entire program at each step, an individual component of the program, such as a branch of an if statement or the body of a loop or procedure, can be transformed.  This works because the program constructors are all monotonic, which means that refining such a component of a program gives a refinement of the whole program [2].

Using refinement laws, instead of justifying each refinement step directly in terms of its weakest precondition semantics, also considerably simplifies the refinement process.  These laws are proved correct in terms of the weakest precondition semantics, and do not then need to be reproved each time they are used.  Many such laws can be proved from the semantics (e.g. see [23]).  In practice, most derivations can be done using only about a dozen rules.

A derivation is complete when the final program contains only executable constructs, though it is possible to perform further transformations on an executable program, e.g. to improve efficiency.  Not all of the specifications that can be expressed in the wide-spectrum language are able to be implemented.  In particular, the specification statement :[P , false] must, for any initial state satisfying P, terminate in a state satisfying false, which is, of course, impossible.  This statement is said to be infeasible or miraculous (since it violates Dijkstra’s Law of the Excluded Miracle [12, 13]), and is given the name magic.  While miracles are not permitted in executable programs (i.e. code), it is useful to allow them in the language, because they simplify the semantic theory and many of the refinement laws,
 and are sometimes useful within intermediate steps in a derivation [21], in much the same way that complex numbers simplify certain mathematical theories and calculations.  More importantly for practical purposes, their inclusion means that inconsistent requirements can be expressed in the language and the inconsistency identified formally, as infeasibility.  Since code is always feasible, it is not necessary to check for feasibility at every step — if a derivation can be completed, the initial specification and all intermediate versions must have been feasible.

Although tedious when presented and explained in this level of detail, the refinement process mirrors closely the kind of top-down design advocated by authors such as Dijkstra, Gries and Wirth (e.g. [11, 31]), and provides a high level of assurance that the resulting program satisfies the initial specification.  Instead of working in terms of the small steps embodied in the basic laws illustrated above, more powerful derived rules can be used, which package several smaller steps.  For example, a single derived rule might be used to introduce a counted loop, declaring and initialising a variable to use as a loop counter as well as introducing the actual loop, which would otherwise take about four steps.  Importantly for the purposes of software evolution, program refinement provides a design history that can be used as a basis for effecting modifications to a program.  In practice, the most important information contained in a derivation is the abstraction invariants used in data refinement, the intermediate assertions used in introducing sequential compositions, and loop invariants and variant functions used in introducing loops, since they cannot easily be deduced from the resulting program.

To be practical, program refinement requires sophisticated tool support to assist in selecting and applying refinement rules and derived rules, and in discharging the resulting proof obligations.  A refinement tool may also support the use of tactics that embody a piece of programming knowledge which may produce different code according to the program it is applied to.  Such tools have been developed, (ref PRT, RefCal, JimAna), but are still at the stage of being research prototypes (e.g. [6, 8]).

3. Modifying refinements by adapting derivations

The refinement laws discussed above can be thought of as transformation rules that are applied to a component of a program to transform it into a refinement of that component, provided the resulting proof obligations hold.  These rules generally require various parameters that dictate just how the transformation is performed, for example, providing variables to be declared or assigned to, guards to be introduced, intermediate assertions to be used, etc.  For example, the derivation for Alloc in the above example can be described as a sequence of six rule applications:

(i) Apply Sequence to the initial specification, with r ( 1 .. MAX ( b[r] = true as the intermediate assertion.  Call the result P; Q.

(ii) Apply Sequence to P, with r ( 1 .. MAX ( true ( b[r .. MAX] as the intermediate assertion.  Call the result R; S.

(iii) Apply Assignment to R, with r := 1 as the assignment.

(iv) Apply Repetition to S, with b[r] = false as the guard, r ( 1 .. MAX ( true ( b[r .. MAX] as the loop invariant, and MAX - r as the variant function.  Call the result while G do T od.

(v) Apply Assignment to T, with r := r+1 as the assignment.

(vi) Apply Assignment to Q, with b[r] := false as the assignment.

This sequence of rule applications, and the associated proof obligations, provides a design history that can be used as a basis for implementing modifications to the program [15].  In general, given the sequence of rules used in deriving a program Prog, from its specification Spec, and a specification Spec’ which is similar to Spec, it may be possible to construct a new program implementing Spec’ by applying a similar sequence of rules to Spec’.  It will not usually be possible to apply exactly the same sequence of rules, because their proof obligations may not hold in the new derivation.  But attempting to apply the same sequence of rules will indicate what needs to be changed in order to implement the new specification.  This may involve inserting new steps, deleting steps, reordering steps, or changing the way that existing steps are applied, for example, changing an intermediate assertion or loop invariant.

As an illustration, suppose the specification given above is modified so that Alloc is required to find the smallest available resource.  In the initial specification, r ( free0 becomes r = min free0, and true ( b0 [1 .. r-1] is added to the postcondition after the data refinement (since r = min {i: 1 .. MAX | b0 [i] = true} is equivalent to b0 [i] = true ( true ( b0 [1 .. r-1]).  A similar modification can be made to the subsequent steps, leading to the same program and showing that the existing program happens to already implement the stronger specification.  If the specification was instead modified so that Alloc was required to find the largest available resource, r ( free0 would become r = max free0 in the initial specification, and true ( b[r+1 .. MAX] added after the data refinement.  In this case, the implementation would need to be changed more radically; e.g. by changing the loop so that it inspects every element of b and updates r every time a true element is found, or changing to a counting down loop.  The former requires four additional steps, and minor changes to the existing steps (adding a condition to the loop invariant); the latter uses the same six steps, but with more substantial changes to the parameters used (changing the loop invariant, variant function, initialisation and guard).

