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Abstract. Program certification techniques formally show that pro-
grams satisfy certain safety policies. They rely on the correctness of the
safety policy which has to be established externally. In this paper we
investigate an approach to show the correctness of safety policies which
are formulated as a set of Hoare-style inference rules on the source code
level. We develop a framework which is generic with respect to safety
policies and which allows us to establish that proving the safety of a pro-
gram statically guarantees dynamic safety, i.e., that the program never
violates the safety property during its execution. We demonstrate our
framework by proving safety policies for memory access safety and mem-
ory read/write limitations to be sound and complete. Finally, we formu-
late a set of generic safety inference rules which serve as the blueprint
for the implementation of a verification condition generator which can
be parameterized with different safety policies, and identify conditions
on appropriate safety policies.
Keywords. Program verification, Hoare logic, program safety, code cer-
tification, proof-carrying code

1 Introduction

Program certification techniques like proof-carrying code (PCC) [12] use formal
reasoning techniques to show that programs satisfy certain safety policies as for
example memory safety (i.e., that they do not access out-of-bounds memory),
rather than full functional correctness.

In effect, these techniques shift the trust burden from the original program
to the certification system: instead of having to trust an arbitrary program to
be safe, users have to trust the certifier to be correct. However, this still requires
a lot of trust since a certifier is itself a complex system involving many differ-
ent components and steps. In the original PCC approach [12], a compiler first
translates an untrusted source program into an annotated machine program, to
which a verification condition generator (VCG) then applies a safety policy, for-
mulated as a set of Hoare rules. This produces a set of proof obligations, which
are processed by a theorem prover; the resulting proofs are finally scrutinized by
a proof checker (cf. Figure 1). Fortunately, not all of these components have to
be trusted—here, trust is required only in the safety policy, the VCG, and the
proof checker but not in the much larger prover or the compiler itself.
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Fig. 1. System architecture for source-level certification and object-level certification;
trusted components are shaded.

However, the fact that the safety policy still has to be trusted turns out to
be the Achilles heel of the approach, both for theoretical and practical reasons.
On the theoretical side, if the rules are unsound or do not exactly formalize the
intuitive notion of safety, “all bets are off” [10], i.e., even a safety proof does not
guarantee that the program is actually safe. On the practical side, since a safety
policy can consist of a collection of fairly complex Hoare rules, it is as liable
to error as any other component of the certifier. Moreover, the VCG and the
proof checker can be reused essentially unchanged for different safety policies
and can thus be hardened over time, but the Hoare rules change with each
new safety policy. Recent work has thus concentrated on ways to guarantee the
correctness of safety policies, using approaches like type-preserving compilation
[10], foundational PCC [2, 6], and reduction to core safety policies [13].

However, all these approaches work on the object code level, and cannot di-
rectly be extended to safety policies which are formulated on the source code
level. Here, we investigate an approach to showing the correctness of source-level
safety policies. Our goal is to develop a generic framework (cf. Figure 2) which
lets us establish that proving the safety of a source program using a safety policy
formulated as a set of Hoare rules guarantees safe execution, i.e., the program
never violates the safety property.1 In other words, we want to establish that
the static and dynamic notions of safety coincide. We thus explicitly distinguish
between the static safety policies (which are logical characterizations) and the
dynamic safety properties (which are operational characterizations). We also ex-
plicitly separate the formalization of the safety properties from the operational
semantics: a program can be unsafe even if its execution does not raise an ex-
ception. We restrict ourselves to the analysis of individual programs only, and
do not consider system-level safety aspects. However, our techniques could be
used with system-level analysis techniques, e.g., to decide whether a system is
still safe even if an exception can occur in one of the system components.

Our interest in source-level policies has a number of reasons. (i) Program-
mers make errors on the source code level, so showing safety on the source code
level seems not only to be more natural, it also makes it easier to pinpoint

1 Provided that the compiler preserves the property, of course. See below for a more
detailed discussion of this.
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Fig. 2. Establishing correctness of source-level certification—general framework.

the errors. (ii) Some safety policies can be formulated more naturally (e.g.,
initialization-before-use) or only (e.g., loop variable restrictions) on the source
code level.2 In particular, high-level domain-specific policies such as frame safety
[9] are inherently source level. (iii) Source-level certification is complementary
to object-level approaches like PCC. In fact, to ensure that compilation does not
compromise the demonstrated safety policy, source-level certification should be
followed by object-level certification. However, explicit source-level certification
provides a separation of concerns as different safety policies can be applied at
different levels of abstraction. (iv) Formal software certification processes (e.g.,
DO-178B) usually also cover source code level, so certification support has to
work on that level. (v) Finally, we are interested in the combination of certi-
fication and program synthesis [19], using certification (in a roundabout way)
to increase confidence in our synthesis system, which generates source code and
not object code.

The main contributions of this paper are as follows. First, we develop a gen-
eral notion of safety property: we distinguish stateless properties, where safe
execution can be defined in terms of the original operational semantics (i.e., exe-
cution traces), and stateful properties, where for book-keeping purposes the op-
erational semantics must be augmented with a separate safety semantics. Second,
we develop a semantic definition of safety, which lets us reason about the sound-
ness and completeness of our safety policies. Third, we give a generic method of
extending Hoare rules to incorporate an arbitrary safety property. In particular,
our framework can serve as the basis for the implementation of a generic VCG.

In Section 2, we develop the basic theory of stateless safety properties, and
then extend this in Section 3 to some examples of stateful safety. In Section 4
we present a general account of safety. Finally, Sections 5 and 6 discuss related
work and draw some conclusions. Throughout this paper we assume a working
familiarity with Hoare-style program correctness proofs (see [11], for example).