Now suppose that the original specification is modified so that Alloc also returns the number, n, of resources available.  The new specification can be written as:


r, n, free:[ free ≠ ∅ , r ( free0 ( free = free0  {r} ( n = #free ]
which, after data refinement, becomes:

r, n, b:[ true ( b[1 .. MAX] , 

 r ( 1 .. MAX ( b0[r] = true ( b = b0 [r := false] (
 n = #{i: 1 .. MAX | b[i] = true} ]
This modification can be implemented either by computing n in the existing loop, or by introducing a separate loop.  The former requires four additional steps, with the original six steps modified to carry the additional conditions pertaining to n; the latter requires nine additional steps to introduce the additional loop, with the original six steps remaining unchanged.

This process of revising derivations is essentially the way that people usually implement modifications to programs developed in the refinement calculus.  It is a tedious process to do by hand, because of the need to carry over modifications from one step to another, and rechecking proof obligations to see whether the same modification is required or whether it needs to be varied in same way.  Sometimes changes are prompted because proof obligations do not hold in the revised derivation; but sometimes they are prompted by efficiency considerations that are not obvious in the formalism.  A refinement tool can record the steps in a derivation in a textual form, as a script or meta-program, which the programmer can edit and re-run in order to implement the required modifications.  Alternatively, a refinement tool could be designed to assist in this modification process by identifying a syntactic mapping that will transform the original specification into the new one, and then selectively applying this mapping, updated as necessary, to subsequent steps in the derivation.  This approach has been explored in planning, proof and program transformation systems (e.g. see [29]), but not to date in refinement tools.

4. A compositional approach to program modification

An alternative approach to implementing modifications to programs developed in the refinement calculus has recently been proposed [16, 17].  In this approach, instead of just modifying the specification by editing it directly and then comparing it with the original to see how it has changed, modifications to the specification are described by composing the original specification with another specification describing the modified behaviour.  The two specifications are combined with a specification operator that combines the two in an appropriate way, similar to the schema operators in Z.  Properties of that specification operator are then used to propagate the new requirement into the program derivation to the point(s) where the existing program needs to be changed.

For example, using a program conjunction operator, ⋏, to combine the effects of two specifications, the first change to Alloc discussed above (returning the smallest available resource) can be described as:

r, free:[ free ≠ ∅ , r ( free0 ( free = free0  {r} ] ⋏ r:[ free ≠ ∅ , r = min free ]
The second specification captures the added requirement and the conjunction operator ⋏ says that both postconditions must be established, provided that both preconditions hold, modifying only variables that occur in either or both of the frames.  After data refinement, this becomes:

r, b:[ true ( b[1 .. MAX] , r ( 1 .. MAX ( b0[r] = true ( b = b0 [r := false] ] ⋏ 

r:[ true ( b[1 .. MAX] , r = min {i: 1 .. MAX | b[i] = true} ]
Similarly, the second change to Alloc discussed above (returning the number of resources available) can described as:

r, free:[ free ≠ ∅ , r ( free0 ( free = free0  {r} ] ⋏ n:[ true , n = #free ] 

where, again the second specification captures the added requirement.  This is equivalent to the version given in the previous section.  After data refinement, this becomes:

r, b:[ true ( b[1 .. MAX] , r ( 1 .. MAX ( b0[r] = true ( b = b0 [r := false] ] ⋏
n:[ true , n = # {i: 1 .. MAX | b[i] = true } ]
In both cases, the modified specification is expressed as a conjunction of the old specification and a specification statement expressing the additional requirements.  Writing the modified specification in this way makes it much clearer just what the changed behaviour is, and thus easier to see what needs to be changed.  In the second example, the true precondition makes it clear that this new requirement does not rely on the assumption that free is not empty.  The combined specification still needs that assumption, however, which is reflected in the requirement that a conjunction of two specifications is required to establish the postconditions of both specifications, modifying variables in the frames of both specifications, only when both preconditions hold.

Laws about program conjunction can now be used to transform the modified specification into a new program, using steps from the existing derivation, possibly modified or supplemented with additional steps, where appropriate.  Considering the second modification described above, one option is to immediately eliminate the conjunction and proceed essentially as described in Section 3.  Alternatively, since there is no interference between the conjoined specifications, the conjunction can be turned into a sequential composition, giving:

r, b:[ true ( b[1 .. MAX] , r ( 1 .. MAX ( b0[r] = true ( b = b0 [r := false] ] ;
n:[ true , n = # {i: 1 .. MAX | b[i] = true} ]
The two specifications can then be refined independently, the first in the same way as the original development, and the second leading to a second loop (as discussed in Section 3).

A more interesting alternative is to push the additional requirement into the original development so that it can be addressed using the existing loop – with the modification to find the smallest available resource, this would be the only sensible approach, since both conjuncts constrain the value of r.  The basic strategy is to try to refine the added specification to a program with a similar structure to the existing one, so that the two programs can be merged in a way that respects the semantics of conjunction.  Sometimes the original derivation needs to be revised to produce a program whose structure is more suited to the required modification, so in practice the original derivation is repeated, possibly modifying its steps.  The new program is constructed in parallel with this, and their structures merged as they are created.  This process relies on a rich set of laws for distributing conjunctions over the various program constructs (e.g. a conjunction of if statements with the same guard, if G then S else T fi ⋏ if G then U else V fi, is equivalent to if G then S ⋏ U else T ⋏ V fi) and eliminating conjunctions (e.g. turning a conjunction into a sequential composition, where the conjoined programs have disjoint frames).

In the above example, one option is to modify the existing program so that it always inspects all elements of b, since that is required in the added specification, construct a similar program for the new specification, and merge them.  The effect is equivalent to refining the conjunction above to:

	|[
var k ●


k := 1;


while k ( MAX do



if b[k] = true then r := k fi;



k := k + 1


od;


b[r] := false
]|
	⋏
	|[
var k ●


k := 1; n := 0;


while k ( MAX do



if b[k] = true then n := n + 1 fi;



k := k + 1


od
]|


Merging these two programs, then gives:

|[ var k ●


k := 1; n := 0;


while k ( MAX do



if b[k] = true then r := k; n := n + 1 fi;



k := k + 1


od;


b[r] := false
]|

This approach is discussed in detail in [16], which also describes several other operators that can be used to describe other kinds of changes, and laws that can be used to propagate changes into a derivation in the way outlined above.  For example, a program disjunction operator can be used to extend the domain of a program, e.g. to define the behaviour of Alloc when no resources are available.  These operators allow a wide range of typical modifications to be described, but undoubtedly do not cover all possible ways in which a specification could be changed.
Unfortunately, there does not appear to be any way to tell from a proposed modification how much an existing program and its derivation would need to be changed.  The laws may suggest how a modification might be implemented, but cannot determine exactly what change is required.  Any specification change can be implemented in many different ways, some of which will be easy to implement but may be rejected because of the size, structure or efficiency of the resulting program.  It will always be preferable in some cases to abandon the existing program and construct a new program from scratch.

5. Retrenchment

As a formal method for verifiable ab initio software development, refinement was not originally concerned with the evolution of requirements. The recent advent of more compositional development philosophies, i.e. object-orientation and component-based approaches, motivated the definition of correspondingly more compositional forms of refinement, e.g. [10, 20]. Although more flexible, and more supportive of agile development processes than previously, these forms still did not address the pressing need to support evolving requirements in existing and planned systems. This need has now been addressed: section 2 having introduced Morgan’s refinement calculus [23], sections 3 and 4 presented some recent proposals for the support of evolutionary processes in conjunction with the calculus. 

In this section a requirements engineering perspective is taken on refinement (discussed in section 5.1 in a relational notation), which links to the question of how software evolution may be supported. Refinement is a powerful formal method for the development of critical software, with a good industrial track record. However, the strong conditions required for its application are also restrictive: in section 5.2 requirements specification scenarios will be identified which are hard to describe using refinement methods. Addressing some of these limitations motivated the proposal of a generalisation of refinement, called retrenchment [5, 26]. Section 5.3 introduces retrenchment as a generalisation of refinement. A simple example illustrates the notion, and the increased formal expressiveness that is provided. The requirements perspective suggests that retrenchment may have a contribution to make to the formal support of the software evolution process. As a formal description of the evolved requirement, retrenchment should provide formal support for production of the evolved refinements to code, analogously to the approach of section 4. Section 5.4 discusses some recent theoretical results and outlines how retrenchment may in future support software evolution. 

5.1 Refinement - a relational perspective 

The simple classical framework of first-order predicate logic (FOPL) will be used to discuss refinement and retrenchment in relational terms. This employs a “posit-and-prove” style of refinement, in contrast to the calculational style of Morgan’s Refinement Calculus, and is based on a number of classical formalisms, mainly VDM, Z, and B [1, 19, 28]. While this increases the notational burden on the reader, it does serve to demonstrate the dominant style of description in model-based Formal Methods. The real reason, however, is that retrenchment has been developed in this style, and has not yet been expressed in Morgan’s calculus.

Whereas Morgan adds structure (by applying refinement laws) to the gap between pre- and postconditions, the posit-and-prove approach starts from an abstract relational model of the specification, and then designs in the structure required to make a correct program, proving the design refinements at each stage. Such proof is from first principles, probably deploying experience from similar, earlier proofs, and is usually tool-supported.

Refinement is a relationship between an abstract system model Abs and a (more) concrete system model Conc. This pair of models may represent any link of interest in a refinement chain. The abstract model has state variable(s) u and a collection of operations OpsA. The operation is atomic in this setting – it is the unit of behaviour in the system specification. The operation takes an input, reads and perhaps modifies the state variable, and produces an output. All required behaviour is then specified in terms of the operation compositions that are available in the specification language being used. An operation OpA in OpsA can be described in terms of its transition, or step relation, written stpOpA (u, i, u’, o), between before-state/input pair (u,i) and after-state/output pair (u’,o). An initial-state predicate InitA(u’) characterises initial system states u’ that satisfy the requirements. Every initial state must satisfy the system invariant property, and this invariant must be preserved by every defined operation step from every valid (invariant-satisfying) state.
 The corresponding concrete model Conc is defined in the same way, in terms of state variable v, an operation OpC in set OpsC, its step relation stpOpC (v, j, v’, p) between before-state/input pair (v,j) and after-state/output pair (v’,p), and initial-state predicate InitC(v). Loosely speaking, we can link this notation to that of earlier sections as follows: the precondition of OpA is given by  u’,o stpOpA (u, i, u’, o), i.e. the input/before-state pairs from which it is possible to take a step, and the postcondition is precisely stpOpA.