2 This is related to the use of certification to enforce syntactic restrictions and coding
standards.



2 Stateless Safety Properties

We introduce our framework using the deliberately simplistic language L0 of
while-programs as shown in Figure 3; it uses the unspecified sets Var and Const
of variables and literal constants.

Cmd ::= skip Expr ::= Const

| Var := Expr | Var

| if Expr then Cmd | Expr * Expr

| while Expr do Cmd | Expr / Expr

| Cmd ; Cmd | Expr + Expr

| Expr - Expr

| Expr = Expr

Fig. 3. Syntax of while-language L0

Our initial safety property is operator safety, i.e., expression operators such as
division are only applied to arguments within their respective domains. For L0,
this boils down to the question of whether divisors are non-zero. However, even
for this simple case we cannot naively define the safety of commands in terms of
the safety of their subexpressions. Consider, for example, the commands

if false then x:=x+1/0 while true do skip; x:=x+1/0

which contain unsafe subexpressions but which we would nevertheless want to
regard as safe (w.r.t. operator safety) because the division-by-zero exception
will never be raised. Consider also the sequence x:=y; w:=1/x where safety of
the subexpressions is not sufficient either because this does not incorporate the
information that the division 1/x is performed when x is bound to the value of y.
Hence, we need an analysis of safety which takes into account the (operational)
semantics of the programs.

2.1 Formulation of Safety Properties

A safety property is an operational characterization of the fact that “a program
does not go wrong.” We formalize safety properties as judgements of the form
η � c safe, i.e., the command c ∈ Cmd is safe under the environment η ∈ Env .
As usual, we use environments η : Var ⇀ Val⊥ to record value bindings for
the variables. Note that we use the bottom element ⊥ only as an operational
concept to denote and propagate the result of an undefined computation, but
not to denote (un-) safety. In particular, a command can still be safe under an
environment which contains a binding x 7→ ⊥; for example, y:=x+1 is obviously
still safe w.r.t. operator safety (i.e., division-by-zero free) simply because it does
not contain any occurrence of the division operator. Conversely, unsafety does
not necessarily manifest itself in a binding x 7→ ⊥.



η � c safeop

η � x safeop

η � e1 op e2 safeop iff η � e1 safeop and η � e2 safeop and op ∈ {*, +, -, =}
η � e1 / e2 safeop iff η � e1 safeop and η � e2 safeop and Je2Kη 6= 0

Fig. 4. Operator safety for L0-expressions

We can then define the judgement safeop which formalizes operator safety for
L0-expressions in the expected way, as shown in Figure 4. We use the notation
JeKη to denote evaluation of an expression e ∈ Expr in an environment η.

Extending operator safety to commands requires an operational semantics
for the commands; here, we assume the standard single-step operational se-
mantics 〈c, η〉 ⇒ 〈c′, η′〉 for while-programs.34 However, there are two different
approaches to an extension. The first approach factors safety into two different
judgements, safestateop and safeop (cf. Figure 5), where η � c safestateop formal-
izes the intuition that the immediately next command is safe to execute (i.e., all
of the expressions which it would evaluate immediately are safe) and the reduc-
tion relation restricts the application of safestateop to reachable commands and
environments only. Hence, we have η � while true do skip; x:=1/0 safeop, as
expected. This approach essentially mirrors the definition of what is called the
safety policy in the syntactic FPCC-approach of Hamid et al. [6].

η � skip safestateop

η � x := e safestateop iff η � e safeop

η � if b then c safestateop iff η � b safeop

η � while b do c safestateop iff η � b safeop

η � c1;c2 safestateop iff η � c1 safestateop

η � c safeop iff ∀〈c, η〉 ⇒∗ 〈c′, η′〉 · η′
� c′ safestateop

Fig. 5. Operator safety for L0-commands

The second approach directly integrates the formulation of the safestateop-
judgement into the operational semantics and has thus more of an abstract
interpretation flavor (cf. Figure 6).

For this alternative definition ŝafeop we first show by straightforward induc-
tion over commands that safety is preserved by reduction; in analogy to subject

3 〈x := e, η〉 ⇒ 〈skip, η ⊕ {x 7→ JeKη}〉,
〈skip ; c2, η〉 ⇒ 〈c2, η〉,
〈c1 ; c2, η〉 ⇒ 〈c′1 ; c2, η

′〉 if 〈c1, η〉 ⇒ 〈c′1, η
′〉,

〈if b then c, η〉 ⇒ 〈c, η〉 if JbKη = true,
〈if b then c, η〉 ⇒ 〈skip, η〉 if JbKη = false,
〈while b do c, η〉 ⇒ 〈if b then (c; while b do c), η〉

4 We also use 〈c, η〉 ⇓ η′ to denote the result of a terminating evaluation of c, i.e.,
〈c, η〉 ⇓ η′ iff 〈c, η〉 ⇒∗ 〈skip, η′〉.



η � skip ŝafeop

η � x := e ŝafeop iff η � e safeop

η � if b then c ŝafeop iff η � b safeop and JbKη = true implies

η � c ŝafeop

η � while b do c ŝafeop iff η � b safeop and JbKη = true implies (η � c ŝafeop and

〈c, η〉 ⇓ η′ implies η′
� while b do c ŝafeop)

η � c1;c2 ŝafeop iff η � c1 ŝafeop and 〈c1, η〉 ⇓ η′ implies η′
� c2 ŝafeop.

Fig. 6. Operator safety for L0-commands (structural definition)

reduction5 we call this property safety reduction. Note that safety reduction
holds trivially for safeop as defined in Figure 5.