The usual forward simulation [9] formulation of the refinement of Abs by Conc follows. Every OpA in OpsA must correspond with exactly one OpC in OpsC, and vice versa. The refinement relationship is expressed in terms of an abstraction relation G(u,v) between the state variables of the two models: for every valid v, this describes the values of u that v represents. There are two conditions that must hold in order that Conc be a refinement of Abs. The first condition is that every concrete initial state must be witnessed by some abstract initial state through the abstraction relation: 


[image: image2.wmf]))

'

,

'

(

)

'

(

'

(

)

'

(

v

u

G

u

Init

u

v

Init

A

C

Ù

·

$

Þ


(1)

Relations InOp and OutOp describe how concrete input j (resp. output p) represents abstract input i (resp. output o). InOp and OutOp will simply be the identity relation in the case of no type change in input/output respectively. The second condition is that for every corresponding operation pair OpA in OpsA and OpC in OpsC:
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(2)

That is, starting from before-state/input pair (u,i) represented by (v,j) through InOp and G, every concrete OpC-step is witnessed by some abstract OpA-step which establishes representation of (u’,o) by (v’,p) through G and OutOp. More succinctly this is described as OpC simulates OpA. That is, OpC provides a black-box simulation of OpA in the sense that the (designed) OpC -step is indistinguishable to the user from its corresponding (user-specified) OpA -step.

There is an implicit universal quantification at the outer level of these statements: in (2) the condition holds for all values of i, j, u, v, v’, p that satisfy the antecedent clause of the implication. The nesting of an existential quantification inside gives a significant shape: every valid OpC -step is witnessed by some OpA -step. That is, there may be many OpA -steps starting at the (u,i)-pair in question, but only one need be simulated by the OpC -step. This is refinement’s characteristic of reduction of nondeterminism, as the degree of choice in the abstract specification is gradually reduced by addition of algorithmic structure through refinement steps. 

By inductive reasoning, there is an implicit quantification in the simulation conditions for refinement: over behaviours. That is, given (1) and (2), any concrete system behaviour (sequence of concrete operations) OpC1 ; OpC2 ; … OpCn will simulate the corresponding abstract behaviour OpA1 ; OpA2 ; … OpAn exactly as per (2).

5.2 The need to generalise refinement 

This section considers three example development scenarios which are difficult to describe satisfactorily with refinement, as motivation for a more general approach. The utility of such a more general approach for software evolution is indicated. 

Finiteness

A variation on the simple resource manager example of section 2 will serve both to illustrate refinement and to demonstrate some problems. Given a pool of some existing resources RSS, operations are required to record the allocation and deallocation of identified resources from the pool. The design of this example system fragment will be informed by the software engineering principle of separation of concerns [12], which will demonstrate an expressive limitation of refinement. 

The most abstract modelling level is concerned only with describing resources, their allocation and deallocation. Separating concerns, questions of finiteness and of structure of each resource are abstracted away. This enables the use of a simple and elegant model using sets and relations (possibly infinite) to describe the system. Finiteness is abstracted away, since it is typical of implementation constraints, which, methodologically, should be specified at a separate stage from basic functional requirements. The state of the abstract model Abs is a set of allocated resources arss.  Initialisation InitA starts with an empty set. Allocation and deallocation operations have preconditions: AllocA may only allocate a resource in the pool not already allocated, and DallocA may only deallocate a resource already allocated. 

Although the specification syntax here (a simplification of B syntax [1]) differs from that of earlier sections, there is little semantic difference. The precondition is stated after keyword PRE, and the operation step is written in “assignment” style, which has the usual meaning.
 Initialisation and operations on a single input resource rs are defined:
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The concrete model Conc has, correspondingly, allocated resource set crss, initialisation InitC, operations AllocC, DallocC. In this model a finiteness constraint is added: assume that storage space is limited to cmax elements. Thus the total number of concrete resources that can be allocated is limited. The cardinality operator # is used to count the total number of elements in the set. Note that, in the IF-construct used here, the absence of an ELSE clause means “do nothing; state does not change”, i.e. “ELSE skip”. The abstraction relation GAC from Conc to Abs is set equality:
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It is obvious that (1) holds here, and that (2) holds for resource allocation until cmax resources have been recorded. After that, crss is full (so AllocC skips while AllocA continues to add new resources) and GAC cannot be re-established. So the refinement only holds as long as the abstract state is as finite as the concrete, otherwise it fails. This is unsatisfactory; an apparent way out is to treat a full crss (with cmax elements) as an overflow, or exception condition. That is, regard a full crss as representing any set arss that contains crss. The abstraction relation could be redefined:
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That way, condition (2) is satisfied, i.e. AllocA is refined for any number of allocations. However, (5) does not afford a joint refinement of both AllocA and DallocA, becauses while #arss > cmax, (5) and thus (2) fail at the first deallocation of an element in crss. At this point #crss < cmax, but in general crss is still a proper subset of arss.

The only way the refinement designer can fix this is to allow the finiteness constraint to “percolate up” to the abstract model so that the problem simply doesn’t arise with the simulation conditions (1,2). This is unsatisfactory, since the software engineering principles of separation of concerns and postponing implementation bias until as late as possible are breached; the abstract model is “polluted” with the lower-level concern of finiteness. 

Where are the requirements?

Albeit simplistic, the example has shown a methodological limitation of refinement. There is mileage in taking the example a little further, in order to show how the reduction of nondeterminism in a refinement step can conceal (from the unwary) the imposition of further constraints on the implementation. Imagine an enrichment of models Abs and Conc (to Abs’ and Conc’ respectively) to allow multiple instances of each allocated resource to be recorded; the mathematical model is a bag
 rather than a set (for arss’ and crss’), and the allocation/deallocation operations are defined analogously to the unprimed versions of (3, 4). This caters for a requirement for provision of many instances of each of a number of resource types, e.g. file handles, device drivers, and processes in an operating system environment.
Next consider a further, more concrete layer to the design, called Further’
 (subscript F), a data refinement of the finite bag crss’ by a finite injective sequence frss’. Where the abstract bag models Abs’ and Conc’ simply count instances of each resource type, Further’ records each instance allocation (Alloc’F) by appending to the sequence. This gives the designer freedom in choosing how to reduce nondeterminism: the particular instance chosen for deallocation is immaterial to the abstract specification, so any instance of the input resource can be deallocated. For argument’s sake, assume that minimising search time for the input resource is chosen, by specifying Dalloc’F to deallocate the last instance of rs in the sequence. Now observe that this design manifests a certain behavioural property: for a given resource, a deallocation will remove the latest instance allocated. A sequence of deallocations for a given resource will remove instances on a last-in, first-out basis. No such global constraint on behaviour was present in either the intermediate Conc’ model, or the original specification Abs’. 

The question arises as to whether this behavioural property was a user requirement or not. If not, there may not be any problem, since Further’ is simply a case of the designer exercising her freedom of choice in the solution space defined by the specification. On the other hand, it may be that the property inhibits other required behavioural properties; in which case, the abstract specification will need revisiting.

If the property is required by the user, it is simply necessary to recognise that the more abstract specification (here, the Conc’ model, in relation to its concrete counterpart, the Further’ model) is incomplete in terms of requirements. Thus, whereas classical refinement is usually a black-box process dictating that all requirements are present in the abstract specification, this approach is “layering in” behavioural requirements through the refinement chain in more of a “glass box” process. In this scenario the contractual, definitive specification is Further’ rather than Conc’.

From a requirements engineering point of view, what is needed is such a glass box process: a methodology enabling the accumulation of requirements, described in models separated in the refinement chain by separation of concerns, into one contractual, definitive description of all the customer requirements. In the example this works in the refinement of Conc’ to Further’, but the link from Abs’ down to Conc’ is broken by not being (usefully) expressible as a refinement. A weaker, more general relation between models is needed, that can resurrect this chain of requirements-accumulating models. Retrenchment [5, 26] is such a relation, which describes the degree to which the lower model refines the upper, and otherwise, exactly what relationship there is between the models. Retrenchment can be interleaved with refinement (C refines B which retrenches A, C retrenches B which refines A, are both valid constructions), and shares the transitivity property of refinement (if B retrenches A and C retrenches B then C retrenches A). These properties allow retrenchment and refinement to be interleaved in a layered construction of the contractual requirements specification. 

From requirements engineering to evolution
Further examples of the methodological limitations of refinement as applied to requirements engineering can be given, but for reasons of space these limitations will be discussed more briefly. Feature interaction [7] is a well-known problem in telephony systems, where the need to provide multi-feature systems is complicated by the fact that features do not in general compose cleanly, and the interaction of features must often be designed for and managed explicitly. For example, the Call Forward (CF) and Incoming Call Screening (ICS) features can interact negatively. Caller X, calling subscriber A, may be forwarded (via A’s CF feature) to subscriber B, who has excluded X on his ICS list. Telephony systems are one example of feature-oriented systems, constructed from in general non-compositional (functional and non-functional) features. Refinement’s strong simulation requirement can make it difficult to describe the layering of such non-compositional features into a system specification. For the call forward example, an abstract model containing one feature cannot be completely refined by a more concrete model that layers in the second feature, since the requirements of A and B for processing X’s call are inconsistent. Some design resolution is required which will necessarily be inconsistent with either CF or ICS in the case of X.

As shown [3] for telephony feature interaction, the retrenchment method enables the layering of possibly inconsistent requirements with the designed resolution, producing as output the definitive, implementable and contractual specification. This output specification can then be refined to code. The method formally records the relation between this contractual specification, and each of the partial requirements models incorporated at earlier stages. The transitivity property discussed above is the mechanism by which this relation is established. The retrenchment will distinguish between refining and non-refining behaviours and will be amenable to automated support for formal proof obligations. 
The potential utility for the evolution of requirements should now be evident. Evolution cannot be described in terms of refinement because changed behaviour cannot in general simulate legacy behaviour. However, removal from, change to, or addition to requirements can be described in terms of the addition of inconsistent (possibly negative) requirements, perhaps in the style of section 4. It will be shown that retrenchment provides a way of describing such evolution of requirements.
5.3 Retrenchment: generalising refinement

Section 5.2 motivated, in terms of some typical system modelling problems, the need to expand, or generalise the applicability of refinement-like methods. Whereas refinement can describe the steps from a contractual specification to an implementation, a retrenchment method is intended to expand the scope of the formal development process to include the requirements capture and reconciliation that will produce the contractual specification. It should describe formally the way in which the specification is built up out of the various, usually conflicting, contributing requirements and implementation constraints. These requirements and constraints should be combinable in a variety of ways (including the use of transitivity) some of which will be refinements, but most will not. A formally documented development, starting with the requirements engineering process, expands the scope of the recorded design history that can be used for effecting evolutionary change, in the style of section 3. 