Lemma 1. (Safety Reduction) η � c ŝafeop and 〈c, η〉 ⇒ 〈c′, η′〉 implies η′
�

c′ ŝafeop.

We can then show that both definitions are in fact equivalent. This is quite

useful because the operational definition (ŝafe) is what we intuitively want but
most proofs use the inductive definition (safestate).

Lemma 2. For all η, c: η � c ŝafeop iff η � c safeop.

Proof: Use Lemma 1, and the fact that η � c ŝafeop implies η � c safestateop.

Both Lemma 1 and Lemma 2 are independent of the particular safety judge-
ment and hold as long as command safety is derived from expression safety in
the way described in Figure 6.

In the following we discuss arbitrary safety properties, which can be any
mathematical relation between environments and expressions. We reserve the
use of safety judgement for the semantic clauses defining the property. For com-
mands, we define a safety property to be any relation, � safe ⊆ Env×Cmd ,
which is defined from expression safety, according to Figure 6 (cf. Definition 5
for the stateful case).

2.2 Formulation of Safety Policies

A safety policy is a set of proof rules and auxiliary definitions which are designed
to show that safe programs satisfy the safety property of interest. The intention
is that a safety policy enforces a particular safety property (see Section 2.1). For
source-level safety properties, the proof rules can be formalized concisely using
the usual Hoare triples P {c} Q. We also use the notation `safe P {c} Q to

5 A system is said to satisfy subject reduction [11] if types are preserved by term
reduction, i.e., if M : τ and M ⇒ M ′ implies M ′ : τ .



denote derivability of Hoare triples, given a set of Hoare rules. Figure 7 shows the
Hoare rules for operator safety. The rules are a slight modification of the standard
ones; the (assign) axiom requires safety of the right-hand side expression, and
the (if ) and (while) rules require the additional hypothesis that the guard is safe
under the precondition P. Figure 8 shows the definition of the auxiliary predicate
safe

op
used in the rules; note that safe

op
is not a judgement but a function which

maps expressions into formulae.

(skip)
Q {skip} Q

(assign)
Q[e/x] ∧ safe

op
(e) {x := e} Q

(if )
P ⇒ safe

op
(b) b ∧ P {c} Q ¬b ∧ P ⇒ Q

P {if b then c} Q

(while)
P ⇒ safe

op
(b) b ∧ P {c} P

P {while b do c} ¬b ∧ P

(comp)
P {c1} R R {c2} Q

P {c1 ; c2} Q

(cons)
P ⇒ P ′ P ′ {c} Q′ Q′ ⇒ Q

P {c} Q

Fig. 7. Hoare rules for L0 operator safety

safe
op

(e) =





true if e ∈ Var or e ∈ Const

safe
op

(e1) ∧ safe
op

(e2) if e ≡ e1 op e2, op ∈ {*, +, -, =}
safe

op
(e1) ∧ safe

op
(e2) ∧ e2 6= 0 if e ≡ e1/e2

Fig. 8. Safety formula for L0 operator safety

The standard Hoare rules are well-understood, unlike extensions to deal with
safety. Our aim is to show how such extensions can be made automatically, while
ensuring soundness and completeness. We first need to modify the standard
interpretation of Hoare triples (i.e., η � P {c} Q iff η � P and 〈c, η〉 ⇓ η′

together imply η′
� Q) to take a safety judgement into account.

Definition 1. �
safe P {c} Q holds iff for all η ∈ Env, if η � P , then η � c safe,

and if 〈c, η〉 ⇓ η′, then η′
� Q.

Note that the proof rules inherit an underlying logic from a system given
separately; in particular, they do not say anything about the definedness of the
formulae P and Q used in the Hoare triples (e.g., �

safe true {x := 0} 1/x 6= 100
holds). Hence, logical definedness is unconnected to the safety policy.



2.3 Soundness and Completeness of Safety Policies

The crucial task is now to show that the proof rules of the safety policy are
sound and complete w.r.t. the safety property of interest. Since we have defined
semantic safety of a command with respect to an environment we need to show
a theorem of the form η � c safe iff `safe P {c} true, for some P such that
η � P . The role of the proof obligation P is to collect all the safety information
for c in η.

For the only if direction of the proof (i.e., completeness), we need the notion
of expressivity [11] which postulates the existence of formulae which characterise
particular sets of environments. More precisely, we assume the existence of weak-
est preconditions wpc for all statements. Formally, a (first-order) language L is
called expressive if, for all commands c ∈ Cmd and postconditions Q, there exists
a formula wpc(c,Q) such that η � wpc(c,Q) iff 〈c, η〉 ⇓ η′ implies η′

� Q. This is
a nontrivial assumption as there is no reason why an arbitrary semantic condi-
tion should be expressible by a (first-order) formula. However, the assumption
is required for proof purposes only and in practice wpcs can often be computed
automatically. As usual, while-loops pose the real problem, and here loop in-
variants have to be given explicitly.

Unfortunately, this standard definition of expressivity is not strong enough
to show safety in all cases. Consider the example

i:=0;

while true do

x:=1/(a-i); i:=i+1

which is safe in environments where a is negative but where the weakest precon-
dition of the non-terminating loop is true, telling us nothing about its safety.
Indeed, examples can be given which have no first-order wspc. We thus in-
troduce the notion of weakest safety precondition (wspc) to characterize safe
environments.

Definition 2. (Expressivity for commands) A command c ∈ Cmd is called ex-
pressible w.r.t. a safety judgement safe if, for all postconditions Q, there exists
a formula wspc(c,Q) such that

η � wspc(c,Q) iff (η � c safe and 〈c, η〉 ⇓ η′ implies η′
� Q).

A language L is called expressive for commands w.r.t. a safety judgement safe if
all commands are expressible.

Now a consequence of the definition of wspc is that all intermediate com-
mands are safe, by safety reduction. However, since there is no useful notion
of safe environment, it is not sufficient to simply consider the environments in
which c reduces to a safe environment, or for which all intermediate environ-
ments are safe. We also need to extend expressivity to the expression level; here
it assumes the existence of safety formulae, safe (e), compatible with the safety
judgement safe.



Definition 3. (Expressivity for expressions) An expression e ∈ Expr is called
expressible w.r.t. a safety judgement safe if there exists a formula safe (e) such
that η � e safe iff η � safe (e).

By abuse of notation we will also call a given safety predicate safe ( ) expres-
sive for a safety judgement safe if it satisfies the condition of Definition 3. It is
then easy to show by straightforward induction over expressions that safe

op
is

expressive for safeop.

Lemma 3. For all e ∈ Expr, η � e safeop iff η � safe
op
(e).

We can now characterize the weakest safety preconditions wspc (w.r.t. oper-
ator safety) for each command of L0. Lemma 4 thus gives a recursive (but due
to the while-case unfortunately not well-founded) definition of wspc.

Lemma 4. Assuming all formulae exist, the following equivalences are sound:

1. wspc(skip, Q) ⇐⇒ wpc(skip, Q)
2. wspc(x:= e,Q) ⇐⇒ safe

op
(e) ∧ wpc(x:= e,Q)

3. wspc(if b then c,Q) ⇐⇒ safe
op
(b) ∧ (b ⇒ wspc(c,Q)) ∧ (¬b ⇒ Q)

4. wspc(while b do c,Q) ⇐⇒ safe
op
(b)∧ (b ⇒ wspc(c,wspc(while b do c,Q)))∧

(¬b ⇒ Q)
5. wspc(c1;c2, Q) ⇐⇒ wspc(c1,wspc(c2, Q)))

The preceding lemma does not give a constructive definition of wspc, because
of the recursion in the while-case.

Lemma 5. (wspc properties) For all formulas P and Q, and commands, c:

1. �
safe wspc(c,Q) {c} Q.

2. �
safe P {c} Q implies P ⇒ wspc(c,Q).

Proof: 1. By definition of wspc. 2. The implication is clearly true in the model.
Provability follows from completeness of the underlying logic.

We can now extend the definition of safety formulae to commands via a
reduction to wspc. We define safe

op
(c) = wspc(c, true), which also yields �

safe

safe
op

(c) {c} true, for all c ∈ Cmd , as a special case of Lemma 5. Moreover, we
clearly have η � c safeop iff η � safe

op
(c), so can factor wspc into a functional

component expressed in terms of the standard precondition wpc and a safety
component safe

op
(c).

Proposition 1. wspc(c,Q) ⇐⇒ wpc(c,Q) ∧ safe
op
(c).

Note that we choose not to define wspc this way i.e., by giving a direct defi-
nition of safe

op
(c). The reason is that checking safety requires a similar recursive

descent over the structure of a command, similar to computing the wpc, so it is
more natural to combine them into a single definition. Similarly, it is not possi-
ble to give a neat definition of wspc from wpc and safety of expressions, for the
reasons given in Section 2.



Theorem 1. Suppose c is expressible. Then, �
safe P {c} Q iff `safe P {c} Q.

Proof: Soundness is by induction over the derivation. For completeness, the proof
structure follows that of the standard (relative) completeness proof for Hoare
logic, using expressivity to get, in our case, the weakest safety preconditions
which are needed to make the proof go through. The most interesting cases are
for conditionals and while-loops.
(if) Let R denote wspc(if b then c,Q). Then:

R ⇒ safe (b)
(1)

b ∧ R ⇒ wspc(c, Q)
(2)

wspc(c, Q) {c} Q
(3)

b ∧ R {c} Q ¬b ∧ R ⇒ Q
(4)

R {if b then c} Q P ⇒ R
(5)

P {if b then c} Q

The first, second, and fourth hypotheses follow from Lemma 4, the third and
fifth follow from Lemma 5 (parts 1 and 2, respectively).
(while) Suppose �

safe P {while b do c} Q. Let R denote wspc(while b do c,Q).
Then:

R ⇒ safe
op

(b)
(1)

b ∧ R ⇒ wspc(c, R)
(2)

wspc(c, R) {c} R
(3)

b ∧ R {c} R

R {while b do c} ¬b ∧ R ¬b ∧ R ⇒ Q
(4)

R {while b do c} Q P ⇒ R
(5)

P {while b do c} Q

The first, second and fourth hypothesis follow from Lemma 4, the third follows
from the inductive hypothesis on c and Lemma 5(1); and the fifth follows from
Lemma 5(2).

Theorem 2. Assume expressivity. Then, η � c safeop iff `safe φ {c} true for
some φ such that η � φ.

Proof: We show the left-to-right implication. We know that �
safe safe

op
(c) {c} true

by Lemma 5. Hence, by Theorem 1, we have that `safe safe
op

(c) {c} true, and
since η � c safeop by assumption, expressivity gives us η � safe

op
(c).