The potential applicability of such a more general method to software evolution has been indicated. For the construction of the contractual specification, the intuition is that refinement is too strong, that the exactness of simulation is too exacting, that there is a need to generalise to a more approximate, refinement-like method. A weaker relation, as seen above, might describe an exception, an inconsistency to be resolved through design, or an approximation. One approach is to strengthen the precondition over refinement, to allow a finer, more intricate structuring of the relationship between the models. In (3 - 4), it may be desirable to describe the refining subdomain of the joint input/before-state space (i,j,u,v) separately from the “exception” subdomain where no more concrete allocations are allowed. More central to the wish to generalise refinement is the need to weaken the postcondition, to allow non-refining transitions in the two models to be usefully related in the joint after-state/output space. The postcondition abstraction relation can be weakened with a disjunct to allow a looser, non-refining, approximate notion of representation of abstract by concrete. In the exception subdomain of (3 - 4) such a disjunct would relate the incrementing abstract resource set with its concrete approximation, the static concrete resource set.

Retrenchment [4] can be defined in the same terms as (2) above. For initialisation, the same condition (1) as refinement is employed. For operation retrenchment, the simulation condition (2) is generalised using the new terms W (within clause) and C (concession clause). For every corresponding operation pair OpA in OpsA and OpC in OpsC:
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(7)

To paraphrase the discussion of (2): starting from before-state/input pair (u,i) represented by (v,j) through W and G, every concrete OpC-step is witnessed by some abstract OpA-step which establishes representation of (u’,o) by (v’,p) through G and OutOp, otherwise through C. 

Compared with (2), the within clause W strengthens the precondition in specifying the subdomain of the joint input/state space where the retrenchment holds. W subsumes the input relation InOp of (2). The within clause allows the description of a more intricate relationship between adjacent levels of abstraction than refinement, insofar as there may be more than one retrenchment relation (defined with more than one application of (7)) over different parts of the joint input/state space. Complementarily, the concession clause C weakens the postcondition: the 
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 or, failing that, will at least achieve C. The concession is thus the minimum level of representation guaranteed by the retrenchment, in the event that simulation cannot be established. This minimum representation can be characterised as one of exception, inconsistency, or approximation by considering the previous examples once more.
Notice that every refinement is a retrenchment: setting W  InOp, C false in (7) reduces to (2), the definition of refinement. A false concession guarantees that G is established in the postcondition, i.e simulation is achieved. Thus retrenchment generalises refinement. At the other extreme, a true concession allows any concrete operation of the right signature to approximate a given abstract operation. So, methodologically speaking, (i) a strong W denotes a restricted part of the joint input/before-state domain on which a strong retrenchment or refinement statement is to be made, (ii) a weak W indicates a more widely applicable, thus weaker-concession retrenchment, (iii) a strong C indicates an approximation to, or even an exact, refinement, and (iv) a weak C indicates a weak approximation, or an exception retrenchment.

Recall that in (4) AllocC refines AllocA on the subdomain where fewer than cmax resources have been allocated; this is described in retrenchment terms as:

(W, C) (#crss < cmax, false) 
(8a)

On the non-refining subdomain, a complementary retrenchment records the abstract allocation and the corresponding skip operation:

(W, C) (#crss ≥ cmax, crss’ = crss #arss’ = #arss + 1)
(8b)

The choice of retrenchment (that is, of W and C) is in general a design choice. (8a, 8b) can be combined into one retrenchment - a concrete resource may be allocated, and an abstract resource will be allocated:

(W, C) (true, crss’  crss #arss’ = #arss + 1)
(8c)

(8c) is less incisive than (8a, 8b) in not distinguishing the refining and non-refining behaviours; this distinction can be established in a single retrenchment by the use of a more elaborate concession:
 (W, C) (true, #crss < cmax  arss’  crss’ 

                            #crss ≥ cmax crss’ = crss #arss’ = #arss + 1)
(8d)

Retrenchments (8a - 8d) represent formally documented exceptions, where implementation constraints prevent concrete modelling of idealised requirements, and forces design of implementable alternative behaviour.

The obvious criticism of retrenchment is that behavioural simulation (sec. 5.1) must break down if the abstraction relation G is not guaranteed in the postcondition in (7): the necessary condition to establish the next refinement/retrenchment step has not been reestablished. In general this is true, and is the cost of a weaker, more expressive development transformation. Even then, for “difficult” applications, retrenchment provides the advantage of describing a formal relationship (in principle verifiable by proof tools) between models in the development chain, where refinement cannot offer this. A given application might have specific properties which can be brought to bear to strengthen what the operation can achieve in the postcondition. In (8d), a rich concession structure identifies the conditions under which full simulation can be re-established.