At this point it might look like we have built a formidable machinery to prove
some less than formidable properties. However, subtle variations of the Hoare
rules are possible, and finding the “right” rules (much less proving that they are
right) is difficult without a formal framework like the one we have developed
here. Consider, for example, the following variant of the if -rule

(if ′)
safe

op
(b) ∧ b ∧ P {c} Q safe

op
(b) ∧ ¬b ∧ P ⇒ Q

P {if b then c} Q

in which the safety formula is “inlined” into the two hypotheses and not sep-
arated into a third hypothesis (cf. Figure 7). However, this rule variant allows



safety information to be used to determine the control flow, which makes it
potentially unsound. It allows us to derive the triple

true {if 1/x 6= 1 then if x 6= 0 then y:= 3} x = 1 ∨ y = 3

which on the surface seems reasonable: either x is one and nothing can be con-
cluded about y, or x is non-zero and y is assigned, or x is zero, the outer guard is
undefined, and hence, the statement causes an exception and does not terminate
properly. However, it is exactly this third alternative which causes the trouble:
if division by zero does not cause an exception but returns a defined value (e.g.,
NaN, “not a number”), we can no longer conclude at the inner guard that the
safety formula on the outer guard holds.

We note in passing that the rules in this paper are different from those in
[19]. However, we believe that the rules shown here are easier to implement and
apply in practice.

3 Stateful Safety Properties

For operator safety, the property itself was defined in terms of the original envi-
ronments only. Most safety properties, however, are not that simple and require
additional information: memory safety requires information about the size of
arrays or the number of variable accesses, domain-specific policies such as frame
safety require additional typing information which is not part of the operational
semantics of the language, and so on. We now extend our framework to deal
with such safety properties.

Our basic idea is to introduce a distinct auxiliary (or shadow) variable x ∈
Var for each variable x ∈ Var , which records the necessary safety information
associated with x. We also introduce shadow environments η : Var ⇀ Val , where
the shadow domain Val depends on the safety property of interest, and extend
the operational semantics to include the effects the different commands have on
the values of the shadow variables. We then modify the Hoare rules to ensure
that x actually “shadows” x, i.e., that the information recorded in x is always
current.

We already adopted part of this methodology in [19]; one motivation for the
present work is to formally justify it. The methodology itself is quite flexible and
allows us to encode different safety properties, using different shadow domains.
We illustrate our approach first for memory safety (more precisely, array bounds
checks), and then show how two other, less typical safety policies can be encoded.

3.1 Memory Safety

For memory safety, we need to extend our language L0 by simple arrays; here,
we restrict ourselves to one-dimensional arrays with a fixed lower bound of zero
to simplify the presentation. Figure 9 shows the syntax of the extended language
L1. As usual, we add array updates to the commands and array selects to the



expressions. However, we also require explicit array declarations of the form
var x[n], which declares an n-element array x.6

Cmd ::= . . . Expr ::= . . .
| Var[Expr] := Expr | Var[Expr]

| Decl

Decl ::= varVar

| varVar[Const]

Fig. 9. Syntax of extended while-language L1

For memory safety, the shadow environment needs to record the size of each
array; we thus have η : Var ⇀ IN . Eventually, the shadow variables get their
values from the declarations. This differs from the usual approach where the
array bounds are represented by an extra function high(x) on the logical level.

Since we now have two environments, we have to slightly extend some parts
of our machinery. This includes interpretations, the operational semantics, and
the safety judgements. For interpretations, the only difference is in the case of
variables, which need to be taken from the correct environment:

JxKη,η = η(x)
JxhiKη,η = η(xhi)

In the operational semantics, the only case interesting for memory safety is
the array declaration; all other constructs leave the shadow environment un-
changed.7

〈var x, η, η〉 ⇒ 〈skip, η, η〉
〈var x[n], η, η〉 ⇒ 〈skip, η, η ⊕ {xhi 7→ JnKη,η〉
〈x[e1] := e2, η, η〉 ⇒ 〈skip, η ⊕ {x 7→ (x ⊕ {Je1Kη,η 7→ Je2Kη,η})}, η〉
〈c, η, η〉 ⇒ 〈c′, η′, η〉, if 〈c, η〉 ⇒ 〈c′, η′〉

As in the stateless case, we can then define the safety judgement for memory
safety. Figure 10 shows both judgements for expressions and commands.

Again following the schema developed for the stateless case, we then formu-
late the Hoare rules of the safety policy, as shown in Figure 11; we have omitted
the rules (skip), (comp), and (cons) which remain unchanged. In the rules (as-
sign), (if ), and (while), the safety predicate is changed. The (update)-rule is an
appropriately modified version of McCarthy’s original rule.

The lemmas and theorems of the previous section hold in a suitably modified
form. The main change is to modify the expansions of wspc. The key cases are

6 For consistency, we also add scalar declarations var x.
7 We also need to specify how array selection and updates are modeled; however, this

is a consequence of extending the language and is independent of any certification
issues. Here, we model arrays as maps from naturals to values; hence: Jx[e]Kη,η =
(η(x))(JeKη,η)



η, η � c safemem

η, η � x safemem

η, η � x[e] safemem iff 0 ≤ JeKη,η < η(xhi) and η, η � e safemem

η, η � e1 op e2 safemem iff η, η � e1 safemem and η, η � e2 safemem

η, η � var x safestatemem

η, η � varx[n] safestatemem

η, η � skip safestatemem

η, η � e1 := e2 safestatemem iff η, η � e1 safemem and η, η � e2 safemem

η, η � if b then c safestatemem iff η, η � b safemem

η, η � while b do c safestatemem iff η, η � b safemem

η, η � c1;c2 safestatemem iff η, η � c1 safestatemem

η, η � c safemem iff ∀〈c, η, η〉 ⇒∗ 〈c′, η′, η; 〉 · η′, η; � c′ safestatemem

Fig. 10. L1 memory safety

(decl)
Q {var x} Q

(adecl)
Q[n/xhi] {var x[n]} Q

(assign)
Q[e/x] ∧ safe

mem
(e) {x := e} Q

(update)
Q[update(x, e1, e2)/x] ∧ safe

mem
(x[e1]) ∧ safe

mem
(e2) {x[e1] := e2} Q

(if )
P ⇒ safe

mem
(b) b ∧ P {c} Q ¬b ∧ P ⇒ Q

P {if b then c} Q

(while)
P ⇒ safe

mem
(b) b ∧ P {c} P

P {while b do c} ¬b ∧ P

Fig. 11. Hoare rules for L1 memory safety

wspc(var x[n], Q) ⇐⇒ Q[0/xhi]
wspc(x[e1] := e2, Q) ⇐⇒ Q[update(x, e1, e2)/x] ∧ safe

mem
(x[e1]) ∧ safe

mem
(e2)

3.2 Memory Write Limits

Next, we consider a safety policy which limits the number of times values can
be written into each memory location. Obviously, this is undecidable in general,
but with appropriate annotations (i.e., loop invariants) it can still be very help-
ful. Such a policy can then be used to ensure that the physical limitations of
non-volatile memory, as for example used in spacecraft, are not exceeded. For
example, locations in flash memory can only be written to a finite number of
times before wearing out.



safe
mem

(e) =





true if e ∈ Var or e ∈ Const

safe
mem

(e1) ∧ 0 ≤ e1 < xhi if e ≡ x[e1]

safe
mem

(e1) ∧ safe
mem

(e2) if e ≡ e1 mem e2, op ∈ {*, /, +, -, =}

Fig. 12. Safety formula for L1 memory safety

We formalize this using shadow variables xwl which are initialized with zero
when x is declared and incremented each time it is assigned to. As in the case
of memory safety, the abstract environments map the variables to naturals, η :
Var ⇀ IN . However, unlike in the case of memory safety, we now need (i) shadow
variables for scalars as well, and (ii) a separate shadow variable for each element
of an array. While the first point is straightforward to deal with, the second
seems at first more complicated. However, by introducing a complete shadow
array, we get around all these problems. In the operational semantics we then
see a nice symmetry between the operations on the original value environment
and on the shadow environment:

〈var x, η, η〉 ⇒ 〈skip, η, η ⊕ {xwl 7→ 0}〉
〈varx[n], η, η〉 ⇒ 〈skip, η, η ⊕ {xwl 7→ λi · 0}〉
〈x := e, η, η〉 ⇒ 〈skip, η ⊕ {x 7→ JeKη}, η ⊕ {xwl 7→ η(xwl) + 1}〉
〈x[e1] := e2, η, η〉 ⇒ 〈skip,

η ⊕ {x 7→ (x ⊕ {Je1Kη,η 7→ Je2Kη,η})},
η ⊕ {xwl 7→ (xwl ⊕ {Je1Kη,η 7→ xwl(Je1Kη,η) + 1})}
〉

〈c, η, η〉 ⇒ 〈c′, η′, η〉, if 〈c, η〉 ⇒ 〈c′, η′〉

The safety judgement safewl obviously only needs to look at assignments; it
just checks that the assignment counts are still below a fixed upper limit Maxwr.
Since safety reduction holds trivially, we formulate safewl directly and not via
safestate.

η, η � x := e safewl iff η(xwl) < Maxwr

η, η � x[e1] := e2 safewl iff (η(xwl))(Je1Kη,η) < Maxwr

Finally, we formulate the Hoare rules (cf. Figure 13); again, the only interest-
ing cases are declarations and assignments. We thus omit an explicit definition of
the safety formula and inline it instead. Note that we extend the logic for arrays
by the construct init(x, n, k) which denotes the array x of size n where every
element is set to k. For this, we need the axiom i < n ⇒ (init(x, n, k))(i) = k
in the domain theory of the underlying logic (not shown here).

Again, we can show that the system is sound and complete with respect to
the corresponding semantics. The proofs follow the outline in Section 2.



(decl)
Q[0/xwl] {var x} Q

(adecl)
Q[init(xwl, n, 0)/xwl] {varx[n]} Q

(assign)
Q[e/x, (xwl + 1)/xwl] ∧ xwl < Maxwr {x := e} Q

(update)
Q

[
update(x, e1, e2)/x,
update(xwl, e1, xwl[e1]+1)/xwl

]
∧ xwl[e1] < Maxwr {x[e1] := e2} Q

Fig. 13. Hoare rules for L1 write limits

3.3 Memory Read Limits

The final safety policy we consider in this paper limits the number of times
memory locations can be read. Intuitively, this is the dual of the write limit
policy considered above; formally, however, it is quite different. The reason for
the difference (and the source of additional complexity) is that the updates of
the shadow environment are now much less localized: the evaluation of each
expression can potentially change the shadow environment. This problem is not
restricted to read limits but occurs whenever expression evaluation can have
side effects, either in the original environment, or in the shadow environment.
We thus extend the evaluation notation for expressions to take the environments
into account, i.e., 〈e, η, η〉 ⇓ 〈v, η′, η′〉.

To simplify our notation we define a shadow environment update function
upd : Env × Env × Expr → Env which examines the expression and adds the
correct number of occurrences to the shadow environment; the notation y ∈n e
denotes that there are n occurrences of the variable y in e:

upd(η, η, e) = η ⊕ {xrl 7→ η(xrl) + n | x ∈n e}

⊕ {xrl 7→ xrl ⊕ {Je′Kη,η 7→ xrl(Je
′Kη,η) + n} | x[e′] ∈n e}

We can then formulate the operational semantics concisely; the omitted cases
follow easily.