The feature interaction example can be described in retrenchment terms, recording the inconsistency of two feature requirements in adjacent models. The concession clause describes precisely those transitions that are non-refining, i.e. interacting in the way described. Moreover, it has been shown [3] how retrenchment offers a compositional method for the layered specification of feature-oriented systems. The feature interaction example can be described as a chain of two steps: CF then ICS then the design resolution of the interaction. The last, or contractual, specification in the chain (with forwarding, screening and interaction-resolving behaviour) is related back to each of the prior models through the respective retrenchments. These retrenchments formally document the extent to which contractual model approximates the prior models and resolves the inconsistencies. 

For applications such as real-to-finite arithmetic [27] and control engineering [25], retrenchment has been shown to afford an approximate notion of refinement and simulation, with an evolving abstraction relation G(u,v,). Here, the concrete v representation of abstract u is mediated by some error bound itself a function of whatever operation is being performed.
5.4 Retrenchment for software evolution 

Theoretical work applying retrenchment to software evolution is under way. By means of an example this section speculates about the nature of its application, work required to support it, and the possible benefits that should ensue. If the evolution of a set of requirements is described as a retrenchment, then the formal apparatus of retrenchment should be deployable to support the calculation of the evolved refinement chain of those requirements, analogously to sections 3 and 4. 

Consider figure 2. Assume a legacy development, where ASpec ⊑ CSpec (is refined by) is the top of some refinement chain to code, and an evolution of requirements is described as ASpec < ASpec* (is retrenched by). Evolution can then be characterised as a “square completion” problem comprising the design of three elements: the concrete counterpart CSpec* to the evolved specification ASpec*, the evolved refinement ASpec* ⊑ CSpec*, and the concrete model retrenchment CSpec < CSpec*. The arrow annotations in figure 2 - regarding the arrows as transformations of specifications - give the parameters of these transformations. The square should commute, i.e. the CSpec* produced by ASpec  Cspec  CSpec* should be the same as, or a refinement of, the CSpec* produced by Aspec  ASpec*  CSpec*. A procedure for completing the commuting square in this way would reuse the design investment in the legacy refinement of ASpec to Cspec. Such a procedure would of course be transitive in terms of further evolutions horizontally to (say) ASpec**, etc. and transitive vertically through refinement to code. 
The square completion problem, with three unknowns, is highly unconstrained and thus demands various approaches (two have been discussed in sections 3 and 4) depending on the particular application and set of evolution constraints at hand. Some structure can be given to the problem by observing that any evolution (addition, deletion, or change of requirements) can be described in terms of frame change and weakening/strengthening of precondition/postcondition. The example demonstrates one simple application.
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Figure 2

Consider once more a variation on the operation of (3) (here called “simple” allocation) allowing the allocation of input resource rs to allocated resource set arss, regardless of whether rs has previously been allocated or not. A small evolution is designed to be more incisive in dealing with a previously allocated resource rs: such a resource is regarded as suspect, and is thus deleted from arss:
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(10) can be described as a retrenchment of (9) in a similar fashion to the retrenchments (8a-d). Abstract/concrete step pairs match for rs arss, and do not otherwise; thus one possible retrenchment design (variables in SimAlloc*A  are *-superscripted) has within clause true, the identity abstraction relation GAA* and concession

CAA* 
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 (rs arss arss’  arss*’)  (rs arss arss’ =  arss*’  {rs})

           (11)
There is no frame change in this evolution. It is described as a horizontal (w.r.t. figure 2) retrenchment relating the identical postcondition regions of ASpec and Aspec* under the precondition constraint RA 
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rs arss, and changed postcondition regions under its negation RA.
SimAllocA is refined by SimAllocC, where the concrete resource allocation is modelled by appending to a sequence. The abstraction relation G relates the two state variables through the sequence range:
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The job at hand is to complete the square of figure 2 with an evolved concrete operation SimAlloc*C, which refines SimAlloc*A and retrenches SimAllocC. A further constraint is assumed here: the evolution G* of the abstraction relation G should be either identical or stronger than G. There are of course many possible concrete operation evolutions that satisfy G*. Guidance in design of SimAlloc*C , while exploiting the design investment in the legacy refinement of Aspec to Cspec, is given by composing retrenchment (11) with evolved refinement G*. This composition (giving the upper-right square traversal) is possible by the transitivity property of retrenchment and the fact that every refinement is expressible as a retrenchment [4]. The composite retrenchment ASpec < CSpec* has parameters

GAC* 
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arss = ran crss*

WAC* 
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CAC* 
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(rs arss arss’  ran crss*’)  (rs arss ran crss*’  = arss’   {rs})
           (14)
In this simple case, the concrete precondition region where behaviour stays the same is given by:


RC 
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arss  (RA  G)  arss  (rs arss  arss = ran crss)

rs ran crss
Design freedom for SimAlloc*C is in choosing whether, for  RC  where behaviour must change, to remove just one or all instances of rs from the sequence. Composite retrenchment concession CAC* (14) shows that in this case rs cannot appear in ran crss* :
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where rmv removes all instances of rs from the sequence. 