〈var x, η, η〉 ⇒ 〈skip, η, η ⊕ {xrl 7→ 0}〉
〈varx[n], η, η〉 ⇒ 〈skip, η, η ⊕ {xrl 7→ λi · 0}〉
〈x := e, η, η〉 ⇒ 〈skip, η ⊕ {x 7→ JeKη,η}, upd(η, η, e)〉
〈x[e1] := e2, η, η〉 ⇒ 〈skip,

η ⊕ {x 7→ (x ⊕ {Je1Kη,η 7→ Je2Kη,η})},
upd(η, upd(η, η, e1), e2)
〉

〈if b then c, η, η〉 ⇒ 〈c, η, upd(η, η, b)〉 if JbKη,η = true

〈if b then c, η, η〉 ⇒ 〈skip, η, upd(η, η, b)〉 if JbKη,η = false

In effect, we can give the semantics in terms of the basic underlying semantics
and the update function on the shadow environments: if 〈c, η〉 ⇒ 〈c′, η′〉, then



〈c, η, η〉 ⇒ 〈c′, η′, upd(η, η′, e1, . . . , en)〉 for immediate subexpressions e1, . . . , en

of c (extending upd to lists of expressions in the obvious way). We can also
apply the same idea to the Hoare rules. Instead of an update function which
is applied to the shadow environment we need an update substitution Sub(e)
which is applied to the precondition; it is defined in the same way as the update
function:

Sub(e) = [xrl + n/xrl | x ∈n e] ∪ [update(xrl, e
′, xrl[e

′
] + n)/xrl | x[e′] ∈n e]

We then define the safety formula safe
rl
(e) in the same way: it checks that the

occurrences in e do not exceed the limit Maxrl:

safe
rl
(e) =

∧

x∈ne

xrl + n ≤ Maxrl ∧
∧

x[e′]∈e

(foldx[e′]∈ne(upd(n), xrl))[e
′] ≤ Maxrl

where the folded update of xrl by all literal occurrences x[e′] in e is defined using:

upd(n)(x[e′], xrl) = update(xrl, e
′, xrl[e

′] + n).

The safety judgements are similar to those for write limits. The only change
is that since expression evaluation can affect the shadow environment, we need
to add the the safety condition outside the substitution. With this, we have all
the pieces in place to formulate the Hoare rules. We only give a single rule for
the if-statement; the other rules follow the same schema.

(if )
b ∧ P {c} Q ¬b ∧ P ⇒ Q

Sub
b(P ) ∧ safe

rl
(b) {if b then c} Q

4 Automatic Derivation of Safety Policies

We now generalize the idea from Section 3.3 and derive a general way of formu-
lating safety extensions to an operational semantics and Hoare logic, respectively,
such that the results of the previous sections are preserved. The main idea is
to develop a notion of compositional safety property, which then allows us to
augment the Hoare rules in a similarly compositional manner.

We have seen that abstract environments describe how programs compute the
abstract properties we are interested in for a given safety property. In order to
reason about such properties in a safety policy, we need a notion of expressivity
to relate environments to the logic.

Definition 4. We say that a command c ∈ Cmd is operationally expressive,
if whenever 〈c, η, η̄〉 ⇒ 〈c′, η′, η̄′〉, then for all x ∈ (η′ ∪ η̄′), there exists an
expression e, such that JeKη,η̄ = JxKη′,η̄′ .



This formalizes the idea that whatever change a command makes to the
environments can be expressed in terms of substitutions. Clearly, the expression
can only contain variables from the original environments.

We use the notation Sub
e1,...,en

θ (P ) to denote the substitution, applied to P ,
which expresses the change in environments effected by command type θ with
immediate subexpressions e1, . . . , en. We are implicitly assuming particularly
simple changes to the environment which can always be expressed this way, but
this accounts for all our examples. For example, Sub

x,e
assign(P ) is simply P [e/x]

for the assignment x := e.
In general, each command has its own notion of safety. However, we want to

exclude pathological examples of safety properties, so we consider, now, what
sort of properties are acceptable. For atomic commands, we allow an arbitrary
condition on the environments and the component expressions. For example,
the safety of the assignment x := e can be any condition on x and e. We can
express this as a predicate P ⊆ Env × Env × Expr × Expr . For compound
commands, the key idea is that the basic data of a safety property consists
of arbitrary predicates, Cond, on the immediately accessible subexpressions for
each command. We will write η, η � Cond(e1, . . . , en) to mean 〈η, η, e1, . . . , en〉 ∈
Cond.

Definition 5. A safety property on commands is compositional, if there exist
predicates Condθ, with the following properties:

– η, η � var x safe iff η, η � Conddecl(x)
– η, η � var x[n] safe iff η, η � Condadecl(x, n)
– η, η̄ � x := e safe iff η, η̄ � Condassign(x, e)
– η, η̄ � x[e1] := e2 safe iff η, η̄ � Condupdate(x, e1, e2)
– η, η � skip safe

– η, η � if b then c safe iff Condif(b) and 〈b, η, η〉 ⇓ 〈true, η′, η′〉 implies 〈η′, η′〉 �

c safe

– η, η � while b do c safe iff η, η � Condwhile(b) and 〈b, η, η〉 ⇓ 〈true, η′, η′〉 im-
plies (〈η′, η′〉 � c safe and 〈c, η′, η′〉 ⇓ 〈η′′, η′′〉 implies 〈η′′, η′′〉 � while b do c safe).

For sequential composition, the safety of c1; c2 is defined as before. Although
this looks fairly similar to Figure 6 it generalizes it by allowing arbitrary con-
ditions on the expressions. Stateless safety follows as the special case where
η, η � Condθ(e1, . . . , en) iff η, η � ei safe, for each i.

This notion of compositionality maintains the correspondence between safe

and safestate, while allowing that safety of a command is arbitrarily expressed
in terms of the safety of its subcommands. Now it should come as no surprise
that we require the condition predicates to be expressible.

Definition 6. We say that the n-ary predicate, P , is expressible when there
exists formulas φ such that

〈e1, . . . , en〉 ∈ P iff η, η � φ(e1, . . . , en).



Finally, we are in a position to state a general completeness theorem, which
generalizes the theory of stateless safety developed in Section 2. We omit the
details of the proof here and just state the theorem; the proof structure is the
same as for the stateless case, making use of expressivity where appropriate.

Theorem 3. Given ( i) a set, Val (the shadow domain), ( ii) an operational
semantics, 〈c, η, η̄〉 ⇒ 〈c, η′, η̄′〉, and ( iii) a compositional safety property, such
that expressivity (operational, predicate, commands and expressions) holds, the
following system is sound and complete with respect to the safety property:

(decl)
Sub

x
decl(Q) ∧ Conddecl(x) {var x} Q

(adecl)
Sub

x,n
adecl(Q) ∧ Conddecl(x, n) {varx[n]} Q

(assign)
Sub

x,e
assign(Q) ∧ Condassign(x, e) {x := e} Q

(update)
Sub

x,e1,e2

update (Q) ∧ Condupdate(x, e1, e2) {x[e1] := e2} Q

(if )
b ∧ P {c} Q ¬b ∧ P ⇒ Q

Sub
b
if(P ) ∧ Condif(b) {if b then c} Q

(while)
b ∧ P {c} P

Sub
b
while(P ) ∧ Condwhile(b) {while b do c} Q

(with the rules (skip) and (cons) as before).

5 Related Work

A number of different techniques have been applied to program certification.
The following list is certainly not exhaustive; we focus on static techniques and
leave out dynamic techniques like runtime monitoring [5].

Certification tools based on static analysis are already commercially available,
e.g., PolySpace [14], which uses abstract interpretation and constraint solving
techniques to identify possible runtime errors. However, such tools usually have
fixed built-in notions of safety and suffer from a high number of false positives.

Other approaches use expressive type systems to enforce safety policies. Rittri
[16] and Kennedy [7] have extended type inference techniques to ensure the
consistent use of physical dimensions in functional programs. However, both
approaches exploit certain algebraic properties of dimensions and it is unclear
how general they are. Xi and Pfenning [20] have used dependent types to show
array bounds safety, again for functional programs. Using similar ideas, Walker
[18] has developed a type system to express and enforce a number of security
policies. Shankar et al. [17] have used type qualifiers [3] to detect vulnerabilities
due to C’s format strings. Their tainted and untainted qualifiers take the same
role as the values in our shadow domains. In general, type-based approaches tend
to scale better, although it is unclear when a specific expressive type inference



algorithm becomes intractable in practice. Unlike the shadow variables, however,
inferred types are static, i.e., the abstract value associated with a program cannot
change during execution. Moreover, structured collections like arrays are usually
modeled using a single type to keep inference tractable; this makes the analysis
necessarily less precise. Experiments are thus required to compare the effects
and trade-offs of the different approaches in practice.

Traditionally, program verification concentrates on showing full functional
equivalence between specifications and programs. This is true especially for in-
tegrated development/proof environments as for example the KIV system [15].
However, Hoare-style verification has also been used in property-oriented certi-
fication as we investigate it here. Extended static checking (ESC) [8, 4] can be
thought of as an “inference-based debugger”: it uses Hoare rules, supported by
program annotations, to detect a variety of potential errors, including division-
by-zero and array-bounds violations. The more annotations the program con-
tains, the more errors ESC can detect. Similarly, the SPARK Examiner [1] is a
tool which uses Hoare rules to show exception freedom of Ada programs; this cor-
responds to a safety policy which combines more elaborate versions of operator
safety (i.e., division-by-zero and overflow) and memory safety (i.e., array-bounds
violations and overflow).8 However, none of the systems deal with the question
of correctness of their respective safety policies. Also, they typically only deal
with one specific policy, whereas our framework is general.

6 Conclusions and Future Work

In this paper we have formalized a selection of safety properties using Hoare
logic, and shown that they are sound and complete with respect to a semantic
notion of safety. We have developed a generic method of doing this for arbitrary
safety properties, thus showing how a safety policy can be automatically derived
from a safety property and an operational semantics. The principal difficulty has
been finding a general definition of safety property which enables this automatic
derivation.

The rules we have presented show that safety rules can be quite complicated,
even when dealing with a single policy at a time. The semantic framework devel-
oped in this paper serves as a structuring mechanism to deal with such complex-
ity. The modularization of safety policies is a difficult problem but the present
theory should serve as a starting point.

We are currently using this theory as the basis for the implementation of a
VCG which is parametric with respect to a safety policy, and we are looking at
a wide range of safety properties. Direct application of the theory should lead
to a modular implementation.

The simple while-language studied here is sufficient for this because our aim
is to certify synthesized code, and so we can control the language subset under

8 Note that overflows can result from arithmetic operations as well as from inconsistent
use of derived types (i.e., subtypes) and thus influence both operator safety and
memory safety.



consideration. Moreover, since we can generate loop invariants along with the
synthesized code our safety logic need not be concerned with this.

On a theoretical side, we believe that the logical nature of Definition 5 points
to some interesting connections to the theory of computation, and we are cur-
rently investigating this.
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