In a simple example like this, the square completion can be designed semantically, i.e. from an understanding of the transitions entailed by the stp relation defining each operation. This approach cannot scale, so further work is required to bridge the gap between such simple intuition and the completion of the square. Rules are needed to calculate the square in practical evolution scenarios, expressed in the specification language of choice, such as Z or B. A starting point is to investigate the nature of square completions that emerge for given simple specification/evolution patterns. As indicated above, evolution of requirements is expressible in terms of change in frame, precondition and postcondition. For a given specification language it is possible to further decompose addition into some sequence of atomic additions. For example, addition of new case-split processing to a previously static subdomain could be decomposed into a sequence of additions of single cases. 
It is anticipated that patterns will emerge for square completion of such simple evolutions, and also for their composition. A link to the compositional approach of section 4 can be seen by expressing this evolution as


SimAlloc*A    if RA then S else S if RA then T    if RA then S else T
SimAllocA  implicitly does the same thing S both under constraint RA and its negation. The binary operator is “function override”: this replaces any transitions satisfying RA in the precondition in the stp relation on the left of , with transitions defined on the right of .
Current work on structuring retrenchments by decomposition [24] will be applicable to evolution. (14) can be decomposed into two retrenchments, with within clauses RA and RA respectively, each with stronger postconditions (the two disjuncts of CAC* respectively). Stronger retrenchments will give more incisive analyses and stronger guidance in harvesting legacy design. A theoretical square completion result has been proposed in recent unpublished work [18]. The result is a very general form of categorical “pushout” construction, where the procedure generates the canonical (the “best”, in a technical sense) completion of the square, in contrast with the many other possible, theoretical, square completions.
6. Conclusions
This chapter has shown how program refinement provides a design history, showing how a program satisfies its specification, and how this can be used as a basis to determine how modifications to the specification can be translated into modifications to the implementation.  An approach was described, explaining the usual way in which refinement derivations are modified, by making similar modifications to each step in the derivation, and adding, deleting and reordering steps as necessary.  An analysis of a simple example suggests that modifying programs by adding new code requires fewer revisions to existing derivation steps than equivalent modification adding less code – this is because in the latter case the existing code is doing more work, typically preserving additional properties of the data.  This approach is straightforward and effective, but tedious and error prone when applied manually.  Some possibilities for tool support were discussed to alleviate these shortcomings.

An alternative approach was then described in which a modification is described by composing the existing specification with a specification of the new/modified behaviour, using operators similar to those of the Z schema calculus.  Laws embodying properties of these operators, most notably distribution properties, are then used to merge the new/modified behaviour into the existing program to the places where changes are required.  This approach makes it easier to see what changes are required, because the composed specification, and specifications derived from it, are stated separately until such time as they are absorbed into the new program being constructed.  There is considerable flexibility in how this approach is applied, and a wide range of implementations of the modified specification can be obtained, according to the laws used.  Again, practical application of this approach would require sophisticated tool support, in particular to allow the programmer to visualise the current state of the development and explore different sequences of transformations in order to obtain an acceptable implementation.

The chapter then changed perspective to that of the requirements engineer, to provide motivation for the generalisation of the refinement approach. This perspective, and the type of generalisation suggested, were seen to be of value to the support of software evolution. The concept of retrenchment was then presented as a candidate generalisation, and discussion moved from its utility in requirements engineering to its potential support for software evolution.

Retrenchment is clearly a semantic notion, being defined and formalised in terms of a transition-system semantics of the specification models. The refinement-based approaches discussed earlier in the chapter are more syntactic in style, being concerned with formal manipulations of models to achieve the evolutionary changes desired. It is hoped that these syntactic approaches may be integrated in the retrenchment-based framework for software evolution sketched out above. 

It has been noted that the retrenchment approach of section 5 extends the refinement-based approaches of sections 3 and 4. Retrenchment extends the formally documented refinement-based design history into the requirements engineering process. Thus the scope of formal documentation that can be edited to develop evolutionary changes as per section 3 is considerably expanded. Section 4 proposed compositional mechanisms to describe specification change, and to proliferate such change through the existing refinement chain. In principle retrenchment does the same, from a different perspective. It is therefore anticipated that refinement- and retrenchment-based approaches to software evolution will develop in a complementary, even symbiotic fashion.
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� To simplify the presentation, this chapter uses more familiar constructs like those in Modula-2 and Ada, rather than Dijkstra’s non-deterministic if and do commands.


� The notation for sets is similar to Z: ∅ is the empty set, (s is the cardinality of set s,  is set subtraction, and 1 .. MAX is the set of integers from 1 to MAX, inclusive.


� true ( b[m .. n] is shorthand for ((i: m .. n ( b[i] = true), and  b0 [r := false] is the array value obtained from b0 by replacing element r by false. 


� Introduced specification statements are labelled, P, Q, … for readability.  Rule names Sequence, Assignment, etc. are explained in section 3.


� In the Sequence law it is not necessary to check that the intermediate assertion can be established.  If mid is false, w:[pre , mid] ; w:[mid , post], is miraculous for initial states satisfying pre, and thus refines w:[pre , post], since all programs are refined by magic, but cannot be refined to code.


� I.e. no miraculous statement will ever be executed in a context where its precondition holds.


� P; Q is a pattern which is matched with the result of the transformation, in order to provide names for components that need to be transformed in later steps.  For readability, the pattern variables used (P, Q, …) correspond to the labels given in the above derivation.


� Invariants will not be discussed further in this chapter.


� Thus stpAllocA (arss,rs,arss’) rs  RSS  {arss}  arss’ = arss  {rs}. “” is read “is defined to be”.


� Also called a “multiset”, a variant of a set where each element may have multiple occurrences. In Z, a bag of elements of type X is a partial function of type � EMBED Equation.3  ���. 


� For reasons of space the technical details are omitted.
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